
MicroCast: Cooperative Video Streaming on Smartphones

Lorenzo Keller
School of I&C

EPFL, Lausanne, CH
lorenzo.keller@epfl.ch

Anh Le
CS Dept & CalIT2

UC Irvine
anh.le@uci.edu

Blerim Cici
Networked Systems & CalIT2

UC Irvine
bcici@uci.edu

Hulya Seferoglu
LIDS
MIT

hseferog@mit.edu

Christina Fragouli
School of I&C

EPFL, Lausanne, CH
christina.fragouli@epfl.ch

Athina Markopoulou
EECS Dept. & CalIT2

UC Irvine
athina@uci.edu

ABSTRACT
Video streaming is one of the increasingly popular, as well as de-
manding, applications on smartphones today. In this paper, we con-
sider a group of smartphone users, within proximity of each other,
who are interested in watching the same video from the Internet at
the same time. The common practice today is that each user down-
loads the video independently using her own cellular connection,
which often leads to poor quality.

We design, implement, and evaluate a novel system, MicroCast,
that uses the resources on all smartphones of the group in a co-
operative way so as to improve the streaming experience. Each
phone uses simultaneously two network interfaces: the cellular to
connect to the video server and the WiFi to connect to the rest
of the group. Key ingredients of our design include the follow-
ing. First, we propose a scheduling algorithm, MicroDownload,
that decides which parts of the video each phone should download
from the server, based on the phones’ download rate. Second, we
propose a novel all-to-all local dissemination scheme, MicroNC-
P2, for sharing content among group members, which outperforms
state-of-the-art peer-to-peer schemes in our setting. MicroNC-P2
is designed to exploit WiFi overhearing and network coding, based
on a local packet broadcast framework, MicroBroadcast, which we
developed specifically for Android phones. We evaluate MicroCast
on a testbed consisting of seven Android phones, and we show that
it brings significant performance benefits without battery penalty.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.2.2 [Computer-
Communication Networks]: Network Protocols—Applications

Keywords
Video Streaming, Wireless Networks, Smartphones, Network Cod-
ing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

1. INTRODUCTION
Today’s smartphones are equipped with significant processing,

storage and sensing capabilities, as well as wireless connectivity
through cellular, WiFi and Bluetooth. They provide ubiquitous In-
ternet access, primarily through their cellular connection and sec-
ondarily through WiFi, and enable a plethora of new applications.
Among those applications, video (including consuming and creat-
ing/posting video content) is increasingly popular. However, meet-
ing the growing demand for high quality video is currently a chal-
lenge in cellular networks.

Indeed, cellular traffic is growing exponentially (tripling every
year), with a share of video traffic increasing from 50% now to an
expected 66% by 2015 [7]. Credit Suisse reported in [13] that 23%
of base stations globally have utilization rates of more than 80 to
85% in busy hours, up from 20% last year. This dramatic increase
in demand poses a challenge for 3G networks, which is likely to
remain in 4G networks as well. Furthermore, the data rate of the
cellular connection may fluctuate over time (e.g., throughout the
day); the service loss rate can be as high as 50% [36]; and coverage
can be spotty depending on the location and user mobility.

In this paper, we are interested in the scenario where a group
of smartphone users, within proximity of each other, are interested
in watching the same video at the same time. Watching the video
on one phone screen is not comfortable for more than two people;
users may also prefer to watch the video on their own screens. The
default operation today is that each user with a cellular connec-
tion downloads the video independently from the server. However,
each phone’s individual cellular connection may not be sufficient
for providing high video quality.

Consider, for example, that a user wants to show to her friends
a YouTube videoclip while being in a bar; a group of friends who
want to watch a live soccer match together on their phones while at
a remote location (e.g., a camping or skiing site); or a family who
wants to watch a movie on their phones in the train or in the car;
or a group of co-workers who want to watch a lecture using WiFi
at a busy hotspot, such as the company cafeteria or a conference
room. In all these cases, some or all of the users may have poor
or intermittent cellular connectivity, depending on the coverage of
their providers, or may face congestion in the local network (e.g.,
when they use WiFi to download).

Fortunately, because the users engage in a group activity, this
scenario naturally lends itself to cooperation. Furthermore, when
every phone has multiple parallel connections (e.g., 3G, WiFi, and
Bluetooth), there are even more available resources that, if properly
used, can further improve the user experience.

A special case of the general scenario is when the video content
is stored locally on one of the phones and the user wants to share it

57

Figure 1: MicroCast scenario. A group of smartphone users,
within proximity of each other, are interested in watching the
same video at the same time. Each smartphone connects to the
video source (e.g., UStream, YouTube, or Netflix) using its cel-
lular (3G or 4G) connection. The base station may be the same
or different for different users, depending on the provider they
use. Each smartphone can receive packets from the source as
well as from other smartphones in the neighborhood through
device-to-device (e.g., WiFi) links.

with the other members of the local group. For example, a teacher
wants to share a video with the students in a class; or a group of
friends want to watch a video recorded of a group activity stored
on one of the phones. In these cases, cooperation can also help.

We propose a novel cooperative scheme, called MicroCast1, for
video streaming to a group of smartphones within proximity of
each other. Each phone utilizes simultaneously two network in-
terfaces: one (cellular) to connect to the video server and download
parts of the video; and the other (WiFi) to connect to the rest of the
group and exchange downloaded parts. Our scheme optimizes the
usage of the cellular links to ensure that all the available bandwidth
is used when channel conditions are good so as to compensate for
potential long periods of bad channel conditions. It also optimizes
the dissemination in the local area so as to ensure that even in pres-
ence of heavy interference from other networks, the phones can still
collaborate. In our scheme, each phone downloads the video much
faster than it is played out when the conditions are good, in or-
der to reduce the likelihood of buffering during the playback when
the radio conditions significantly deteriorate, e.g., it downloads at 2
Mbps or more on current cellular networks videos that are typically
encoded at 750 Kbps.

Our system consists of the following key components.

1“Micro” indicates locality: there is a small number of users and
they are all within proximity of each other. “Cast” indicates a mul-
ticast scenario: all users in the group are interested in the same
content sent by a single source, and that we use local broadcast.

I. MicroDownload: This is a simple yet effective scheduler that
decides which parts of the video each phone should download
from the server and distribute on the local network. The de-
cision is based on feedback from each phone and takes into
account the cellular download rate. Compared to prior work,
e.g., [20], [29], [25], [26], [38], where each phone tries to
download all the data and the local links are used for error
recovery, our scheme jointly utilizes two interfaces for data
delivery. Compared to cooperative mobile systems for of-
floading cellular networks, e.g., [17], [14], [42], our goal is
to improve the 3G downlink utilization of a group of smart-
phones. Compared to [35], our scheme tries to maximize the
rate at which the content is downloaded to prevent buffer un-
derflow, which leads to freezing of the video.

II. MicroNC-P2: This is a novel all-to-all dissemination scheme
for locally sharing content among group members within prox-
imity of each other. It leverages the combination of network
coding and WiFi overhearing (provided by the MicroBroad-
cast mechanism, described below) to efficiently share the down-
loaded parts of the video locally. We show that, in our set-
ting, MicroNC-P2 significantly outperforms state-of-the-art
P2P schemes, including BitTorrent [8] and the network coding-
based R2 [41]. This is because MicroNC-P2 is explicitly
designed to exploit the capabilities of the underlying Micro-
Broadcast to introduce less redundancy than the previous al-
gorithms [41]. MicroNC-P2 is not only a key component of
our MicroCast system but also a standalone contribution that
can be used independently, e.g., for local all-to-all dissemina-
tion.

III. MicroBroadcast: We develop a component that enables high
rate packet broadcast, building on WiFi of Android phones.
Although the wireless medium has inherently the broadcast
capability, this cannot be fully exploited using standard WiFi
broadcast, due to various problems, including low rates. lack
of reliability etc. Pseudo-broadcast on WiFi ad-hoc mode,
which was previously used in [18], cannot be used on Android
phones, as we discuss later. To the best of our knowledge, Mi-
croBroadcast is the first Android-based system to fully exploit
the potential of broadcast. MicroBroadcast is a contribution
on its own right and also a necessary component for the high
performance of the entire MicroCast system: e.g., MicroNC-
P2 exploits its capabilities.

