

MOBILE COMPUTING

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

MOBILE COMPUTING

edited by

Tomasz Imielinski
Rutgers University

Henry F. Korth
AT&T Bell Laboratories

W
KLUWER ACADEMIC PUBLISHERS

Boston / Dordrecht / London

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A CJ.P» Catalogue record for this book is available
from the Library of Congress.

Copyright ® 1996 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park,
Norwell, Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

CONTENTS

PREFACE XXI

INTRODUCTION TO MOBILE
COMPUTING
Tomasz Imielinski and Henry F. Korth 1
1 Introduction 1
2 Technology Overview 3
3 Research Issues 17

4 Book Content 33

REFERENCES 39

THE PARCTAB UBIQUITOUS COMPUTING
EXPERIMENT
Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin

Petersen, David Goldberg, John R. Ellis, and Mark Weiser 45

1 Introduction 45
2 Ubiquitous Computing 47
3 PARCTAB System Design 50
4 User-Interface Design for Palm-Sized Computers 57
5 PARCTAB System Architecture 63
6 Developing System and Application Components 71
7 A Classification of PARCTAB Applications 75

8 Experiences with the PARCTAB System 81

9 Conclusion 91
REFERENCES 97

vi MOBILE COMPUTING

SCALABLE SUPPORT FOR TRANSPARENT
MOBILE INTERNETWORKING
David B. Johnson 103
1 Introduction 103
2 Problem Analysis 105
3 The Basic Mobile IP Protocol 108
4 Route Optimization 115
5 Protocol Scalability 121
6 Conclusion 124
REFERENCES 125

LOCATION MANAGEMENT FOR
NETWORKS WITH MOBILE USERS
B. R. Badrinath and Tomasz Imielinski 129
1 Introduction 129
2 Location Management in the Internet 133
3 Location Management in Cellular Telephone Networks and

in PCN 141
4 Performance Issues 145
5 Future: Adaptive Location management 147
6 Conclusions 150
REFERENCES 150

DYNAMIC SOURCE ROUTING IN AD HOC
WIRELESS NETWORKS
David B. Johnson and David A. Maltz 153

153

157

157

162

169

174

178

179

1
2
3
4
5
6
7

Introduction
Assumptions
Basic Operation
Optimizations
Performance Evaluation
Related Work
Conclusion

REFERENCES

Contents vii

6 ROUTING OVER MULTI-HOP WIRELESS
NETWORK OF MOBILE COMPUTERS
Charles E. Perkins and Pravin Bhagwat 183
1 Introduction 184
2 Overview of Routing Methods 185
3 Destination-Sequenced Distance Vector (DSDV) Protocol 187
4 Examples of DSDV in Operation 193
5 Properties of the DSDV Protocol 199
6 Comparison with Other Methods 200
7 Future Work 202

8 Summary 203

REFERENCES 205

7 IMPROVING THE PERFORMANCE OF
RELIABLE TRANSPORT PROTOCOLS IN
MOBILE COMPUTING ENVIRONMENTS
Ramon Cdceres and Liviu Iftode 207
1 Introduction 208

2 Wireless Networking Testbed 209
3 The Effects of Motion 212
4 Improving Performance 218
5 Wireless Transmission Errors 225

6 Conclusions 227
REFERENCES 228

8 INDIRECT TRANSPORT LAYER
PROTOCOLS FOR MOBILE WIRELESS
ENVIRONMENT
Ajay V. Bakre and B.R. Badrinath 229
1 Introduction 229

2 System Model 230

3 Indirect Transport Layer 233
4 Implementation and Handoffs 238

5 Performance Results 240

6 Alternatives to Indirect Protocols 247
7 Conclusion and Future Work 249

viii MOBILE COMPUTING

REFERENCES 251

9 CONNECTING MOBILE WORKSTATIONS
TO THE INTERNET OVER A DIGITAL
CELLULAR TELEPHONE NETWORK
Markku Kojo, Kimmo Raatikainen and Timo Alanko 253

1 Introduction 253

2 Mobile Nodes and TCP/IP Protocols 256

3 The Mowgli Communication Architecture 259

4 Enhanced Functionality for Mobility 265

5 Discussion 268

REFERENCES 269

10 ASYNCHRONOUS VIDEO: COORDINATED
VIDEO CODING A N D TRANSPORT FOR
HETEROGENEOUS NETWORKS WITH
WIRELESS ACCESS
Johnathan M. Reason^ Louis C. Yun, Allen Y. Lao, and David

G. Messerschmitt 271

1 Introduction 272

2 MPEG and Mobile Channels 273

3 System Level Considerations 276

4 QOS and Traffic Capacity 281

5 Video Coding for a Substream Transport 286

6 Results 293

7 Conclusions and Future Work 296

REFERENCES 297

11 WIRELESS PUBLISHING: ISSUES A N D
SOLUTIONS
T. Imielinski and S. Viswanathan 299

1 Introduction 299

2 Publishing Mode 301

3 Publishing Using Temporal Addresses 308

4 Publishing Using Multicast Addresses 318

5 Adaptive Publishing 321

Contents ix

6 Other Information Delivery Methods 325
7 Conclusions and Implementation Status 327

REFERENCES 328

12 BROADCAST DISKS: DATA
MANAGEMENT FOR ASYMMETRIC
COMMUNICATION ENVIRONMENTS
S. Acharya, R. Alonso, M. Franklin, and S. Zdonik 331
1 Introduction 332
2 Structuring the Broadcast Disk 335
3 Client Cache Management 341
4 Modeling the Broadcast Environment 343
5 Experiments and Results 346
6 Previous Work 356
7 Summary and Future Work 358
REFERENCES 360

13 APPLICATION DESIGN FOR WIRELESS
COMPUTING
Terri Watson
1 Introduction
2 Application Design for a Wireless Environment
3 Wireless Platform
4 W* : A Wireless Application
5 Experiences

6 Conclusions

REFERENCES

363
363
365
366
367
369

371
371

14 MOBISAIC: A N INFORMATION SYSTEM
FOR A MOBILE WIRELESS COMPUTING
ENVIRONMENT
Geoffrey M. Voelker and Brian N. Bershad 375
1 Introduction 375
2 System Overview 378

3 Using Dynamic URLs 380

4 Active Documents 382

MOBILE COMPUTING

5 Mobisaic on the Desktop 386
6 Implementation 386
7 Future Work 389
8 Conclusions 393
REFERENCES 394

15 PROVIDING LOCATION INFORMATION
IN A UBIQUITOUS COMPUTING
ENVIRONMENT
Mike Spreitzer and Marvin Theimer 397
1 Introduction 398
2 Architecture 400
3 Design Considerations 407
4 Status and Experience 413
5 Conclusions 419
REFERENCES 423

16 UNIX FOR NOMADS: MAKING UNIX
SUPPORT MOBILE COMPUTING
Michael Bender, Alexander Davidson, Clark Dong, Steven
Drach, Anthony Glenning, Karl Jacob, Jack Jia, James Kempf,

Nachiappan Periakaruppan, Gale Snow, and Becky Wong 425
1 Introduction 426
2 The Power Management Framework 427
3 System State Checkpoint and Resume 432
4 PCMCIA on Unix 435
5 Serial Wide-Area Connectivity and Link Management 440
6 Nomadic Electronic Mail 443
7 Summary 446
REFERENCES 447

17 SCHEDULING FOR REDUCED CPU
ENERGY
Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker 449
1 Introduction 450
2 An Energy Metric for CPUs 450

Contents xi

3 Approach of This Paper 452

4 Trace Data 452

5 Assumptions of the Simulations 453
6 Scheduling Algorithms 455
7 Evaluating the Algorithms 457
8 Discussion and Future Work 462
9 Conclusions 467
REFERENCES 469
APPENDIX A 469
A.l Description of Trace Data 470

18 STORAGE ALTERNATIVES FOR MOBILE
COMPUTERS
Fred Douglis, Ramon Cdceres, M. Frans Kaashoek, P. Krishnan,

Kai Li, Brian Marsh, Joshua Tauher 473

1 Introduction 474

2 Architectural Alternatives 476
3 Hardware Measurements 477

4 Trace-Driven Simulation 480
5 Results 486
6 Related Work 498
7 Conclusions 500
8 Differences from the Preceding Version 503

19 DISCONNECTED OPERATION IN THE
CODA FILE SYSTEM
James J. Kistler and M. Satyanarayanan 507

507

508

511

515

525

530

531

532

533

1
2

3
4
5

6
7

8

Introduction
Design Overview

Design Rationale

Detailed Design and Implementation
Status and Evaluation

Related Work

Future Work

Conclusions

xii MOBILE COMPUTING

20 EXPERIENCE WITH DISCONNECTED
OPERATION IN A MOBILE COMPUTING
ENVIRONMENT
M. Satyanarayanan, James J. Kistler, Lily B.Mummert, Maria