We implement a prototype of our system as an application for
Android phones. An attractive feature of our architecture is that it
is modular: one can change each component (e.g., the link layer, the
algorithms for local distribution or download, the streaming proto-
col, etc.) independently of the others. We plan to make the appli-
cation and its related libraries publicly available [1]. In this paper,
we present first the system design and then the performance evalu-
ation results from experiments on a testbed consisting of seven An-
droid phones. We evaluate each of the three components separately
as well as the combined system as a whole and we demonstrate
that there are significant performance benefits (in terms of decrease
download time and increase per-user download rate) compared to
alternative approaches, without significant battery cost. A video
demonstration and supporting materials can be found in [1].

The rest of the paper is structured as follows. Section 2 presents
related work. Section 3 describes the MicroCast architecture. Sec-
tion 4 presents the MicroDownload and MicroNC-P2 algorithms
and their interaction. Section 5 discusses implementation details,
including challenges specific to Android phones and design choices

58

made to address them. Section 6 presents performance evaluation
results on our Android testbed for a range of scenarios. Section 7
discusses limitations and extensions. Section 8 concludes the pa-
per.

2. RELATED WORK
Cooperative Mobile/Wireless Systems. When several users are

interested in the same content and they are in proximity of each
other, some of them may be able to use device-to-device connec-
tions, e.g., through WiFi or Bluetooth, to get the content in a co-
operative and/or opportunistic way. Opportunistic device-to-device
communication is often used for the purpose of offloading the cel-
lular network. For instance, [17], [14], and [42] consider a scenario
in which device-to-device and cellular connections are used to dis-
seminate the content, considering the social ties and geographical
proximity. Instead of offloading cellular networks, our goal in this
paper is to use cellular and local connectivity so as to essentially
allow each user to enjoy the aggregated downlink rate.

Furthermore, cooperation between mobile devices for content
dissemination or in delay tolerant networking, possibly taking into
account social ties [16, 3], has extensively been studied. However,
dissemination of content stored on a mobile device is only a spe-
cial case of our framework, which uses only the local links, but not
the downlinks. More importantly, we exploit single-hop broadcast
transmissions, as opposed to multi-hop peer-to-peer communica-
tion that exploits mobility (at the expense of delay, which is crucial
in our setting), but ignores broadcast.

The idea of using multiple interfaces of mobile devices has been
used before but not in the same way as in this paper. For exam-
ple, [37] effectively exploits cellular and WiFi interfaces simultane-
ously to create multiple paths to mobile devices. [34] improves the
mobile networking experience using concurrent WiFi connections
from multiple WiFi hot-spots. [28, 5] exploit the diversity of mul-
tiple interfaces on the same device to achieve better connectivity.
Instead, we use the cellular connections of multiple smartphones
to improve the download rate and jointly utilize local connections.
[2, 35] address the same problem as we do, and use a similar strat-
egy. However, they use only unicast communication among peers,
as opposed to our (micro)broadcast. Therefore, they are more sen-
sitive to local bandwidth fluctuations.

The recently announced Android Ice Cream Sandwich (Android
4.0) devices provide peer-to-peer (P2P) connectivity using WiFi
Direct [43]. WiFi Direct is an industrial standard that prompts
WiFi-equipped devices to establish ad-hoc peer-to-peer connections,
while maintaining the infrastructure mode connection to the Inter-
net. This is achieved by having one of the devices acts as a virtual
AP to provide infrastructure to the rest. In MicroCast the mobile
devices create P2P connections in a similar way, but in our case,
we try to reduce the number of frames (in the channel) required
for each data packet exchanged between the peers. This is done by
“pseudo-adhoc”, which is part of the MicroBroadcast component.
The core idea of MicroBroadcast is to exploit the broadcast nature
of the wireless channel, while the core idea of WiFi Direct is to
offer ad-hoc connectivity to mobile devices.

Network Coding in Cooperative/Wireless Systems. Cellular links
(3G or 4G) as well as WiFi suffer from packet loss due to noise
and interference. One possible solution to this problem is to have
several devices in a close proximity help each other with retrans-
missions of lost packets. Network coding is particularly benefi-
cial as it can make each retransmission maximally useful to all
nodes. Rate-distortion optimized network coding for cooperative
video system repair in wireless peer-to-peer networks is consid-
ered in [21]. Wireless video broadcasting with P2P error recovery

is proposed in [20]. An efficient scheduling approach with network
coding for wireless local repair is introduced in [29]. [38], [26],
and [25] propose a system, in which a group of smartphone users
(which are connected to the Internet via cellular links) help each
other for error correction, while base stations broadcast packets,
which is not implemented in current systems; in contrast, we con-
sider unicast (between a base station and a mobile device). A coop-
erative video streaming system is implemented over mobile devices
(PDAs) in [27]. Compared to prior work, e.g., [20], [29], [25], [26],
[38, 15], where each phone tries to download all the data, and the
local links are used for error recovery, our scheme jointly utilizes
two interfaces, i.e., 3G and WiFi, for data delivery.

Network Coding Implementation. There are WiFi testbeds that
implement network coding, such as the COPE testbed [18]. COPE
is a practical scheme for one-hop network coding across unicast
sessions in wireless mesh networks. [24] proposes a cooperative
IPTV system with pseudo-broadcast to improve reliability. Medusa
[31] considers a scheme in which multiple unicast flows (video
streams) are transmitted from a base station to clients with network
coding. This scheme considers rate adaptation and video packet
scheduling jointly.

The practicality of random network coding over iPhones is dis-
cussed in [32]. A toolkit to make network coding practical for sys-
tem devices from servers to smartphones is introduced in [33]. [25]
implements network coding on mobile devices and presents the per-
formance in terms of throughput, delay and energy consumption.
[26] extends [25] for picture transmission. A gesture broadcast pro-
tocol is designed for concurrent gesture streams in multiple broad-
cast sessions in [10] over smartphones using inter-session network
coding. [38] proposes a system, in which a group of smartphone
users (which are connected to the Internet via cellular links) help
each other for error correction. A cooperative video streaming sys-
tem is implemented over mobile devices (PDAs) in [27].

To the best of our knowledge, our work is the first to implement
network coding and overhearing on the Android platform. These
tasks are much more challenging on Androids than on laptops [18].
Network coding has been implemented before on other types of
phones, [32, 25, 26], although not on Androids, but it has not been
combined with overhearing, which is key in our setting.

Network coding for peer-to-peer systems. Network coding has
been applied to P2P networks for content distribution [12, 39, 40]
and live streaming [41, 22] (an excellent review is presented in
[19]). We will show that, in our “micro”-setting, MicroNC-P2 sig-
nificantly outperforms state-of-the-art P2P schemes, including the
widely used BitTorrent [8] as well as the network coding-based R2

[41]. This is because MicroNC-P2 is explicitly designed to exploit
WiFi overhearing and network coding, and to avoid fundamental
weaknesses of previous algorithms in our setting, such as the re-
dundancy in R2.

Network Optimization. Our system design is loosely inspired by
the network utility maximization of the problem and its distributed
solution [30]. For example, our preliminary analysis showed the
benefit of cooperation and broadcast, which motivated the design
of MicroNC-P2 and MicroBroadcast. It is worth noting that our
experimental results closely match the trend obtained by the theo-
retical analysis, as explained in Section 6. Our MicroDownload is
also inspired by the distributed rate control at [30].

Contributions. The contributions of this work lie (i) in the indi-
vidual components, namely MicroDownload, MicroNC-P2, Micro-
Broadcast; each of which is novel, outperforms baselines, and can
be used standalone; and (ii) in their combination into the overall
MicroCast system. Our MicroCast architecture is modular, thus al-
lowing for swapping various components (e.g., different wireless

59

technologies, streaming protocols, scheduling and dissemination
algorithms). We optimized the mechanisms used by each compo-
nent, in our particular setting, so as to outperform alternatives and
work in a synergetic way. For example, MicroNC-P2 exploits net-
work coding and high-rate broadcast that is made available at the
system-level by the MicroBroadcast; MicroBroadcast makes local
WiFi broadcast at high rates possible, for the first time, on Android
devices; MicroNC-P2 reduces the congestion at the local network,
thus simplifying the design of MicroDownload; and cooperation is
used jointly on the downlink and local links.

3. MICROCAST ARCHITECTURE

3.1 Setup and Assumptions
We consider the scenario presented in Fig. 1: a group of smart-

phone users, within proximity of each other, are all interested in
downloading and watching the same video at the same time. To
achieve this goal, we use cooperation among the users. Further-
more, each phone simultaneously uses two interfaces: the cellu-
lar interface (3G) to connect to the server, and the local interface
(WiFi) to connect to all other users in the group. Each phone down-
loads segments of the video from the server and shares these with
the rest of the group locally.

We optimized our system under certain assumptions that hold for
our setup of interest: First, there is a small number of users (up to
6-7). Second, these users know and trust each other, as it is the
case in the motivating examples we provided in the introduction.
Third, all users are within proximity of each other and all local
links have similar rates on average. This is important as we need to
use only single-hop, broadcast transmissions (although we do not
need multihop transmissions due to close proximity, we could still
incorporate them in our system – as we do in our Bluetooth-based
implementation that supports multihop; see Section 7). Fourth, in
every phone, we use the cellular connection for the downlink, and
WiFi to establish local, device-to-device links. (Alternatives, in-
cluding WiFi for the downlink or Bluetooth for the local link, are
discussed in Section 7.) This has the implication that we can use
the two connections (cellular and WiFi) on each phone simultane-
ously and independently; this would not be possible otherwise, as
we discuss later. Note that cellular and WiFi connections are used
in parallel, but one connects directly to the server (3G), while the
other connects to the other users (WiFi); we do not use both of
these connections to connect a user directly to the server through
two different paths.

3.2 Architecture
We implement a prototype of our system as an application on

Android phones, with the architecture shown in Fig. 2. In the re-
maining of this section, we give an overview of the building blocks
and the interaction between them. More specifically, MicroCast
consists of the following main components.

MicroDownload runs only on one of the phones (in a group) that
initiates the download. It instructs the requesters of all phones
which segments to download from the server. The download al-
gorithm is described in Section 4.1.

MicroNC-P2 is responsible for distributing segments using the lo-
cal wireless network. (We describe the algorithm in detail in Sec-
tion 4.2.) MicroNC-P2 specifically exploits the broadcast capabil-
ity provided by its lower layer MicroBroadcast to distribute seg-
ments quickly and efficiently.

Figure 2: Architecture of MicroCast.

MicroBroadcast implements a comprehensive networking stack,
which currently operates on wireless technologies including WiFi
802.11 and RFCOMM Bluetooth. The most important functional-
ity that MicroBroadcast provides is the ability to pseudo-broadcast
over WiFi. Nonetheless, MicroBroadcast also supports unicast, re-
liable and un-reliable message exchange between the network par-
ticipants over both WiFi and Bluetooth. It also includes multi-hop
routing, network-wide flooding, and peer discovery.

Requester retrieves segments of the video from the video source.
Notice that depending on the video source location, only a subset
of the phones might be able to request segments. For instance, if
the video is locally available on one of the phones, only the phone
having the file requests segments (from its local memory where the
file is stored). If the video is on a remote HTTP server, only the
phones with cellular connections request segments.

Storage is used to cache the received segments for successive play-
back.

Graphical User Interface (GUI) provides an interface to users
to create video streams, share local videos, start/stop downloading
video files, join existing video streams, and play/pause video. In
addition to these basic features, the GUI lets users discover and
connect to other devices, specify the wireless interface that should
be used for the local dissemination, and decide whether the phone
should collaborate for video downloading. The GUI also allows
users to select system modules as well as run-time parameters for
experimental purposes. The GUI provides live feedback during the
experiments, and provides detailed statistics after the experiments.
These functionalities of the GUI facilitate field tests. We provide
some screen shots of our GUI in Fig. 3.

4. MICROCAST ALGORITHMS
In this section, we present the algorithms that we chose to imple-

ment in each component.

4.1 MicroDownload Algorithm
The video is divided into segments of fixed size. MicroDown-

load handles the scheduling of which phone should download which
segment. Its main idea is that the next segment to be downloaded
is assigned to a phone which has the smallest backlog (i.e., the set
of segments a phone has to download from its cellular connection).
The MicroDownload algorithm is summarized in Alg. 1 and in the
following.

60

(a) Main Options (b) Information (c) Distributors (d) Downloading (e) Statistics

Figure 3: MicroCast Graphical User Interface.

Algorithm 1 MicroDownload Algorithm
1: while there are segments to assign do
2: Find the phone with the smallest backlog
3: if the backlog of the phone is smaller than K then
4: Schedule the phone to download the next segment
5: else
6: Sleep until new feedback is received
7: end if
8: if feedback from phone indicates a failure then
9: Schedule the phone to download another segment

10: Add the segment that failed to the list of segments
11: end if
12: end while

MicroDownload has a list of segments that should be assigned
to the phones. Initially, it assigns a fixed number (K) of segments
to each phone. The phones try to download one after the other the
segments that are assigned to them. If a phone downloads a seg-
ment successfully, it notifies MicroDownload. Otherwise, it reports
failure. MicroDownload re-assigns the failed segments (based on
the backlogs). This mechanism ensures that no segment remains
trapped in phones which have bad cellular connectivity. Also, this
mechanism adapts segment download to the varying rates and con-
ditions of cellular links. For example, if a phone has a bad cellular
connection, the requests being handled by it will be re-scheduled
by assigning them to other phones, which hopefully have better
connections. However, MicroDownload will still assign some seg-
ments to the phone with the bad cellular connection so that it can
start downloading immediately as soon as its channel quality im-
proves.

4.2 MicroNC-P2 Algorithm
Each segment downloaded by a phone, is divided into packets,

and distributed to the remaining phones using the local network.
To do so, we design a custom dissemination scheme that exploits
the benefits of overhearing and network coding. At a high level,
our scheme takes advantage of pseudo-broadcast, i.e., unicast and
overhearing, to reduce the number of transmissions. Furthermore,
instead of disseminating regular packets, our scheme disseminates
random linear combinations of packets of the same segment, i.e.,
dimensions of subspaces or network coded packets. This is to max-
imize the usefulness of overheard packets [11]. We desribe in de-
tail how we use network coding in Section 5.3. As we will show
in Section 6.2, existing distribution protocols, such as BitTorrent

[8] and R2 [41], do not exploit overhearing and thus have worse
performance.

We term our dissemination scheme MicroNC-P2, where P2 refers
to an initial Push and subsequent Pulls. Fundamentally, MicroNC-
P2 is built based on traditional pull-based P2P dissemination schemes.
In MicroNC-P2, a phone, A, periodically advertises the segments
that it currently has to its neighbors. Then, a neighbor, say phone
B, requests segments that it does not have based on the advertise-
ment. Upon receiving the request, phone A sends the requested
segments to phone B. More specifically,

• When phone B requests a segment s from phone A, it takes
into account previously overheard dimensions of the sub-
space representing segment s. In particular, it explicitly indi-
cates in the request how many additional dimensions it needs
to receive to decode s. This reduces the number of dimen-
sions to be sent.

• When phone A is about to serve a segment s requested by
phone B, it first checks if there are pending requests for the
same segments from other neighbors. If there are, it finds
the maximum number of dimensions requested among these
requests. Denote this maximum dimension by d. If there is
none, d is the number of dimensions requested by B. After-
wards, A serves d dimensions of segment s to B. The other
phones, which need up to d dimensions of s, should be able
to get the dimensions through overhearing.

After serving B, A notifies all phones that requested some di-
mensions of segment s. Upon receiving the notification, these phones
check if they received all the necessary dimensions to decode s. If
not, they send requests for additional dimensions. This is neces-
sary, because overhearing is not guaranteed for all dimensions sent
by A and for all phones. Finally, the scheme gives higher priority
to requests that are closer to the playback time when serving them.
Overhearing and unicasts effectively allow for pseudo-broadcast.
As described, the amount of traffic saved by pseudo-broadcasting
segment s depends not only on the quality of the overhearing but
also on the number of requests of segments s from other phones
that A processes at the time of broadcasting.

To be concrete, consider a local network consisting of four phones:
A, B, C, and D. After finishing downloading segment s using 3G,
A advertises it to B, C, and D. B, C, and D then send requests
for this segment to A. For simplicity, assume perfect overhearing.
First, consider the case where all requests arrive at A at a similar
time. In this case, when A serves, e.g., B’s request for segment

61

(a) MicroNC-P2

(b) MicroBroadcast

Figure 4: Space-time Diagram of MicroNC-P2 and Micro-
Broadcast.