R. Ebling, Puneet Kumar, and Qi Lu 537

1 Introduction 537

2 Constraints of Mobile Computing 538

3 Overview of Coda File System 539

4 Implementation Status 541

5 Qualitative Evaluation 542

6 Quantitative Evaluation 554

7 Work in Progress 563

8 Conclusions 568

REFERENCES 569

21 MOBILITY SUPPORT FOR SALES A N D
INVENTORY APPLICATIONS
Narayanan Krishnakumar and Ravi Jain

1 Introduction

2 Application Scenario: Mobile Sales and Inventory

3 System Architecture

4 Database System Design

5 Mobile Sales Transactions

6 Maintaining Service Profiles

7 Conclusions

REFERENCES

571

572

573

574

577

583

588

592

592

22 STRATEGIES FOR QUERY PROCESSING IN
MOBILE COMPUTING
Masahiko Tsukamoto, Rieko Kadobayashi and Shojiro Nishio 595

1 Introduction 595

2 Techniques Used in Mobile Communication Protocols 596

3 Query Processing for Location Sensitive Queries 600

4 Evaluation 608

5 Conclusions 617

REFERENCES 618

Contents xiii

23 THE CASE FOR WIRELESS OVERLAY
NETWORKS
Randy H. Katz and Eric A. Brewer 621
1 Introduction 621
2 Applications Enabled by Wireless Overlays 623
3 Applications Viewpoint 625
4 Gateway-Centric Network Management 628
5 Overlay Network Management 635
6 Applications Support Services 640
7 Related Work 644

8 Summary and Conclusions 648

REFERENCES 648

24 THE DIANA APPROACH TO MOBILE
COMPUTING
Arthur M. Keller, Tahir Ahmad, Mike Clary, Owen Densmore,

Steve Gadol, Wei Huang, Behfar Razavi, and Robert Pang 651

1 Introduction 651

2 DIANA—The Overall Architecture 656
3 User Interface and Display Independence 660
4 The DIANA Network Architecture 665
5 Application Development Methodology 670
6 Current Implementation 674
7 Future Issues 674

8 Concluding Remarks 677

REFERENCES 677

25 THE CMU MOBILE COMPUTERS
AND THEIR APPLICATION FOR
MAINTENANCE
Asim Smailagic and Daniel P. Siewiorek 681
1 Introduction 681

2 CMU Mobile Computers and Their Applications 683
3 VuMan as a Maintenance Assistant 684
4 Application Software 688
5 Conclusions 689

xiv MOBILE COMPUTING

6 Figures 691

REFERENCES 698

26 GENESIS A N D ADVANCED TRAVELER
I N F O R M A T I O N SYSTEMS
Shashi Shekhar and Duen-Ren Liu 699

699

704

708

715

720

721

725

1
2

3

4

5

Introduction
Genesis System

Data Management in Genesis

Performance Issues in Genesis

Conclusions

REFERENCES

INDEX

CONTRIBUTORS

Norman Adams
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Tahir Ahmad
Stanford University
Computer Science Department
Stanford, California 94303

Timo Alanko
Department of Computer Science
University of Helsinki
P.O.Box 26 FIN
00014 University of Helsinki, Finland

Ajay Bakre
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

B.R.Badrinath
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Michael Bender
Sun Microsystems, Inc.
Mountain View, California.

Brian N. Bershad
Department of Computer Science and En
gineering
University of Washington
Seattle, WA 98195

P ravin Bhagwat
University of Maryland
College Park, MD

Er ic Brewer
Computer Science Division,
Department of Electrical Engineering and
Computer Sciences
University of California
Berkeley, CA 94720-1776

Ramon Caceres
AT&T Bell Laboratories
101 Crawfords Corner Road
Holmdel NJ 07733

Mike Clary
Sun Microsystem, Inc.
Mountain View, California

Alexander Davidson
Sun Microsystems, Inc.
Mountain View, California

Alan Demers
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Owen Densmore
Sun Microsystems, Inc.
Mountain View, California

Clark Dong
Sun Microsystems, Inc.
Mountain View, California.

XVI CONTRIBUTORS

Steven Drach
Sun Microsystems, Inc.
Mountain View, California.

Fred Douglis
AT&T Bell Laboratories
600 Mountain Ave., Room 2B-105
Murray Hill, NJ 07974

Steve Gadol
Sun Microsystems,
Mountain View, California

Anthony Glenning
Sun Microsystems, Inc.
Mountain View, California.

Rich Gold
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

David Goldberg
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Maria R. Ebling
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

John R.Ellis
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Wei Huang
Stanford University,
Computer Science Department
Stanford, California 94303

Tomasz Imielinski
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Liviu Iftode
Department of Computer Science
Princeton University
Princeont, NJ 08554

Karl Jacob
Sun Microsystems, Inc.
Mountain View, California.

Jack Jia
Sun Microsystems, Inc.
Mountain View, California.

Ravi Jain
Bell Communication Research
445 South Street
Morristown, NJ 07960

David B. Johnson
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

M. Frans Kaashoek
Massachusetts Institute of Technology
Cambridge, MA

Rieko Kadobayashi
ATR Media Integration
Communications Research Laboratories
Seika-cho, Soraku-gun
Kyoto 619-02, Japan

Randy Katz
Computer Science Division
Department of Electrical Engineering and
Computer Sciences
University of California
Berkeley, CA 94720-1776

Contributors x v i i

Arthur M. Keller
Stanford University,
Computer Science Department
Stanford, California 94303

James Kempf
Sun Microsystems, Inc.
Mountain View, California.

J.Kistler
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

Markku Kojo
Department of Computer Science
University of Helsinki
P.O.Box 26 FIN
00014 University of Helsinki, Finland

Hank Korth
AT&T Bell Laboratories
Murray Hill, NJ 07974

Narayanan Krishnakumar
Bell Communication Research
445 South Street
Morristown, NJ 07960

P. Krishnan
AT&T Bell Laboratories,
Holmdel, NJ 07733

Puneet Kumar
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

Allen Y. Lao
Computer Science Division
Department of Electrical Engineering and
Computer Sciences
University of California
Berkeley, CA 94720-1776

Kai Li
Computer Science Department,
Princeton University
Princeton, NJ 08544

Duen-Ren Liu
Institute of Information Management
National Chiao Tung University, Hsinchu
Taiwan, Republic of China

Qi Lu
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

David Maltz
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

Brian Marsh
D.E. Shaw & Co.
New York, NY

David G. Messerschmitt
Computer Science Division
Department of Electrical Engineering and
Computer Sciences
University of California
Berkeley, CA 94720-1776

Lilly B. Mummert
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

XVlll CONTRIBUTORS

Shojiro Nishio
Dept= of Information Systems Engineer
ing,
Faculty of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565, Japan

Robert Pang
Stanford University
Computer Science Department
Stanford, California 94303

Nachiappan Periakaruppan
Sun Microsystems, Inc.
Mountain View, California.

Charles E.Perkins
IBM Watson Research Center
Yorktown Heights, NY

Karin Petersen
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Kimmo Raatikainen
Department of Computer Science
University of Helsinki
P.O.Box 26 FIN
00014 University of Helsinki, Finland

Behfar Razavi
Sun Microsystems,
Mountain View, California

Johnathan M.Reason
Computer Science Division, Department
of Electrical
Engineering and Computer Sciences, Uni
versity of California
Berkeley, CA 94720-1776

M . Satyanarayanan
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

Bill N Schlit
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Shashi Shekhar
Department of Computer Science
University of Minnesota, Twin Cities,
Minneapolis, Minnesota

Scott Shenker
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, Cahfornia, 94301

Daniel P. Siewiorek
Engineering Design Research Center
Carnegie Mellon University
Pittsburgh, PA 15213

Asim Smailagic
Engineering Design Research Center
Carnegie Mellon University
Pittsburgh, PA 15213

Gale Snow
Sun Microsystems, Inc.
Mountain View, California.

Mike Spreitzer
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Joshua Tauber
Massachusetts Institute of Technology
Cambridge, MA

Contributors xix

Marvin Theirmer Becky Wong
Xerox Palo Alto Research Center Sun Microsystems, Inc.
3333 Coyote Hill Road Mountain View, California.
Palo Alto, California, 94301

Louis C.Yun
Masahiko Tsukamoto Computer Science Division, Department
Dept. of Information Systems Engineer- of Electrical
ing, Engineering and Computer Sciences, Uni-
Faculty of Engineering, Osaka University versity of California
2-1 Yamadaoka, Suita, Osaka 565, Japan Berkeley, CA 94720-1776

Geoffrey M. Voelker
Department of Computer Science and En
gineering
University of Washington
Seattle, WA 98195

S . Vis wanat han
Bell Communication Research,
445 South Street,
Morristown, NJ 07960

Roy Want
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Terri Watson
Department of Computer Science &; En
gineering
University of Washington
Seattle, WA 98195

Mark Weiser
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

Brent Welch
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California, 94301

PREFACE

The rapid development of wireless digital communication technology has cre
ated capabilities that software systems are only beginning to exploit. The
falling cost of both communication and of mobile computing devices (laptop
computers, hand-held computers, etc.) is making wireless computing affordable
not only to business users but also to consumers.