(a) BitTorrent-Pull

(b) R2-Push

Figure 5: Space-time Diagrams of BitTorrent-Pull and R2-
Push.

s, A removes C and D’s requests for s. Effectively, A serves all
B, C, and D using a single transmission of s. Now, consider the
case where the request from D arrives later than the time A ini-
tially serves s to B and C. The late arrival of D’s request could be
due to various reasons, such as large receiving and sending queues

Algorithm 2 MicroNC-P2 Algorithm
1: when a new segment s is received
2: if s is received by the requester then
3: // initial push
4: Send all dimensions of s to a neighbor
5: end if
6: Add s to the list of segments to be advertised
7: end when

8: when a packet p is received from A
9: if p is an advertisement

10: or notification containing s then
11: // subsequent pulls exploit overhearing
12: Request A for the missing dimensions of s
13: else if p is a request for d dimensions of s then
14: Add this request to the request queue
15: else if p is a dimension of s then
16: Progressively decode s using p
17: end if
18: end when

19: when there is a request for d dim. of s from A
20: // pseudo-broadcast
21: if there are other similar requests then
22: Let d be largest requested dimension
23: Remove these requests from the request queue
24: end if
25: Send d dimensions of s to A
26: end when

of D. A now has to serve D all dimensions of s even though D
may overheard some dimensions initially sent by A to B (or C).
Apparently, A needs to send more than needed.

To address this issue, we propose an initial push of segment s.
Specifically, when A finishes downloading segment s, it sends all
dimensions of s to a randomly selected neighbor before advertising
the segment. By doing so, A ensures that the initial dissemination
of segment s is taken into account in subsequent requests of seg-
ment s (if any) of A’s neighbors. This effectively creates a perfect
synchronization of the reception of the initial requests of segment s.
We provide the pseudocode of MicroNC-P2 distribution algorithm
in Alg. 2 and the space-time diagram of MicroNC-P2 in Fig. 4(a).

Last but not least, in order to address loss of request and notifi-
cation packets, which could lead to missing segments, MicroNC-
P2 includes a recovery thread. This thread periodically re-requests
segments that were requested after a certain amount of time but
never received.

4.3 Reception Rate
Our system aims to allow each phone to receive at a rate equal to

the sum of the 3G/4G download rates of all phones in the coopera-
tive group. This is the best rate we can hope to achieve since this is
the maximum rate at which our network gets new information from
the server. This rate may be higher than the playback rate of the
video; this is useful to reduce the probability of a buffer underflow
during playback. Downloading at a rate higher than the playback
rate requires caching of the stream locally. This is not a problem on
modern phones which come with large storage space. For instance,
a Nexus S can store up to 16 GB of data. Assume for simplicity
that each phone can receive rate Rc from the cellular network and
rate Rl from the local network. If we have N phones, this implies
that we need to maintain Rl ≥ (N − 1)Rc, since each phone is

62

expected to receive through the local network the segments that the
other N − 1 phones have downloaded. In our set-up of interest,
this was possible thanks to our efficient use of the local network
through network coding and overhearing: our bottleneck (min-cut)
has been between the phones and the cellular network.

5. IMPLEMENTATION DETAILS
In this section, we describe the implementation details, the major

challenges we faced specifically on Android phones, and the design
choices we made to address them.

5.1 Architecture Details
Our software is developed mostly in Java, with some minor parts

in C, and runs on Android 2.3 and 4.0 and Java 2 SE. Both the An-
droid and Java versions share the same structure and code, except
for the graphical user interface (GUI) and the code that uses the
local network wireless API. In this paper, we restrict our attention
to the Android version.

Requester. It internally uses components called producers to re-
trieve segments of the video from the source of the stream. Our cur-
rent implementation contains producers for three types of sources:
HTTP, file, and content. The first one (HTTP) loads segments
from an HTTP server using range requests. The second one (file)
loads video from locally available files. Finally, the third one (con-
tent) retrieves data using the ContentProvider API of Android (e.g.,
videos can be captured with the phone camera). The implemen-
tation allows to easily add new producers. The HTTP producer
is agnostic to the actual networking technology used to access the
server. Therefore, it can work not only when the phones use a 3G
network to access the video server, but also when they use an infras-
tructure mode WiFi network. The overhead of using range requests
measured in bytes is relatively small, around 3% when using seg-
ments of 22500 bytes. The download of segments is affected by
round-trip time, but if the HTTP server hosting the video supports
persistent connections, all requests can be carried out in a single
TCP connection, thus saving some overhead. To further reduce the
impact of round-trip time, our code supports the usage of multiple
parallel TCP connections on each phone.

Storage. The segments are stored in the internal flash memory of
the phone to keep the application memory requirements low. It is
possible to access the segments from the storage either using a Java
API, as done by the requester and MicroNC-P2, or via an embed-
ded HTTP server that we have developed. This second interface
allows us to play the video stream using the native Android me-
dia API. In order to support playback of non-streamable video, for
instance, MP4 files with moov atom at the end of the file, our em-
bedded HTTP server supports range requests; thus, the Android
Media Player can perform random access of the video stream. If
a range that has not yet been downloaded is requested, the HTTP
server waits until it receives the full range before answering.

Graphical User Interface (GUI). The GUI automatically displays
the locally reachable peers to form a group, and which streams (if
any) is being downloaded in the group. The user only needs to se-
lect the desired stream and join it. The phones can play the video in
a synchronized manner or at their own pace. Playback and down-
load are decoupled thanks to our storage mechanism: a phone could
be participating in the download while its video player is paused.
To render the video, the application uses the media playback API
included in Android, which supports various containers and video
formats, such as H.264 in a MP4 container. The video can be dis-
played while MicroCast is still downloading; therefore, live stream-
ing is supported.

MicroBroadcast. In order to facilitate porting of the application
to different wireless technologies, MicroBroadcast contains an ap-
plication layer implementation of a networking stack. Depending
on the wireless technology used, features of MicroBroadcast are
either implemented using a native mechanism or emulated. For
instance, the Bluetooth implementation re-uses the native peer dis-
covery mechanism while WiFi nodes run a custom peer discovery
protocol. We give the implementation details for pseudo-broadcast
in Section 5.4.

5.2 Multiple Network Interfaces
Each phone needs to use an interface as downlink (e.g., 3G or

WiFi) and another interface (e.g., WiFi or Bluetooth) for the local
cooperation. For the connection to the server, we chose 3G over
WiFi mainly because it provides ubiquitous Internet access. A sec-
ond reason is that Bluetooth and WiFi share partially overlapping
parts of the spectrum and are often implemented in the same chip,
while 3G is usually implemented on a different chip and uses a dif-
ferent part of the spectrum. This suggests that using WiFi (for the
connection to the server) together with Bluetooth (for the local net-
work) may noticeably decrease the transmission rate, which was
indeed the case during our initial experiments. 3G is independent
from both Bluetooth and WiFi, so the combination of 3G and ei-
ther WiFi or Bluetooth does not reduce the transmission rate. For
the local connection, we use WiFi instead of Bluetooth because it
can support a larger number of connections at higher rates.

We also note that the Android connectivity manager imposes ad-
ditional challenges when 3G is utilized simultaneously with WiFi.
In particular, in order to improve the battery life, every time the
WiFi interface is activated, Android turns the 3G data connection
off. We solve this problem using an undocumented API that forces
routing of packets for the HTTP server through the 3G interface,
and therefore preventing the interface from being shut down.

5.3 Network Coding

Network Coding Scheme. We use generation-based network cod-
ing [6] over the field GF(28). Each segment is broken down into
m packets b̂i, which together form one generation (or segment),
where m is the segment or generation size. Each packet contains
n bytes, and we treat each byte as a symbol in GF(28). We also
augment each packet with the m coding coefficients, each of which
is selected uniformly at random from GF(28). Thus, each packet
can be seen as a vector of length n + m symbols from GF(28)

Phone A sends to phone B linear combinations of packets of
the same segment, where the coding coefficients used to create lin-
ear combinations are selected uniformly at random from GF(28).
Phone B can decode a segment upon receiving m linearly indepen-
dent combinations of packets of the segment. Let M denote the
matrix formed by m linearly independent packets: M = [E |C],
where E is of size m × n and C is the coefficient matrix of size
m×m. Original packets b̂i can be recovered by finding the inverse
of C. In particular, C−1 · [E |C] = [B | I], where B is the matrix
of size m×n whose row i is b̂i and I is the m×m identity matrix.
Inverting C takes Θ(m3) and multiplying C−1 with [E |C] takes
Θ(m2(n + m)) in terms of finite field multiplication. Thus, the
decoding takes Θ(m3 + nm2) in total. Generating m randomly
encoded packets can be done by generating a random coefficient
matrix R of size m×m and multiplying R with [B | I]. Thus, the
encoding of a segment also takes Θ(m3 + nm2) in total.

CPU Limitations. Network coding is a CPU intensive operation.
In MicroCast, encoding and decoding must be performed efficiently,

63

at a rate matching that of the local network dissemination; other-
wise, CPU risks to become the bottleneck of the video distribution.
Therefore, in our implementation, we explored several ways to op-
timize the coding speed.

The first method to reduce the CPU usage is to limit the size
of the coding generation. The smaller the number of packets in
each segment, the smaller the coding complexity. Using smaller
segment sizes, however, reduces the diversity of encoded packets,
i.e., packets are less likely to bring innovative information to their
recipients. In Section 6.5, we give encoding and decoding rates as
a function of segment size.

Second, we seek to optimize our implementation of network cod-
ing. In particular, we test two implementation approaches: pure
Java and native code. In the first implementation, the encoding and
decoding operations are performed by code that runs in the Dalvik
virtual machine. In the second approach, the code runs natively
on the phone CPU and is invoked through the Java Native Inter-
face. The Java implementation has the advantage of being portable
across different hardware platforms but is less efficient than the
native version. In both implementations, we use table lookups to
perform finite field multiplication and division, and we use the bit-
by-bit XOR operation to perform addition and subtraction.

For packet length equal 900 (bytes), segment length equal 22, 500
(bytes), and (resulting) generation size equal 25, inverting the coef-
ficient matrix C takes roughly 8% of the decoding time (measured
on the native implementation). The rest of the time is used to re-
cover the original vector by linearly combining the received packets
(multiplying C−1 with [E |C]). The Java implementation can en-
code at 2.9 Mbps and decode at 4.3 Mbps (the significant difference
in rate is due to a different memory usage pattern), while the native
implementation can both encode and decode at 24 Mbps. The Java
implementation is sufficient for low bit-rate videos while the native
implementation can support even high-quality video streaming (in-
deed, with the native implementation, our experiments show that
MicroCast can support 2.5 Mbps stream to a group of 7 phones).
Both implementations, although sufficient for our needs, are not
fully optimized and thus the rate could potentially be further im-
proved.

5.4 Implementing High-Rate WiFi Broadcast
MicroBroadcast provides to to MicroNC-P2 an interface for high-

rate local broadcast. To the best of our knowledge, this is the first
system that provides this capability on top of WiFi on Android
phones.

Although phones within proximity of each other can, in princi-
ple, overhear all transmissions, high-rate broadcast was not pos-
sible with the existing modes. The unicast mode of 802.11 does
not exploit broadcast: it (redundantly) transmits the same packets
to each receiver separately. The broadcast mode of 802.11 has its
own disadvantages, [31]: (i) it lacks a back-off mechanism, which
may harm the performance of other flows; (ii) its transmission rate
is limited to the minimum (base rate, 1 Mbps); (iii) finally, unlike
laptops, it is not always possible to adapt the broadcast transmis-
sion rate on Android phones due to wireless driver and firmware
limitations.

A possible solution is to use pseudo-broadcast, i.e., overhear-
ing, which combines the benefits of unicast and broadcast. Uni-
cast is used as the transmission mode, but the phones overhear all
transmissions in their neighborhood. Therefore, pseudo-broadcast
combines the desirable properties of unicast (high rate, back-off)
with overhearing, which makes it attractive. Although it has been
implemented in several frameworks [18, 31, 4], when implement-

ing pseudo-broadcast, we faced several challenges that are specific
to Android phones.

First, the phones we used do not readily support the promiscu-
ous mode due to the constraints imposed by the WiFi firmware
and drivers. Therefore, we needed to update the WiFi drivers of
all the Android 2.3 phones we used, and the firmware in some of
them. In particular, we updated the WiFi driver and firmware by
installing CyanogenMod 7 ROM [9] (a custom Android firmware)
on the phones after testing various possible firmwares. With the
CyanogenMod 7 ROM, promiscuous mode is available, but only in
infrastructure mode.

Second, even with the promiscuous mode enabled, Android does
not support pseudo-broadcast mode natively, i.e., does not pass the
overheard packets up to the application layer. We had to develop
our own overhearing API for that purpose “under the hood of An-
droid framework” by developing our own C library and a C binary
executable program that runs as a daemon. This involved filtering
out irrelevant overheard packets (i.e., packets which do not belong
to video data that the phones are interested in) so as not to overload
the CPU.

Third, as we mentioned above, since overhearing is not avail-
able in ad-hoc mode, this pseudo-broadcast implementation works
only in infrastructure mode. Using infrastructure mode has a major
disadvantage compared to ad-hoc mode: when a phone transmits a
packet to another phone, the packet has to be relayed by the access
point, which results in double amount of traffic.

To avoid this disadvantage of infrastructure mode as well as to
exploit the benefits of overhearing, we implemented a pseudo-ad-
hoc mode, which is shown in Fig. 4(b). In this mode, one of the
phones acts as an access point (AP), and all other phones transmit
data to it. These transmissions are overheard opportunistically by
all other phones. When the AP phone receives a packet, it does
not forward it (as it would normally do in the infrastructure mode),
since the other phones should already have received it via over-
hearing. In this manner, we are able to enable overhearing (which
is only possible in infrastructure mode), while ensuring only one
transmission per packet (which is the case in ad-hoc mode), thus
the term pseudo-adhoc mode.

6. PERFORMANCE EVALUATION
In this section, we first evaluate the performance of MicroDown-

load and MicroNC-P2 and compare their performance to baseline,
popular alternatives. We then evaluate the entire MicroCast sys-
tem as a whole. We show that our schemes significantly improve
the streaming experience in terms of download time and video rate,
without introducing significant battery and CPU penalty.

In our evaluation, we perform experiments on an Android testbed
consisting of seven smartphones: four Samsung Captivate and three
Nexus S. All smartphones have a 1 Ghz Cortex-A8 CPU and 512
MB RAM. Six of them use Android Gingerbread (2.3) and one
(Nexus S) uses Android Ice Scream Sandwich (4.0) as their oper-
ating systems.

6.1 Evaluation of MicroDownload
In this section, we present experimental results that motivate the

necessity of implementing MicroDownload and we show its ef-
fectiveness. The setup is the following: we used three Nexus S
connected to the same cellular network provider, and placed them
within proximity of each other (the distances among them are ap-
proximately 2 cm) in an indoor environment. The phones were
placed in their positions 5 minutes before the experiment started to
eliminate any possible positive or negative bias due to mobility.

In our experiment, we disabled MicroNC-P2 and we measured

64

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90 100

D
ow

nl
oa

d
Ra

te
 (K

bp
s)

Time (second)

Phone 1

Phone 2

Phone 3

Figure 6: The cellular link rates of three smartphones in the
same geographical area.

the download rates of the smartphones over 100 seconds. The re-
sults are presented in Fig. 6. The figure shows that despite being
in close proximity and being connected to the same operator the
phones experience significantly different average download rates.
Phone 3 has a very low rate because it uses EDGE. The other two
phones use the same 3G network but still have significantly dif-
ferent download rates. Moreover, phone 1 experiences significant
rate variations. This variability in time and across phones is our
motivation to develop MicroDownload to adaptively request data
according to the downlink rates of cellular links, instead of making
static decisions, such as splitting the requests equally among the
phones.

Using these measurements, we can compare the effectiveness of
MicroDownload algorithm to a simpler static strategy. We consider
a scenario where the three phones download a 750 kB file, and Mi-
croDownload makes a static decision, i.e., each phone requests one
third of the file. In this case, phone 3 (considering the same chan-
nel realization as in Fig. 6) is the bottleneck for downloading the
file, and the total download duration is 80 seconds. However, if Mi-
croDownload makes adaptive requests, as proposed in Section 4.1,
then phone 3 is not a bottleneck anymore, and the total download
duration is less than 10 seconds. This shows the importance of the
adaptive request mechanism of MicroDownload.