Mobile computing is not a "scaled-down" version of the established and well-
studied field of distributed computing. The nature of wireless communication
media and the mobility of computers combine to create fundamentally new
problems in networking, operating systems, and information systems. Further
more, many of the applications envisioned for mobile computing place novel
demands on software systems.

Although mobile computing is still in its infancy, some basic concepts have
been identified and several seminal experimental systems developed. This
book includes a set of contributed papers that describe these concepts and sys
tems. Other papers describe applications that are currently being deployed and
tested. The first chapter offers an introduction to the field of mobile computing,
a survey of technical issues, and a summary of the papers that comprise sub
sequent chapters. We have chosen to reprint several key papers that appeared
previously in conference proceedings. Many of the papers in this book are be
ing published here for the first time. Of these new papers, some are expanded
versions of papers first presented at the NSF-sponsored Mobidata Workshop on
Mobile and Wireless Information Systems, held at Rutgers University on Oct
31 and Nov 1, 1994.

Many people and organizations assisted us in this project. Ron Ashany and
Maria Zemankova of NSF helped provide support for the workshop that spawned
this project. Bob Holland of Kluwer Academic Publishers has assisted in seeing
the effort through to completion. We conducted a formal refereeing process for
original papers in this book and would like to thank those referees, though they
remain anonymous. S. Viswanathan assisted us extensively with text format-

xxii MOBILE COMPUTING

ting. Above all, we thank the authors who have contributed their papers to
this collection.

Hank would like to thank his wife, Joan, and children Abby and Joe for their
understanding and patience. Tomasz would like to thank his wife Celina and
sons, Marcin and Konrad, for their support and encouragement.

1
INTRODUCTION TO MOBILE

COMPUTING
Tomasz Imielinski* and Henry F. Korth**

* Rutgers University, New Brunswick, NJ 08903
** AT&T Bell Laboratories, Murray Hill, NJ 07974-0636

1 INTRODUCTION

The rapidly expanding technology of cellular communication, wireless LANs,
and satellite services will make information accessible anywhere and at any
time. In the near future, tens of millions of people will carry a portable palmtop
or laptop computer. Smaller units, often called personal digital assistants or
personal communicators, will run on AA batteries and may have only a small
memory; larger ones will be powerful laptop computers with large memories
and powerful processors. Regardless of size, most mobile computers will be
equipped with a wireless connection to the fixed part of the network, and,
perhaps, to other mobile computers. The resulting computing environment,
which is often referred to as mobile or nomadic computing, no longer requires
users to maintain a fixed and universally known position in the network and
enables almost unrestricted mobility. Mobility and portability will create an
entire new class of applications and, possibly, new massive markets combining
personal computing and consumer electronics.

Not only will information be easily accessible from virtually any place and time,
but also, it will be stored in a highly decentralized, distributed information in
frastructure often termed the "information superhighway." A wide variety of
information servers (both public and proprietary) will be accessible to mobile
computers. We are already seeing the beginnings of this with the rapidly grow
ing popularity of the World-Wide Web across a broad range of computer users.
As the mobile infrastructure develops, it will become what is referred to as the
"first wireless mile" or "wireless on-ramp" for the information superhighway.
In some applications, mobile computers themselves may contain data, or data
may be stored on flash-memory "smart cards."

CHAPTER 1

This book presents a snapshop of the new, exciting, and rapidly deV^loping
field of mobile computing. The focus of this book is on software issues of
mobile computing rather than hardware. Although hardware in this area is
advancing rapidly, and the capabilities of hardware spurred much of the initial
excitement regarding mobility, it is increasingly clear that it is developments
in the software domain that will bring the power of mobile hardware to a wide
group of potential users. Emerging developments in software are leading to
practical, easy-to-use applications.

The papers in this book address areas of interest both to software practition
ers and researchers working in the fields of networking, operating systems,
and databases. Topics include network and communication issues, location
awareness (both at the system level and the application level), and application
software. Since the infrastructure to support mobile computing includes not
only the mobile computers themselves, but also the stationary computers (base
stations) that support mobility, many of the papers address client/server, net
work control, and distributed information management issues. In other words,
the book considers anything above and including the network level of the OSI
hierarchy. Furthermore, the book includes several chapters in which interesting
prototype mobile systems are reviewed.

The general, abstract view of a mobile system consists of mobile hosts (MHs)
interacting with the fixed network via mobile support stations (MSSs). The
connection between the MH and MSS is via a wireless link. Each MSS is in
charge of a cell Cells can have sizes ranging from picocells of approximately
one hundred meters in diameter to macro cells and perhaps even global satel
lite cells. The capabilities of mobile hosts will vary from "dumb" terminals
to complex "walkstations" which essentially have the capabilities of desk-top
computers. We expect that users of mobile computers will want to run a vari
ety of applications, depending on the physical size and power of their machine.
These range from standard desk-top applications like word processors, spread
sheets, and electronic mail, to remote information access via database system
applications or Web browsers. Additionally, there may be location-dependent
applications specific to the particular location of the user at a particular time.

In this chapter, we review mobile computing technology, research issues, and
prototypes. We explain the need for new primitives (in "middleware") in order
to help develop mobile computing software. The need for such primitives is a
consequence of new features of the mobile computing environment, namely mo
bility itself, narrow and varying bandwidth, and limitations in battery power.
As will be demonstrated later in this chapter and elsewhere in the book, mo
bility will not only affect the network layer (the physical address of a mobile

Introduction to Mobile Computing

host is no longer fixed) but also higher layers, especially for location-dependent
applications. Bandwidth and energy limitations will require solutions in which
several sites on the network will cooperate with the mobile unit.

Section 2 introduces wireless technology with its two main resource restrictions:
bandwidth and battery power. Next, Section 3 discusses the research challenges
in mobile computing. Finally, Section 4 provides a short overview of the book's
content.

2 TECHNOLOGY OVERVIEW

In this section, we discuss features of radio communication that are important
from the standpoint of software development: both for the mobile unit for the
network infrastructure.

2.1 What is Special about Radio-based
Computer Networks?

Perhaps the most important distinction between the wired and wireless envi
ronment is that there is only one "ether" - one global bandwidth which is to be
shared by all users. Consequently, the bandwidth limitations are much more
severe and long-lived for wireless environments, as compared to those that are
wired. Fortunately, the same channel (frequency, time slot) can be re-used if
the points of re-use are physically sufficiently far apart for the signals not to
interfere. As a result, the overall architecture of the wireless system is based
on the concept of a massively distributed system divided into physical cells.
These cells are, in effect, sub-networks. A mobile unit has to interact with
many cells, cross their boundaries, etc. In so doing, the mobile unit moves to a
new sub-network and changes its own physical network address. This concept
of replication and re-use has a profound impact on software systems. Software
should scale well with the inherently distributed infrastructure. It must allow
interoperability and seamless transition among cells. It is the software system
architecture which is affected most critically by the use of wireless communica
tion. Technology trends point towards smaller cell sizes than in current cellular
telephony systems. Goodman [Goo91] discusses the architectural consequences
of frequency re-use, which leads to cells of smaller size, called picocells. Picocells
use transmission power levels two orders of magnitude lower than current cells.
This increased number of cells increases the number of times that a mobile unit

CHAPTER 1

crosses cell boundaries, thus significantly increasing the demand on the network
control functions. This trend toward smaller cell sizes further emphasizes the
need for a distributed control model.

Fading, Noise, and Interference

Radio communication with a mobile computer is highly variable and hard to
control. The phenomenon of fading, signal strength suddenly decreasing, is a
significant problem (and one familiar to anyone who has listened to an auto
mobile radio).

It is quite normal for a mobile radio to experience fades of 40-50 dB [Cal88] in
fraction of a second. A fast moving automobile in an urban environment may
be subjected to dozens of significant fades (20dB, or more) per second. For
comparison, a representative signal-to-noise ratio (SNR) objective [Cal88] for
an analog wireline link is about 46 dB. Signal fluctuations in a wireline link are
no more than 1-2 dB for a short-haul circuit and short time-span, and perhaps
10-15 dB for gradual degradation due to wear and tear of the network.

During a fade, the signal may be so weak that an undesired, interfering signal
from a neighboring cell may dominate and, consequently, the receiver may lock
on that undesired signal. There are, in general, two types of fading:

1. Short-term multipath fading, or Rayleigh fading, which is due to
the same signal taking different paths and arriving at the receiver shifted
in phase.

2. Long-term fading, or "radio shadows," which is caused by the topog
raphy of the terrain (like mountains) and can lead to signal dropouts.