6.2 Evaluation of MicroNC-P2
In this section, we compare the performance of MicroNC-P2 to

a BitTorrent-based distributor [8] and an R2-based distributor [41].
We refer to these two distributors as BitTorrent-Pull and R2-Push,
respectively. The performance metric of interest is the amount of
local network traffic introduced by the phones when using different
distributors to disseminate the same amount of information. We
consider a clique and a star overlay topologies for local connectiv-
ity. Packets are exchanged locally using UDP.

We implemented the BitTorrent-Pull scheme based on the de-
scription of the BitTorrent protocol [8]. In particular, our imple-
mentation of the protocol supports three main types of messages:
(i) bitfield and have messages, which are used by a phone to ad-
vertise the segments to its neighbors; (ii) request messages, which
are used by a phone to request specific segments from its neigh-
bors; and (iii) piece messages, which contain the actual data. The

0 10 20 30 40 50 60 70 80 90

MicroNC‐P2

Bittorent‐Pull

R2‐Push

Local Traffic Introduced by the Distributors (MB)

(a) Star Topology (b) Clique Topology

Figure 7: The amount of local traffic introduced by the phones
when using different distributors. The file being downloaded is
9.93 MB. Bandwidth of the local network is sufficient to support
the local dissemination. All phones receive the file at a similar
rate 550 Kbps. MicroNC-P2 manages to introduce the least
amount of traffic thanks to network coding and overhearing.

space-time diagram of BitTorrent-Pull is provided in Fig. 5(a). Fun-
damentally, BitTorrent is a pull-based P2P protocol: when a phone
has downloaded a new segment, it advertises this segment to its
neighbors. The neighbors then explicitly request the segments that
they are missing. To account for the wireless loss rate (when us-
ing UDP), we implemented a recovery thread which periodically
re-requests missing segments.

We implemented the R2-Push scheme based on the description
in [41]. The R2 protocol was introduced to exploit the benefit of
random network coding and random push. Following [41], our im-
plementation of R2-Push supports two main types of messages: (i)
data messages, which are random linear combinations of packets
belonging to the same segment; and (ii) brake messages, which are
used by phones to inform their neighbors that they successfully re-
ceived and decoded specific segments. The purpose of brake mes-
sages is to ensure that the neighbors would stop pushing (unneces-
sary) linear combinations of the decoded data segments.

The space-time diagram of R2-Push is provided in Fig. 5(b). In
contrast to BitTorrent-Pull, with R2-Push, the phones start pushing
linear combinations of segments as soon as they receive them from
either the cellular network or their neighbors. In our implementa-
tion, for a particular segment a phone is downloading, we limit the
number of linear combinations that it can push to its neighbors to
the rank of the matrix formed by the received packets plus a fixed
amount of redundancy, ∆, to account for the wireless loss rate.

Fig. 7 shows the total amount of traffic introduced to the local
network by four phones to disseminate a file when the phones are
connected using star and clique topologies. Note that the differ-
ence between these topologies are that in the star topology, a hub is
used as an access point (AP), and in the clique topology a random
phone is chosen to serve as an AP. In both topologies, all phones
overhear all the transmissions in the group, e.g., from phones to
the AP which is either a hub or a phone. MicroNC-P2 utilizes
pseudo-adhoc as described in Section 5. The file size is 9.93 MB
and is downloaded by a single phone using its 3G connection. The
average rate of the 3G connection is measured at 550 Kbps. The

65

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7

A
ve

ra
ge

 D
o

w
n

lo
ad

 R
at

e
 (

K
b

p
s)

Number of Phones

MicroCast

BitTorent-Pull

No-Cooperation

Figure 8: Average download rate as a function of number of
phones when the local network bandwidth is 20 Mbps. Perfor-
mance of MicroCast and BitTorrent-Pull almost coincide on the
plots.

phone that downloads the file is chosen at random. For R2-Push,
we choose ∆ = 3%. The local network can support 20 Mbps UDP
traffic, measured using iperf [23]. This bandwidth is much larger
than what is needed to support the traffic introduced by the phones
in both topologies. Since the local network bandwidth is sufficient,
each of the phone receives at the rate similar to the phone which
downloads the file through 3G. Each reported number is averaged
over three experiments.

We first observe from Fig. 7 that the amount of traffic intro-
duced by both BitTorrent-Pull and R2-Push are more than three
times higher than that of MicroNC-P2. Intuitively, this is due to the
fact that when using MicroNC-P2, a packet sent by a phone may be
beneficial to three phones instead of one thanks to network coding
and overhearing.

Fig. 7 also shows that in a clique topology, R2-Push introduces
much more traffic as compared to the star topology, while BitTorrent-
Pull and MicroNC-P2 introduce similar amount of traffic in both
clique and star topologies. This is due to the fact that in a clique
topology, a phone may simultaneously receive linear combinations
of the same segment from multiple neighbors. When this happens,
it is critical that the neighbors which are sending to this phone stop
pushing linear combinations in a timely manner. This could only be
achieved with a timely arrival of the brake (stop) messages, which
is not always possible in the clique topology, or in a setup where
additional traffic is very high. The authors of R2 also observed the
problem and reported it in [22]. In their setting [22], the amount of
redundancy could be reduced by using larger segment sizes. How-
ever, due to limited computational power of mobile devices, we
cannot afford having large segment sizes as discussed in Section 5.

To summarize, the set of experimental results presented in this
section clearly show that by exploiting the broadcast nature of the
wireless medium, MicroNC-P2 manages to introduce less amount
of traffic into the local network as compared to BitTorrent-Pull and
R2-Push.

6.3 Evaluation of the MicroCast System
In this section, we present the performance evaluation of the en-

tire MicroCast system. We compare the average download rates of

2 Mbps

2.5 Mbps

2.4 Mbps

2.7 Mbps
2.6 Mbps

1.4 Mbps

3.4 Mbps

6.1 Mbps

8.8 Mbps

10.9 Mbps

12.8 Mbps

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

A
m

o
u

n
t

o
f

Lo
ca

l T
ra

ff
ic

 (
M

B
)

Number of Phones

MicroCast

BitTorent-Pull

No-Cooperation

Figure 9: The amount of local traffic introduced by all phones.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7

A
ve

ra
ge

 D
o

w
n

lo
ad

 R
at

e
 (

K
b

p
s)

Number of Phones

MicroCast

BitTorent-Pull

No-Cooperation

Figure 10: Average download rate as a function of number of
phones when the local network bandwidth is 4 Mbps.

MicroCast to two other schemes: no cooperation, which we will re-
fer to as No-Cooperation, and the combination of MicroDownload
and BitTorrent-Pull, which we will simply refer to as BitTorrent-
Pull. Note that we do not include R2-Push as a baseline in this sec-
tion due to its inefficiency in our setup, as explained in Section 6.2.

In our experimental setup, we used up to seven phones, the first
four of which had 3G rates varying from 480 Kbps to 670 Kbps.
The rest of the phones did not have 3G connections. Packets are
exchanged locally using UDP. The local network can support up
to 20 Mbps UDP traffic. We use the star topology as explained in
Section 6.2. We also use pseudo-adhoc. The size of the video file is
9.93 MB. Each value reported in this section is averaged over three
experiments.

Fig. 8 shows the average download rate versus the number of
phones. We observe that both MicroCast and BitTorrent-Pull are
able to improve the average download rate up to the sum capac-
ity of the 3G links. Note that MicroCast and BitTorrent-Pull do
not provide any improvement for more than four phones because
only four phones have 3G connections in our setup, and the aver-

66

age download rate is limited by the sum capacity of the four corre-
sponding 3G links. Fig. 9 shows the amount of local traffic versus
the number of phones. Although in Fig. 8 we see similar aver-
age download rates for both MicroCast and BitTorrent-Pull, Fig. 9
shows that BitTorrent-Pull introduces a larger amount of local traf-
fic (which increases linearly in the number of phones) as compared
to MicroCast. This behavior of BitTorrent-Pull is detrimental in
terms of the average download rate in congested networks. An im-
portant observation is that, as the number of phones increases, Mi-
croCast rate does not increase. This indicates that, even with many
nodes, overheard packets are lost very rarely.