The problem of short-term fading is addressed by exploiting antenna diversity.
In this way, two or more inputs to the mobile terminal are provided so that
fading effects are uncorrelated. Long-term fading is dealt with by deploying
multiple antenna sites.

Noise and interference have a significant negative effect on the bit-error rate
(BER). Typically, the BER in a mobile radio runs up to six orders of magnitude
higher than in non-mobile point-to-point radio.

Introduction to Mobile Computing

The high bit-error rate of the wireless environment eventually translates into
a lower bit rate for network throughput.^ Since mobility of the terminal con
tributes to increased fading and consequently, to increased error rate, we may
expect that the bit rate between a mobile terminal and a base station will drop
with speed of the terminal's movement.

Radio Transmission Power

In wireless environments, management of transmission power is critical. The
importance of power arises from two factors:

1. Energy is a scarce resource in mobile units. Therefore, transmission with
power as low as feasible is highly desirable. We shall discuss energy issues
in more detail later in this chapter.

2. Signals from other terminals are considered by a given terminal as inter
ference, which has a negative effect on the signal-to-noise ratio. Thus, it is
important that each terminal use the "right" amount of power to transmit
successfully without unnecessary degradation of others' transmissions.

Let us review the basic relationships among power, distance and signal-to-noise
ratio. In the ideal free space, signal strength diminishes with the inverse square
of the distance. For example, if the received signal is 100 watts at a distance
of 1 mile, it will be 25 watts at 2 miles, 4 watts at 5 miles and 1 watt at 10
miles. In practice, since mobile terminals do not move in free space but rather
have to deal with various obstacles, the loss of power is much more significant,
ranging from inverse cube of distance to exponents as high as the 6th power.
For example, with inverse of the 6th power law in effect, the 100 watt signal
level at the first mile would degrade to only 1.5 watts at 2 miles.

The degree of attenuation also depends critically on frequency - the higher
the frequency, the more attenuation and consequently, smaller range.^ For
example, for 3-5 GHz, omnidirectional transmission leads to impractically short
distances. For these reasons, directional antennae are used so as to concentrate
the energy along a fixed point-to-point path. Such systems are typically point-
to-point between stations 10-50 miles apart.

^Wired networks drop packets due to congestion, while wireless networks lose packets
mainly due to the error rate. Thus, quoting Mark Weiser, in a wired network, the transmitter
has to back off when facing packet loss, while in a wireless network it should "try harder."

^But the antenna size is smaller as well.

CHAPTER 1

Parameters at the Application-Level

Let us consider the issue of the parameters of the mobile computing environ
ment to which the application should have access. Although it is desirable
to shield applications from the low-level details of the wireless network, the
application-level system software may be able to use information about low-
level conditions in its choice of strategy. Applications running on the top of
radio communication channels have to be adaptive to the changing channel
conditions.

A strong case can be made that BER and signal strength (SNR) are physical
parameters which should be "accessible" to higher level protocols (such as the
transport level and above). BER data would help the transport layer protocol
to decide if the drop in the channel reliability is due to congestion or due to the
error rate. SNR data can help an application to decide if the mobile unit should
attempt to defer a transmission to a time when channel conditions are more
favorable. Only with application-level knowledge can it be decided whether the
user is best served by delaying transmission or by potentially costly attempts
to transmit under adverse conditions.

There are other relevant parameters of the mobile computing environment to
consider materializing at the application level: the location of the mobile unit
and the tariff. Location of the mobile unit (either as a cell where the unit
currently resides or, perhaps, exact longitude and latitude determined by a
global positioning system (GPS)) is an important parameter for some location-
aware applications such as local yellow pages, route information services, etc.
Tariffs for wireless communication are still in a state of flux, but clearly the cost
of application activity can be affected seriously by the type of tariff in effect
in the current environment. For example, channel access can be charged on
a per-packet basis, a connection-time basis, etc. The charges themselves may
also depend on the channel quality, which in turn may depend on the mobile
unit's location or the time of day. The application, in order to minimize overall
charges, may adjust its behavior to the tariff conditions. Additionally, if the
mobile unit is equipped with multiple interfaces, the application can decide to
switch to the one which is most suitable for the current situation. For example,
a unit equipped with a cellular modem as well as a CDPD modem may use
the CDPD modem for short and bursty electronic mail transmission and the
regular cellular modem for long, bulk data transfers (for example, ftp).^

^CDPD is expected to charge per packet, while cellular charges are usually per minute of
connection.

Introduction to Mobile Computing 7

2.2 N e t w o r k Technology

In this section, we review the existing wireless communication technology.

Analog Cellular Systems

The cellular system was pioneered at AT&T Bell Laboratories in early 1970s and
was deployed in U, S. in the early 1980s, The coverage area is subdivided into
cells with sizes varying from a few kilometers in diameter to between 50 and 100
km in earlier cellular systems. The first generation, called AMPS (Advanced
Mobile Phone Service), which is still used for cellular telephony, uses analog
frequency modulation for speech transmission. Individual calls use different
frequencies, using a system referred to as frequency division / multiple access
(FDMA).

In the AMPS system, 50 MHz of bandwidth in the bands of 824-849 MHz and
869-894 MHz are allocated to cellular mobile radio. In each geographic region,
there are two carriers ("A carrier" and "B carrier"), which control 25 MHz
each. This spectrum is subdivided into 832 channels, each of 30 KHz. To avoid
interference, neighboring cells use different channels. Typically, a cell has 6
neighbors and, therefore, the cell may use 1/7 of the allotted 832 channels. This
is called a 7-group re-use cluster. Analogously, in the 12 group frequency plan
each cell uses only 1/12 of the total bandwidth and its bandwidth allocation is
disjoint with that of 11 neighboring cells.

The Cellular Digital Packet Data (CDPD) is designed to provide packet data
services on the top of the existing AMPS. The CDPD system provides data ser
vices without interfering with the existing analog and digital telephone services
that use the same AMPS channels. In CDPD, voice transmission has a higher
priority than data transmission. Data can be transmitted on a channel only if
a there is no voice call which is using that channel. Voice transmission can pre
empt data transmission. In such cases, another channel must be found for the
data transmission to continue. The base station, called MDBS, makes the deter
mination about the next available channel either by a forward power monitor
(sniffer), which measures the signal strength on the uplink channel (from the
mobile terminal to the base station) or by using a deterministic algorithm for
channel assignment (unplanned versus planned hop). A given data transmis
sion may thus possibly spread over several physical channels, especially when
the voice traffic is intense. The maximum supported bit rate is 19.2 Kb/s.

CHAPTER 1

CDPD is currently being deployed in a number of regions in the country. It
re-uses the existing infrastructure (base stations) and avoids the costly initial
investment. This is a major advantage over the proposed Personal Commu
nication System (PCS), which we discuss below. Although CDPD is viewed
as mainly a transitionary technology (before PCS is fully deployed), it may
actually stay longer than originally expected.

Digital Cellular Systems

Digital cellular systems are sometimes referred to as second-generation cellular.
Due to the development of the digital speech coding techniques, digital systems
are gaining rapidly in significance. Among the advantages of digital cellular
communications are the following [Cal88]:

Robustness of digital networks: Resistance to noise and crosstalk. Efficient
error correction by treating all errors uniformly

Intelligence of the digital network

Flexibility and integration with the wired digital networks

Reduced RF transmission power (increasing battery life in handsets)

Encryption for communication privacy

Reduced system complexity

Higher user capacity

Two basic techniques for managing shared access are competing in digital cel
lular radio: TDMA (Time Division Multiple Access) and CDMA (Code Division
Multiple Access).

With TDMA, only a single user can use a given frequency at any time. With
CDMA (spread spectrum), a frequency-based channel is used simultaneously
by multiple mobile units in a given cell. Spread-spectrum techniques are very
effective in dealing with two basic problems facing cellular communication:
multipath fading and the interference from other users. This is due to the
frequency diversity introduced by the wide bandwidth, and results in poten
tially higher cell capacity as compared to other, non-spread access methods
[KMM95]. Another consideration for using CDMA in the cellular system is its
attractive re-use factor. For non-spread techniques such as TDMA and FDMA,

Introduction to Mobile Computing

the same frequency cannot typically be re-used in adjacent cells due to the
possibility of interference. With spread-spectrum signaling, the possibility of
frequency re-use in adjacent cells exists. As a result, CDMA is anticipated to
have larger capacity in a multi-cell system than either FDMA or TDMA.^ Addi
tionally, CDMA provides a natural way to explore the bursty nature of sources.
For example, for a two-way telephone conversation, the voice activity of each
participant is about 50% of the time. CDMA can take advantage of periods of
inactivity, effectively doubling the number of simultaneous conversations in the
system [KMM95]. Thus, spread spectrum promises both higher capacity and a
simplified frequency management scheme.