We updated our experimental setup to evaluate the performance
of MicroCast and BitTorrent-Pull in a congested network. In our
new setup, the congested network is generated by introducing 16
Mbps background UDP traffic on the same 802.11 channel (note
that there is also interference from other sources in the environ-
ment which contributes to the background traffic). Since the local
network can support up to 20 Mbps traffic, the leftover traffic is less
than 4 Mbps. Fig. 10 presents the average download rate versus the
number of phones in this setup. We see that the average down-
load rate of BitTorrent-Pull reduces when we have more than three
phones. This is because BitTorrent-Pull introduces a large amount
of local traffic (as illustrated in Fig. 9), which leads to congestion.

Note that the addition of the 5th, 6th, and 7th phones also in-
creases the local traffic in BitTorrent-Pull, even though they do not
have 3G connection. This is because they still need to receive the
file in the local area, which contributes to local area traffic.

On the other hand, Fig. 10 shows that MicroCast still improves
the average download rate up to the total capacity of 3G links (of
four phones) in a congested network. This is because it intro-
duces only a small amount of local traffic (e.g., even for seven
phones, MicroCast only introduces 2.6 Mbps traffic to the local net-
work). It can be observed from Fig. 10 that the average download
rate of MicroCast is more than three times higher than that of No-
Cooperation. Also, the improvement of MicroCast over BitTorrent-
Pull in terms of average download rate is as high as 75% (we ob-
served even more improvement for different setups, e.g., with 18
Mbps background traffic), which is significant. We also note that
our experimental results are consistent with the theoretical findings
in our earlier work [30], e.g., Fig. 8 and Fig. 10 are consistent with
Fig. 3 in [30].

6.4 Evaluation of Energy Consumption
In this section, we evaluate the energy consumption of Micro-

Cast when compared to our baselines: BitTorrent-Pull and No-
Cooperation. We consider a setup similar to the one in Section 6.3,
i.e., three phones are connected to a fourth one that acts as AP , the
3G rates vary from 450 Kbps to 700 Kbps, and the size of the video
file is 95.4 MB. We used the BatteryManager class of the Android
SDK for the power consumption measurements. Before the experi-
ment, all four phones are fully charged. During the experiment, the
battery states are recorded every 10 seconds. In the experiments
that do not use the local network, the wireless interface is turned
off. The experiments are repeated three times, and their average is
reported.

Fig. 11 presents the battery state (100% corresponds to the fully
charged battery) versus time. Note that “MicroNC-P2 Access Point”
and “BitTorrent-Pull Access Point” show the battery consumption
levels of the phone which is selected to act as an AP in Micro-
Cast and BitTorrent-Pull schemes, respectively. On the other hand,
“MicroNC-P2 Normal” and “BitTorrent-Pull Normal” show the bat-
tery consumption levels of a phone which is not an AP. We observe
from Fig. 11 that the No-Cooperation scheme has less battery con-

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

0 200 400 600 800 1000 1200

Ba
tt
er
y
Pe

rc
en

ta
ge

Time (second)

No‐
Cooperation

MicroNC‐2P
Normal

MicroNC‐2P
Access Point

BitTorrent‐Pull
Normal

BitTorrent‐Pull
Access Point

Figure 11: Battery drain when downloading the same file of
size 95.4 MB using different schemes.

sumption compared to MicroCast and BitTorrent-Pull at a given
time, e.g., at 400 second. However, the time required to download
the video file of No-Cooperation is very high (more than two times)
as compared to MicroCast and BitTorrent-Pull.

If we look at the battery levels of all schemes when the file
transmission is completed, we see that the battery consumption lev-
els of No-Cooperation, MicroCast, and BitTorrent-Pull are similar.
This demonstrates that employing cooperation in the long term (to
download a video file) does not bring any significant battery cost.
Finally, the phones which act as APs consume more battery as com-
pared to the other phones: this is expected because the AP phone
has additional tasks. However, even in the worst case (for the AP
phone), MicroCast consumed approximately 6% of the battery to
download the whole file. Considering that the phones are down-
loading a large file (i.e., 95.4 MB), this battery consumption level
is reasonable. These considerations show that the rate benefit of
MicroCast comes at no significant battery cost.

6.5 Evaluation of NC Implementations
In this section, we present the performance of the two imple-

mentations of network coding we developed: native (written in C)
and Java-based coding. The two implementations are described in
Section 5.3. Fig. 12 shows the highest achievable decoding and
encoding data rates. The slowest encoding rate for the Java imple-
mentation is 1 Mbps, while for the Native implementation, it is 8
Mpbs, which is significantly higher than what is needed for video
streaming applications considered in this paper. Fig. 12 also shows
that the Java implementation is more than sufficient to stream to-
day’s typical Internet videos when using generation size equal 25.

7. LIMITATIONS AND EXTENSIONS
The system presented in this paper builds on the assumptions de-

scribed in Section 3: there is a small number of trusted users within
proximity of each other, using the cellular connection to download
and WiFi (with broadcast and single-hop transmission) for local
sharing. However, our architecture is highly modular and allows
for easily swapping several components, transparently to the rest
of the system.

First, we have already implemented and successfully tested a
version of the system that uses Bluetooth in the local area, in-

67

0
10
20
30
40
50
60
70
80

5 15 25 35 45 55 65

Ra
te
 (M

bp
s)

Number of Packets per Segment

Decoding
Java

Decoding
Native

Encoding
Java

Encoding
Native

Figure 12: Coding and decoding throughput as a function of
the generation length. Each packet is 900-byte long.

stead of WiFi. An attractive feature of Bluetooth is that it can
be used without rooting the phone. Furthermore, it supports both
single-hop and multi-hop transmission via piconets and scatternets
respectively. On the downside, Bluetooth does not support broad-
cast, which was a necessary ingredient for achieving MicroCast’s
benefits. It would be interesting to study potential benefits of Blue-
tooth in multi-hop scenarios, e.g., when not all phones can overhear
each other sufficiently well. Second, one could use WiFi (instead
of cellular) for downloading the content from the server: our archi-
tecture already supports that. However, in that case, the downlink
and the local transmissions are no longer independent as they both
use WiFi. We plan to explore this interaction in future work; we
have already analyzed this problem theoretically (in a network util-
ity maximization framework) in [30].

Our current implementation of MicroDownload uses a simple
algorithm that could be improved in multiple ways. It currently
does not take into account the local link quality between the nodes
and does not try to download in parallel blocks on multiple devices
when spare capacity is available (for instance, at the end of the
stream). The current implementation of MicroDownload also can-
not exploit broadcast capabilities of the WAN link. This is typically
not available on cellular networks but could be used if, for instance,
the phones are connected to an 802.11 AP. Notice that even when
broadcast is available on the WAN link, it is still useful to perform
collaboration: local dissemination can help correcting uncorrelated
erasures experienced by the nodes.

Finally, the current implementation cannot support more than 7
concurrent devices (when an Android 4.0 device acts as the AP)
or 6 devices (when an Android 2.3 device acts as the AP). This is
due to the limitation of the softAP currently implemented in An-
droid. In order to further increase the number of users, one could
use more than one phones as softAPs, but this requires modification
of the system. In particular, promiscuous mode does not allow for
overhearing of packets associated with a different softAP. We will
investigate such extensions as part of future work.

8. CONCLUSION
In this paper, we designed, implemented, and evaluated a novel

system, MicroCast, that enables a group of smartphone users within
proximity of each other to watch the same video from the Internet

at the same time. MicroCast cooperatively uses the resources on all
smartphones of the group, such as cellular links and WiFi connec-
tions, to improve the streaming experience. The system consists
of three key components, namely: MicroDownload, which deter-
mines which parts of the video each phone should download from
the server; MicroNC-P2, which exploits overhearing and network
coding over WiFi; and MicroBroadcast, which provides, for the
first time, high-rate broadcast over WiFi on Android phones. Ex-
perimental results demonstrate significant performance benefits in
terms of per-user video download rate without battery penalty.

9. ACKNOWLEDGEMENTS
This work was funded by the following grants: ArmaSuisse Wis-

senschaft+Technologie (W+T) Project no. 8003413832, ERC Project
NOWIRE (ERC-2009-StG-240317), AFOSR MURI award FA9550-
09-0643, and NSF CAREER award 0747110.