We distinguish between Direct Sequence Cellular CDMA (DS/CDMA) and Fre
quency Hopping Cellular CDMA (FH/CDMA). In DS/CDMA, the spread-spec
trum signals are generated by linear modulation with sequences that are as
signed to individual users as their signature codes. The sequences are typically
orthogonal and allow the receivers to demodulate the spread-spectrum sig
nal in such a way that the signal with matching signature is recovered, while
other signals are suppressed. The motivation behind FH/CDMA is the same as
DS/CDMA - the signal is spread to achieve frequency diversity. The spreading
of the signal is obtained by choosing a frequency-hopping sequence for trans
mission. If the frequency-hopping sequences are orthogonal, the users within
a cell do not interfere with each other. The main difference between the two
schemes is that in DS/CDMA, the signal requires a wide and contiguous fre
quency band while in FH/ CDMA, the spectrum does not need to be contiguous.
In particular, it allows the implementation of FH/CDMA for private land mo
bile operations, where licenses are given on the basis of isolated narrowband
channels.

There are a number of basic standards and deployed systems in Europe, the
U. S. and Japan. Below we summarize some of them.

The Pan-European Global System for Mobile Communications
(GSM). GSM is based on TDMA with eight slots per radio channel. Each
user transmits periodically in each of the eight slots with a duration of
0.57 seconds. In the present version, GSM supports full-rate 22.8 Kb/s
transmission. In 1993 and 1994, GSM experienced tremendous growth in
Europe with over 2 million subscribers.

^However, in an isolated cell, due to the orthogonality of the CDMA waveforms, the
capacity of the cell is less than it would be with the non-spread techniques

10 CHAPTER 1

The IS-54 standard in the U. S., based on TDMA. IS-54 is a North
American standard which is based on TDMA. IS-54 retains the 30 KHz
spacing of AMPS to make the evolution from analog to digital easier. Each
frequency channel provides a raw bit rate of 48.6 Kb/s. There are six
time slots, two of which are assigned to each user. Thus, each 30 KHz
channel can serve three users simultaneously with the same re-use patterns
as AMPS. Consequently, IS-54 provides three-fold growth of the capacity
compared to AMPS. The IS-54 standard is "dual mode" (analog and digital)
and can operate in the same spectrum as AMPS. IS-54 is designed mainly
for low-data-rate communication[Kat94]. A conventional analog cellular
modem uses the whole channel while achieving 2.4 Kb/s.

The IS-95 standard in the U. S, based on CDMA. The IS-95 stan
dard is based on spread-spectrum CDMA. With IS-95, many users share
the same channel for transmission - there is no longer a need for frequency
re-use, since each cell can use the entire bandwidth. CDMA requires the use
of sophisticated power-control schemes to allow the mobile units which are
close to the base station to reduce the transmission power levels. Power
control is necessary in order to avoid the so called "near-far" terminal
problem, where a strong signal received from a nearby terminal may sup
press a weaker signal from a terminal which is far away. The IS-95 CDMA
based standard offers a number of benefits including better cell capacity,
elimination of the need for planning frequency assignments to cells, better
efficiency for voice due to voice activity detection (and channel use in peri
ods when there is no speech activity). Additionally, CDMA power control
techniques contribute positively to the reduction of the overall RF trans
mission power as well as allowing "soft handoff," which allows a "gradual"
transition. The "gradual" transition is due to the gradual deterioration of
the signal strength as opposed to more rapid changes in other methods.

The U. S. Federal Communication Commission opened three bands for
spread spectrum users: 902-928 MHz, 2,400-2,483.5 MHz and 5,725-5,850
MHz.

Cordless Telephony

There are currently an estimated 60 million cordless telephones in the U. S. with
total sales reaching 15 million units per year [PGH95]. Cordless technology
requires only very low power of transmission, but it is limited to very short
ranges. The main digital cordless standards include CT2 and DECT (Digital
European Cordless Telecommunications).

Introduction to Mobile Computing 11

The CT2 spectrum allocation consists of 40 FDMA channels with 100 KHz
spacing in the range of 864-868 MHz. The maximum transmitting power is
lOmW, which is very small. CT2 supports the transmission of data from 2.4
Kb/s to 32 Kb/s.

The functionality of DECT system is closer to that of a cellular system than it
is to that of a classical cordless telephone system. DECT uses TDM A with 12
slots per carrier in each direction. Furthermore, it can allocate several slots to
a single call to increase the data rate. DECT systems are only beginning to be
shipped and the unit sales reached 100,000 last year. It is a potential basis for
a future, low cost, picocell-based system.

Wireless Local Area Networks

The work on radio-based computer networks goes back to the early seventies
and the work on Aloha network at the University of Hawaii [Tan81]. The
existing wireless LAN technology can be traced back to these early efforts.

Wireless LANs are providing data rates typically two orders of magnitude higher
than outdoor radio. Thus, data rates exceeding 1 Mb/s are quite common.
FreePort provides wireless Ethernet (IEEE 802.3) and operates in the 2400-
2483.5 MHz (receiver) and 5725-5850 MHz (transmit) frequencies, using direct-
sequence spread spectrum. WaveLAN provides peer-to-peer communication
in 902-928 MHz (in the U. S.) and uses direct sequence spreading with the
CSMA/CA (carrier sense, multiple access, with collision avoidance) protocol.
Finally, Altair uses the Ethernet protocol (CSMA/CD, or carrier sense, multiple
access, with collision detection) and operates in microwave spectrum near 18
GHz and requires a site-specific FCC license.^

Standards such as IEEE 802.11 (which we discuss in more detail in the context
of power management features) are being developed in the U. S. and in Europe.
In general, the goal is to provide data rates exceeding 1 Mb/s and also to
support architectures with infrastructure (base stations) as well as "ad-hoc
architectures," where the terminals communicate directly with each other (peer
to peer) without the mediation of a fixed base station [PGH95].

^FCC licenses are not required for WaveLAN and FreePort which operate in the ISM
(Industrial, Scientific and Medical) part of the spectrum. These frequency bands were origi
nally designated for operation of equipment which generates and uses RF energy locally for
industrial, scientific and medical applications, excluding applications in the field of telecom
munications. It WcLS later suggested to use these frequencies for local telecommunication,
such cts on-site communication.

12 CHAPTER 1

Karn [Kar91] points out deficiencies of the CSMA protocol in the context of
the wireless medium. The hidden terminal problem arises when station Y can
hear both stations X and Z but X and Z cannot hear one another. In such
a case, X and Z will collide at Y since CSMA will allow both X and Z to
transmit. The exposed terminal problem arises when station X can hear far
away station Y even though X is too far from Y to interfere with its traffic to
other nearby stations. In this case, CSMA is too conservative, it will stop X from
transmitting, wasting an opportunity to re-use channel bandwidth locally. Karn
proposes to eliminate carrier sensing, turning CSMA/CA into MACA (Multiple
Access with Collision Avoidance). If station X wants to transmit to the station
Y, it first sends a short request to send (RTS) packet and inhibits its transmitter
long enough for the addressed station to respond with a CTS (Clear to send).
Collisions are still possible for the RTS and CTS packets, but the hidden and
exposed terminal problems are avoided. Different variants of this protocol have
been implemented at Xerox and at Berkeley but there are still a number of
interesting issues, such as power control which have to be resolved.

Private Wireless Data Networks and Metropolitan
Area Wireless Networks

Several private wireless data networks provide service over wide areas using
the licensed spectrum. For example ARDIS (Advanced Radio Data Information
Service) offers service to over 400 metropolitan areas with the data rate ranging
from 8 Kb/s to 19.2 Kb/s in some areas. RAM Mobile Data off'ers service over
its MobiTex network providing coverage in 216 metropolitan areas with a data
rate of 8 Kb/s. CDPD, which we described in more detail above, offers 19.2
Kb/s maximum data rate over analog cellular. Motorola's Embarc with its
expanding set of devices (such as the Inflo receiver) provides satellite-based
information services.

Recently formed Metricom provides an innovative metropolitan-area wireless
network based on frequency-hopping spread-spectrum technology. This net
work, called Ricochet, is a mesh-like network consisting of shoebox-sized radios,
that are mounted on existing pole-tops or buildings. It offers effective bit rates
in the range of 10-40 Kb/s over 902-928 MHz frequency band.

Infrared Technology

Infrared technology offers an alternative to the standard radio frequency com
munication. In general, it is much cheaper to use, but it is restricted only to

Introduction to Mobile Computing 13

very short distances and is subject to line-of-sight transmission limitations. An
invisible infrared light beam, in the frequency spectrum of laser beams (in the
terahertz range), is focused from a transmitter to the receiver over a very short
distance.

Infrared transmission is subject to the following restrictions [Bat94]:

• Transmission distance of less than 2 miles

• Line of sight limitations

• Restricted to of 16 Mb/s throughput

• Proneness to environmental disturbances, such as fog, dust, and heavy rain

The advantages of the infrared technology are as follows:

Reasonably high bandwidth

No license required

Cost effective

Capable of traversing multiple paths without interference

More secure than radio

Immune to radio frequency interference and electromagnetic interference

Satellite Networks

Mobile satellite services allow complete global coverage. In these systems, satel-
Utes play the role of mobile base stations. Satellite-based systems may be
categorized according to the orbital altitude:

• Geostationary satelites (GEOS), at an altitude of 35,786 km

• Low earth orbit satellites (LEGS), at the altitudes on the order of 1000
km

• Medium earth orbit satellites, with widely varying altitudes between
those of GEGS and LEGS.

14 CHAPTER 1

The major advantage of GEOS systems is that contiguous global coverage up to
75 degrees latitude can be provided with just 3 satellites. On the other hand,
the main drawback is a large 240-270 ms round trip propagation delay and
the higher RF power required. On the other hand, LEOS systems require less
power but require frequent handofFs.^

The bit rates for the satellite communication systems are relatively low. For
example, for Qualcomm's OmniTracks, which provides two-way communication
as well as location positioning, the downlink data rate is between 5 Kb/s and
15 Kb/s and the uplink data rate is between 55 b/s and 165 b/s.^[Kat94]
Experimental satellite systems provide higher data rates, for example NASA's
ACT satellite offers T l data rates at 1.5 Mb/s.

The Hughes Direct Broadcast Satellite System provides coverage to most of
North America. It is highly asymmetric, with a shared 12 MB/s satellite down
link, a wire-line Internet-gateway uplink, and latencies greater than 500 ms.
Individual users may achieve up to 400 Kb/s on the downlink. The system is
wireless, but not mobile; its 24-inch satellite dish, though rapid to deploy, will
not support communication for mobile units.

Future PCS

Recently, the U. S. Federal Communication Commission (FCC) allocated band
width in the 2 GHz range for "personal communication services" (PCS). This
bandwidth was allocated via auction, and earned the U. S. government almost
7 billion dollars. Winning bidders in markets projected to be lucrative (such
as New York and Los Angeles) bid approximately 20 dollars per person. This
amount is just for the right to use the spectrum - still higher costs must be
incurred to build the requisite infrastructure.

Two basic categories: high tier, which supports macrocells, and low tier, which
is optimized for low power and low complexity, will be supported. These two
tiers roughly correspond to the digital cellular and digital cordless categories.
At this point, the initial list of potential standards has been narrowed down
from 16 to 7 but it is still unclear as to what the standards will be and when
the initial infrastructure will be deployed.

^Note that handoffs occur here even when the terminal is not moving at all (since low-earth
orbit satellites move relative to fixed terrestrial positions).

^Note the asymmetry in uplink and downlink data rates.

Introduction to Mobile Computing 15

One of the main challenges is how to mix continuous, real-time data such as
voice (and perhaps, in the future, video) with the alphanumeric data (such as
electronic mail, which is less time-critical). Several protocols such as PRMA
(Packet Reservation Multiple Access) [WCW91] have been proposed. These
protocols are based on the concept of reservation of slots within frames. In
PRMA, the channel bit stream is first organized into slots, such that each slot
can carry one packet from the mobile terminal to the base station. The time
slots are grouped into frames. Each slot within a frame is either available
or reserved, on the basis of a feedback packet broadcast in the previous frame
from the base station to all of the terminals. Terminals with new information to
transmit contend for access to available slots. At the end of each slot, the base
station broadcasts the feedback packets that report the results of transmission.
A terminal that succeeds in sending a packet to the base station obtains the
reservation for this slot in the subsequent frames. The base station, on failing
to receive a packet in the reserved slot, informs all the terminals that the slot
is once again available. PRMA has proved to be suitable for data and voice
communication and demonstrated efficient use of spectrum for voice.

2.3 Palmtop and Laptop Technology

The palmtop and laptop technology is expanding so rapidly that there is little
point in discussing specific products. We refer the reader to the web home pages
of major players on the market such as Apple, Motorola, Hewlett-Packard, NEC,
Toshiba, IBM, etc.

Instead, we concentrate on the major issues brought about by the miniaturiza
tion of computer terminals. These are: extension of battery life, user interface,
and display issues.

Battery Life

Energy supply is the major bottleneck for mobile wireless computers. In a
recent USA Today article, longer battery life was mentioned as the feature
most desired by mobile users.^ Unfortunately, expected growth of battery life
is very slow (only 20% in the next 10 years [CB92]). Thus, energy efficiency

®The issue of energy management is nevertheless controversial. Many sceptics claim that
periodic recharging will be sufficient to make the battery limitations go away. Others point
out that , for example, the mobile terminals used in cars will use car's energy sources, not
their own batteries. We still believe that longer battery life will be an important feature
driving the market.

16 CHAPTER 1

is a necessary feature both at the level of hardware, and software. Hardware
providers are offering energy-efficient systems that switch off the background
light of the screen, power down the disk (or eliminate the disk completely in
favor of flash memory) and offer CPUs with an energy-efficient doze mode. For
example, the Hobbit chip consumes 5,000 times less energy while in doze mode
than in the active mode (250 mW in the active mode as opposed to 50 /xW in
doze mode). There is a growing pressure on software vendors to incorporate
energy management features.

To illustrate the constraint of limited available power, consider a laptop com
puter with a CD-ROM and a display. The constant power dissipation in a
CD-ROM (for disk spinning) is approximately 1.0 W and the power dissipation
for the display is approximately 2.5 W. Assume that AA batteries are to be
used as the power source. A typical A A cell is rated to give 800 mA-Hr at 1.2
V (0.96 W-Hr). Thus, the assumed power source will last for only 2.7 hours.
To increase the longevity of the batteries, the CD-ROM and the display may
have to be powered off most of the time.

Transmitting and receiving consumes power as well. In practice, the power re
quired for transmitting grows as a fourth power of distance between the trans
mitter and the receiver. Powering the receiver can also drain batteries. For
example, a WaveLAN card consumes 1.7 W with the receiver on and 3.4 W
with the transmitter on. An active cellular phone consumes even more, 5.4 W
[FZ94], while consuming only 0.3 W if in standby mode.

We believe that design of energy efficient software will be one of the main
research challenges in mobile computing. Below, we summarize some of these
efforts including CPU scheduling for low power, new communication protocols,
and energy-aware application design.

Storage Technology

Flash memories constitute new, more energy efficient, storage alternatives to
disks. Flash memories consume relatively little energy and provide low la
tency and high throughput for read accesses. However, their high cost, $30-
50/Mbyte, is still a limiting factor. Furthermore, flash memories require addi
tional system support for erasure management since writing to flash memory re
quires prior erasing. Additionally, the number of times the same memory block
can be rewritten is usually limited (on the order of 100,000 times). Chapter 18
provides a detailed discussion of storage alternatives for mobile computers.

Introduction to Mobile Computing 17

User Interface and Display Issues

The two key issues in human-computer interaction are the desirability of re
placing the keyboard with a pen-based interface and the challenge of dealing
with a small-sized display.

Pen-based interfaces have been introduced in recent years with mixed accep
tance. The mixed results so far are due in large part to problems with hand
writing recognition (shown by early experience with the Apple Newton Mes-
sagePad). As recognition-related technology improves, it is expected that pen-
based interfaces will gain in acceptance.

Small display size is a serious problem, especially for users who would like to
access remote information services, such as those provided on the World-Wide
Web. The need to deal with varying display sizes suggests that applications be
structured in a display independent manner. Some of these issues are discussed
in Chapter 24.

3 RESEARCH ISSUES

In this section, we review the main research issues in mobile computing and
summarize current work in the field.

As we pointed out in the previous section, the main research challenges of
mobile computing are due to mobility, variable communication conditions, and
energy limitations. We shall discuss how these challenges affect different layers
of OSI hierarchy starting from the networking layer and including some of the
discussion of the data link layer as well. Here, we make an important distinction
between the mobile communication which involve physical and MAC layers,
and mobile computing, which we broadly define as including mobile networking
(data link, network, transport layers) as well as software applications such as
wireless access to information resources, client-server interaction, etc. In this
book, we do not discuss the layers belonging to mobile communications, but
rather, restrict our attention to those belonging to mobile computing.

18 CHAPTER 1

3.1 Mobile Networking

In this section, we review how the network, transport, and data-link layer
protocols are affected in mobile and wireless environments.

Mobility Management - Network Layer

The physical location of a mobile unit no longer determines its network address.
Thus, mobility poses a major challenge from the point of view of the network
level of OSI. How does the network know where a given user is? How does the
network route messages to mobile users?

These questions are currently being addressed in two different communities:
the Internet community and the cellular-communication community. The work
in the Internet community involves mobile IP [JMP95, PB94] aiming towards a
standard which would extend IP in order to deal with mobile hosts. The work
in the cellular-communication community is the effort on location management
of cellular phone users [BI96]. The latter deals mainly with connection-oriented
communication, since it is motivated by issues of call set-up in telephony. On
the other hand, the mobile IP work assumes a connectionless, packet-switching
scenario.