10. REFERENCES
[1] Wireless network coding: from theory to practice, project

wiki-page.
http://odysseas.calit2.uci.edu/doku.php/public:muri09.

[2] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath,
and C. A. Thekkath. COMBINE: leveraging the power of
wireless peers through collaborative downloading. In
Proceedings of the 5th International Conference on Mobile
Systems, Applications and Services (MobiSys), pages
286–298, 2007.

[3] C. Boldrini, M. Conti, and A. Passarella. Exploiting users’
social relations to forward data in opportunistic networks:
The HiBOp solution. Pervasive and Mobile Computing,
4(5):633–657, Oct. 2008.

[4] R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye,
R. Ramjee, and L. Ravindranath. DirCast: a practical and
efficient Wi-Fi multicast system. In Proceedings of the 17th
IEEE International Conference on Network Protocols
(ICNP), pages 161–170, Oct. 2009.

[5] J. Chesterfield, R. Chakravorty, I. Pratt, S. Banerjee, and
P. Rodriguez. Exploiting diversity to enhance multimedia
streaming over cellular links. In Proceedings of the 2005
IEEE INFOCOM, volume 3, pages 2020–2031, Mar. 2005.

[6] P. Chou and Y. Wu. Network coding for the internet and
wireless networks. IEEE Signal Processing Magazine,
24(5):77–85, Sept. 2007.

[7] Cisco Systems. Cisco visual networking index: Global
mobile data traffic forecast update, 2011-2016.
http://www.cisco.com.

[8] B. Cohen. Incentives build robustness in BitTorrent. In
Proceedings of the First Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, USA, 2003.

[9] CyanogenMod Team. Cyanogenmod.
http://www.cyanogenmod.com.

[10] Y. Feng, Z. Liu, and B. Li. GestureFlow: streaming gestures
to an audience. In Proceedings of the 2011 IEEE INFOCOM,
pages 748–756, Apr. 2011.

[11] C. Fragouli and E. Soljanin. Network Coding Fundamentals.
Now Publishers Inc, Delft, The Netherlands, June 2007.

[12] C. Gkantsidis and P. Rodriguez. Network coding for large
scale content distribution. In Proceedings of the 2005 IEEE
INFOCOM, volume 4, pages 2235–2245, Mar. 2005.

[13] P. Goldstein. Credit suisse report: U.S. wireless networks
running at 80% of total capacity. FierceWireless.com, July
2011.

68

[14] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and
A. Srinivasan. Cellular traffic offloading through
opportunistic communications: a case study. In Proceedings
of the 5th ACM Workshop on Challenged Networks
(CHANTS), pages 31–38, 2010.

[15] S. Hua, Y. Guo, Y. Liu, H. Liu, and S. Panwar. Scalable
video multicast in hybrid 3G/Ad-Hoc networks. IEEE
Transactions on Multimedia, 13(2):402–413, Apr. 2011.

[16] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-based
forwarding in delay tolerant networks. In Proceedings of the
9th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), pages 241–250,
2008.

[17] S. Ioannidis, A. Chaintreau, and L. Massoulie. Optimal and
scalable distribution of content updates over a mobile social
network. In Proceedings of the 2009 IEEE INFOCOM, pages
1422–1430, Apr. 2009.

[18] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and
J. Crowcroft. XORs in the air: Practical wireless network
coding. IEEE/ACM Transactions on Networking,
16(3):497–510, June 2008.

[19] B. Li and D. Niu. Random network coding in Peer-to-Peer
networks: From theory to practice. Proceedings of the IEEE,
99(3):513–523, Mar. 2011.

[20] S. Li and S. Chan. BOPPER: wireless video broadcasting
with Peer-to-Peer error recovery. In Proceedings of the 2007
IEEE International Conference on Multimedia and Expo,
pages 392–395, July 2007.

[21] X. Liu, G. Cheung, and C. Chuah. Rate-distortion optimized
network coding for cooperative video stream repair in
wireless peer-to-peer networks. In Proceedings of the 2008
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pages 1–6, June 2008.

[22] Z. Liu, C. Wu, B. Li, and S. Zhao. UUSee: Large-Scale
operational On-Demand streaming with random network
coding. In Proceedings of the 2010 IEEE INFOCOM, pages
1–9, Mar. 2010.

[23] NLANR/DAST. IPerf. http://sourceforge.net/projects/iperf.
[24] Y. Park, C. Jo, S. Yun, and H. Kim. Multi-Room IPTV

delivery through Pseudo-Broadcast over IEEE 802.11 links.
In Proceedings of the IEEE 71st Vehicular Technology
Conference (VTC), pages 1–5, May 2010.

[25] M. Pedersen and F. Fitzek. Implementation and performance
evaluation of network coding for cooperative mobile devices.
In Proceedings of the 2008 IEEE International Conference
on Communications (ICC) Workshops, pages 91–96, May
2008.

[26] M. Pedersen, J. Heide, F. Fitzek, and T. Larsen.
PictureViewer - a mobile application using network coding.
In Proceedings of the 2009 European Wireless Conference,
pages 151–156, May 2009.

[27] M. Ramadan, L. El Zein, and Z. Dawy. Implementation and
evaluation of cooperative video streaming for mobile
devices. In Proceedings of the 19th IEEE International
Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), pages 1–5, Sept. 2008.

[28] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and
S. Banerjee. MAR: a commuter router infrastructure for the
mobile internet. In Proceedings of the 2nd International
Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 217–230, 2004.

[29] J. B. Saleh, D. Qiu, and A. K. Elhakeem. Performance of an

efficient scheduling approach to network coding for wireless
local repair. Cyber Journals: Multidisciplinary Journals in
Science and Technology, Journal of Selected Areas in
Telecommunications, Jan. 2011.

[30] H. Seferoglu, L. Keller, B. Cici, A. Le, and A. Markopoulou.
Cooperative video streaming on smartphones. In
Proceedings of the 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages
220–227, Sept. 2011.

[31] S. Sen, N. K. Madabhushi, and S. Banerjee. Scalable WiFi
media delivery through adaptive broadcasts. In Proceedings
of the 7th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2010.

[32] H. Shojania and B. Li. Random network coding on the
iPhone: fact or fiction? In Proceedings of the 18th
International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), pages
37–42, 2009.

[33] H. Shojania and B. Li. Tenor: making coding practical from
servers to smartphones. In Proceedings of the 2010
International Conference on Multimedia (MM), pages
45–54, 2010.

[34] H. Soroush, P. Gilbert, N. Banerjee, M. D. Corner, B. N.
Levine, and L. Cox. Spider: improving mobile networking
with concurrent wi-fi connections. SIGCOMM Computer
Communication Review, 41(4):402–403, Aug. 2011.

[35] M. Stiemerling and S. Kiesel. A system for peer-to-peer
video streaming in resource constrained mobile
environments. In Proceedings of the 1st ACM Workshop on
User-provided Networking: Challenges and Opportunities
(U-NET), pages 25–30, 2009.

[36] M. Sullivan. A day in the life of 3G. PCWorld.com, June
2009.

[37] C. Tsao and R. Sivakumar. On effectively exploiting multiple
wireless interfaces in mobile hosts. In Proceedings of the 5th
International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), pages 337–348,
2009.

[38] P. Vingelmann, M. Pedersen, F. Fitzek, and J. Heide.
On-the-Fly packet error recovery in a cooperative cluster of
mobile devices. In Proceedings of the 2011 IEEE Global
Telecommunications Conference (GLOBECOM), pages 1–6,
Dec. 2011.

[39] M. Wang and B. Li. How practical is network coding? In
Proceedings of the 14th IEEE International Workshop on
Quality of Service (IWQoS), pages 274–278, June 2006.

[40] M. Wang and B. Li. Lava: A reality check of network coding
in Peer-to-Peer live streaming. In Proceedings of the 2007
IEEE INFOCOM, pages 1082–1090, May 2007.

[41] M. Wang and B. Li. R2: Random push with random network
coding in live Peer-to-Peer streaming. IEEE Journal on
Selected Areas in Communications, 25(9):1655–1666, Dec.
2007.

[42] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, and
V. Conan. Relieving the wireless infrastructure: When
opportunistic networks meet guaranteed delays. In
Proceedings of the 2011 IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pages 1 –10, June 2011.

[43] WiFi Alliance. Wi-Fi direct. http://www.wi-fi.org.

69