The main problem of mobility management is how to find an adequate tradeoff
between searching and informing. Searching is performed by the system in case
the address of the message recipient is not known or, at least, it is not known
precisely. Informing is the activity of the mobile unit, which informs the system
about its position. There are two extreme solutions: one in which mobile units
never inform the system about their positions and another, where units always
inform the system about their movements. The second scenario works very well
for those units that receive messages frequently. In such cases, the overhead
of searching large portions of the network (possibly, even the entire network)
is avoided at the expense of the mobile unit informing the system upon each
move. If, additionally, the unit does not move between cells often, the second
strategy is a clearly a good choice. On the other hand, if the unit moves very
often and does not receive many messages, it is probably better not to inform
the system but, rather, to have the system perform a search when necessary.
There is clearly a need for a tradeoff: when mobile unit occasionally informs the
system (or specially designed home agent). The exact nature of the tradeoffs
and compromises is described in [IB92].

Introduction to Mobile Computing 19

Since the users are mobile, there is a possibility of the user receiving the same
message twice (though in different cells) or not receiving a message at all while
in transition between two cells. Multicasting to mobile clients presents its own
challenges [AB94b]. The main issue in multicasting is how to guarantee "exactly
once" or "at least once" delivery in an efficient manner. The MCAST protocol
provided in [AB94b] offers a preliminary solution. An interesting problem in
multicasting is how to maintain efficiently a group view ~ the set of MSSs which
have, in their cells, at least one member of a given multicasting group.

Ad-hoc networking is the ultimate challenge for mobile networking. In ad-
hoc networking, mobile terminals can form networks without participation of
the fixed infrastructure. Such networks arise in rapid-deployment situations,
like emergency services at a disaster site, or military operations in a remote
area. The can also be employed in business situations such as meetings held
in venues without network infrastructure. The structure of an ad-hoc network
is highly dynamic. Routing tables may change frequently due to changing
communication conditions and power levels. A given terminal can serve as a
router between two other terminals, due to its current intermediate position at
one instant of time and no longer be in that position a short time later.

Transport Layer - Effects of Mobility and Wireless
Connection

The task of efficiently maintaining end-to-end flow and congestion control over
a mix of wired and wireless links is a difficult task due to the different charac
teristics of the wired and wireless networks. Congestion is the main source of
packet loss on wired links, because error rates are very low. The situation is
reversed on the wireless link, where packet loss is caused mainly by high error
rates. Consequently, wireless and wired links require different techniques to
achieve reliability and flow control.

Caceres and Iftode in [CI95] (included as Chapter 7) was the first to observe
that the congestion control in TCP may cause incorrect behavior of TCP when
dealing with mobile hosts in a wireless network. The lack of acknowledgments
from moving hosts who are in the middle of handoff between cells will cause the
transmitting host to back off (slow down) exponentially, and it may take some
time for the sender to come back to the original transmission rate. This leads
to an unnecessary drop in throughput resulting from TCP's misinterpretation
of the receiver's move as network congestion. Similarly, higher error rates on
the wireless link will be interpreted by TCP as congestion, again leading to an

20 CHAPTER 1

unnecessary drop in the data rate. TCP was designed for wired networks with
low error rates and not for unreliable wireless networks with hosts which may
occasionally disconnect.

One possible solution to this problem involves extending TCP (or another trans
port protocol) to handle wireless as well as wired links. Such a solution would
require eventual replacement of the old version of TCP by a new protocol. This
may not be practical. In order to avoid TCP modification, Badrinath et al.
[BB95a] (also discussed in Chapter 8) propose to split the TCP protocol into
two parts: one between the sender and the MSS local to the receiver and an
other, which manages the connection between the mobile host and the MSS.
The TCP which runs between the sender and the MSS need not be modified.
Only the link between the MSS and the mobile host requires a modified proto
col. The proposed protocol, called indirect TCP (I-TCP), has been implemented
[BB95b] and demonstrated to achieve much better throughput than the stan
dard TCP, especially for mobile hosts which move across the non-overlapping
cells, and when the sender is located far away from the receiver.

The idea of indirect protocols can be extended further to other layers of OSI
and to include such application protocols as ftp, http (used in the World-Wide
Web), and remote procedure calls. To illustrate this further, let us consider the
http protocol, where the client has to make a separate TCP connection in order
to reach each single Web page. While this is a reasonable solution for the fixed
host, it is unacceptable for the mobile host communicating on a slow wireless
link. Indeed, since each TCP connection requires a 3-way connection set up
and a 4-way connection drop,^ the resulting overhead will be unacceptable on
a wireless link.

A better solution is to let the MSS represent a wireless client by opening and
closing such TCP connections for it. The mobile client would then open just one
http connection with its MSS. Such a solution would require writing a separate
protocol to handle the wireless link between the client and the MSS and would
leave the link between the MSS and the server unchanged. Thus, only the part
of the protocol dealing directly with the wireless and mobile host would require
modification. Making the MSS a local agent or proxy of the wireless client is

^To establish the T C P connection, the sender hcis to send a special packet with the initial
sequence number to which the receiver responds with its own sequence number. The third
packet is an acknowledgment from the sender. To close the T C P connection, four packets
have to be exchanged: the sender sends the connection closing packet,which is acknowledged
by the receiver, then the receiver also closes the connection on its side and the sender sends
an acknowledgement.

Introduction to Mobile Computing 21

natural choice since the MSS is "close" to the wireless link and can monitor it
better than some more remote intermediary.

The concept of indirection can, in general, lead to the modification of stan
dard client-server protocols to a client-proxy-server model, where clients are
represented (to certain extent) by proxies (their local MSS) when dealing with
remote servers. Such proxies can do most of the work for the clients and contact
them only when it is absolutely necessary. Among the issues to be resolved are
handofFs which result from mobile client moving between different cells during
a session with the server, and authorization and security issues dealing with
clients using proxies outside their home environment, etc.[BBMI93]

3.2 Information Services

As we go up in the OSI hierarchy, we have to address the issue of interactions
of mobile wireless clients with the information resources on the fixed network.
Network information resources can be accessed literally from anywhere via wire
less links of varying quality and possibly varying tariffs.

Performance Metrics

Information content and methods of the information delivery depend on the
location of the user. Hence, user location is an important and dynamically
changing parameter. Cost of information will vary depending on the location
of the user, who may now face the choice of getting desired the information
now, but for higher cost, or later, for less cost. Finally, an additional precious
resource, battery power, has to be minimized when interacting with the fixed
network. We speculate that in the client's interactions with information services
(such as the World-Wide Web), measures such as queries per Hz and queries
per watt will be important. The analogous performance criteria in cellular
telephony is cell capacity: the number of telephone calls which may be handled
in a cell per unit of time. In the future, a query, a request for a page, will be the
analog of a telephone call in terms of performance metrics. Consequently, we
believe that in the future wireless services, the cell capacity will be measured
in terms of the number of queries which the local MSS can handle per unit of
time as well as the number of queries which a mobile client can issue per unit
of power.

22 CHAPTER 1

Issues in Dissemination of Information to Mobile
Clients

Wireless Information services will be characterized by their geographic scope.
Wide-area services such as stock market information, will be offered on a na
tional scale. Macroservices,^^ such as weather, would be provided on a regional
basis, with regions extending to tens or hundreds of miles. The geographic
scope of micro services such as traffic conditions will extend to the size of the
current cells: a few miles in diameter. Finally, one could imagine picoservices in
an area corresponding to future picocells, perhaps hundred meters in diameter.
For example, parking availability could be provided within such a scope.

Designing support for information services for mobile users will require address
ing the following key new issues:

• Interoperability and adaptability to networking environments ranging from
high-bandwidth wireless LANs to low-bandwidth cellular and infrared com
munication links.

• Energy-efficient data access for terminals running on self-contained power
supplies

• Support for mobility and disconnection

• Support for active services; e.g., triggers, periodic data delivery, etc.

Below, we describe the impact of the each of the above issues on the design of
wireless information services of the future.

There are two basic modes of information dissemination to be considered: pub
lish and provide on demand [IV94]. The latter is the traditional client-server
approach (the client submits a request and the server responds). The former
("publish") is different [IVB94b]. The server either periodically broadcasts in
formation or sends it on a specific multicast channel [OPSS93, IV96]. Such
published data will eventually be filtered by the client. The server assists the
client in this filtering process by providing a directory of published information.
There are many advantages of the publishing mode: broadcasting the most fre
quently accessed data items (hot spots) saves bandwidth since it cuts down the

^^The granularity of services does not directly correspond to the cell granularity (macro-
cells, microcells) and should not be confused with it.

Introduction to Mobile Computing 23

number of separate but identical provide-on-demand requests. Also, it saves
client energy by avoiding energy-consuming uplink transmissions from client to
server. Providing the directory helps the client to tune selectively only to rele
vant information and remain in doze mode for the rest of the time. This strategy
saves considerable amount of energy as demonstrated in [IVB94b, IVB94a]. Ex
amples of periodically published data include stock quotes, traffic, and weather
conditions.

Each cell's bandwidth can be divided into three channels:

• uplink channel

• on-demand downlink channel

• broadcast downlink channel

How much bandwidth is allocated to each channel depends on the cell, and is
a function of the cell population and the pattern of requests. For example, one
cell may carry stock market information on its broadcasting channel, another
cell's server may decide, due to a limited interest in stocks, to provide stock
information only on demand.

In general, cells will differ in the type of radio infrastructure and consequently
by the amount of available bandwidth. Thus, not only the content, but also
structure and the mode of information presentation will be location-dependent.
There is an obvious need for a protocol suite which would make this depen
dency hidden from the user who relocates between such cells. Some of the
services will have to be continued upon crossing cell boundaries with minimal
service disruption. Thus, there is a need to handle service handoff in a manner
analogous to the way in which cellular handoff is handled now. To ensure rapid
response to client requests, a "hot list" of items which the client accesses most
frequently will have to be re-bound to a new set of addresses when the client
enters a new cell. Therefore, each cell must provide a "directory of services,"
mapping services to their mode of their delivery (broadcast, multicast, or on-
demand) and channel. This directory must include local services as well as
global, wide-area services, and must be provided on a standard channel. The
exact mapping between services and their addresses is not visible to the user.
The system seamlessly rebinds the services according to the allocation used in
the new cell.

24 CHAPTER 1

Inadequacy of the current concept of information
services for wireless and mobile environments

There are already several efforts to modify network information services, such
as Web browsers, to deal with wireless and mobile clients. This work is cur
rently performed by groups at MIT [K4-94], Rutgers [ABIN95], the University of
Washington [VB94], and Xerox [WSA-l-96]. Before we summarize these efforts,
we point out the main inadequacies of the current World-Wide Web protocols
for mobile clients:

• Page addressing based on the location of servers.

• Lack of presentation autonomy

• Lack of display independence and presentation adaptability

• Stateless servers

We address these issues, in turn, below.

Location-Based Addressing

In the http protocol, each page has a fixed IP address. Each client has to make
a connection (ftp connection) to that address in order to access this page. Thus,
there is only one address and one access mode (on-demand) which is currently
supported. This is inadequate for location-dependent information services for
wireless and mobile users, where the content of the presented page changes with
the user's location, and where the method of page delivery varies from cell to
cell. For example, the traffic conditions page will have different content in New
Brunswick than in Princeton, and its method of delivery may vary as well;
for instance it may be published every minute in Princeton, while provided on
demand in New Brunswick.

Thus, pages should be identified independent of the location of the server which
offers them. The best solution would be to use the same address for each
location-based page in every location, and create a binding to the local address
analogously to the way "800" telephone numbers in North America are bound
to actual telephone numbers [Che92, OPSS93, ABIN95].

Introduction to Mobile Computing 25

Presentation Autonomy

The local MSS should have the autonomy to decide how a particular remote
service is going to be presented to users registered in its cell. Consider again
the example of the stock information service: the MSS may decide to publish
(broadcast) stock quotes for the S&PIOO stocks every minute, broadcast stock
quotes for the S&PSOO stocks every 5 minutes and provide other quotes on
demand with a cache invalidation service[BI94], which broadcasts periodically
reports only about significant changes of the stock values. MSS may also decide
that special events such as a stock reaching a new high require a special broad
cast message which should be sent to subscribers. The remote stock server
will not and should not be aware of this autonomous decision of the MSS and
different MSSs may decide to "carry" the stock information services differently
in order to best utilize their resources and perhaps also maximize the profit.^^

Presentation Adaptability

By display independence, we mean the ability to present a page on a range of
devices including the telephone (through a voice processing card and prompted
menu interface enabling the user to enter selections from the telephone key
pad), palmtops with small limited resolution, and powerful laptops equipped
with full color monitors. Presentation adaptability allows different presentation
of a page depending on the current load on the network, available bandwidth,
and energy resources on the client. For example each link should have resource
prerequisites associated with it and only links which are "eligible" for the cur
rent environment should be displayed on the client's machine. In this way,
different clients may see different views of the same service. In fact, the same
client may see different views of the same service at different times in the same
cell due to the varying load on the network.

Stateless Servers

Web servers are stateless, that is, they do not keep any information related to
the state of their clients. Although this is a reasonable design for current Inter
net users, this approach is less reasonable for low-power clients connected by
low-bandwidth links. By retaining information about a client, a server can deal
more effectively with such issues as location-dependent data and presentation
adaptability.

^^No one knows what the tariff structure will be for the future wireless services but one
may assume that the MSS will have to pay the remote server for syndicating its service and
will generate a profit by reselling this service to its local residents.

26 CHAPTER 1

Efforts to Modify Web Services for Mobile and
Wireless Clients

The DataMan group at Rutgers has developed an authoring interface [ABIN95]
to design location-aware information services. Pages are categorized as location-
dependent and location-independent. For example, the printer paige is location-
dependent and provides directions to the nearest printer from the user's current
location. Such pages are stored on multiple MSSs with possibly different con
tents, depending on the MSS's location. Location-dependent pages are accessed
via a new mechanism, called nearcast, by associating a unique multicast address
with each such page. The mobile client accesses a location-dependent page by
multicasting a request for that page. The nearest MSS which has a copy of
the page and is a member of its multicasting group responds to the client's
request.^^ This is similar to subject-based naming in the spirit of [Che92].
The mobile client always uses the same address despite the possibility that the
underlying actual address of the requested page varies.

The scope of a page is another concept which is associated with a location-
dependent page. The scope is the set of locations in the immediate neighbor
hood of the current location in which the page remains invariant. Thus, the
client needs to refresh the page content only when moving out of the page's
scope, rather than upon each crossing of a cell. The current system provides
support for multiple granularities of location information. In this way, the
scope of the page can be characterized, as, say "Rutgers Campus" without the
need to specify all the MSSs on campus.

The DataMan prototype provides features for autonomous presentation of a
service by an MSS. Thus, a given page can be provided either on demand or
published periodically, depending on the structure and volume of requests in
each cell.

Finally, DataMan provides page invalidation through multicasting. If a content
of a given page changes in time, a page invalidation message is multicasted by
the server on a specific, predefined multicast address.

In the Mobisaic project [VB94] (discussed in Chapter 14) at the University
of Washington, the location-dependent context of mobile hosts is abstracted
as <dynamic-variable, value> pairs. Changes to the values of such variables

^^In this way, the nearcsist address plays a role analogous to "800" numbers (in North
America) which are bound to possibly different numbers depending on the area where it is
used.

Introduction to Mobile Computing 27

are propagated to interested parties using a publisher-subscriber mechanism.
Based on this availability of "mobile computing contexts" of users, the authors
present two interesting concepts (and their implementations):

• Dynamic URL: A URL that references dynamic variables and whose
values are resolved when the URL is accessed. This allows the same URL
to specify different document contents,

• Active Documents: Documents whose contents change or become in
valid when a specified set of dynamic variables changes.

The paper also presents the necessary extensions to HTML for authoring active
documents.

Other work at University of Washington [Wat94] (presented in Chapter 13)
involves principles for partioning functionality at the application-level between
a mobile, wireless client and a proxy on the static network. As an example of
a wireless application, the paper presents W*, a Web browser. This browser is
explicitly designed to optimize wireless communication and allow for a proxy
to cache and/or parse documents on behalf of the mobile client.

Work at MIT [K-f 94] deals with optimization of wireless link between the mobile
unit and the MSS. In order to avoid expensive page transfers, an alternative
solution is proposed in which pages are generated locally by the mobile client.
Thus, the mobile client, upon requesting a particular Web page, receives the
HTML code which it runs to locally generate the page.

3.3 Power Management

Power management is already being addressed in hardware. Features like
switching off backlighting, providing the CPU with a power-efficient doze mode,
replacing disks with more energy-efficient semiconductor memories, are just a
few examples of steps towards lowering power consumption. There is now a
growing pressure to improve energy management further at the software level.

Energy-efficient software is possible only if energy-management features already
exist on the hardware level. Thus, the CPU should have a low-energy mode, a
disk that can be spun down, a radio receiver that can be switched off when idle,
etc. Energy-aware software algorithms will take advantage of these features by

28 CHAPTER 1

maximizing the time the CPU spends in the doze mode, keeping the receiver off
most of the time, minimizing energy consuming transmissions, spinning down
the disk, etc.

There is substantial room for power saving features on the apphcation layer.
We have already discussed the publishing mode of information dissemination
in which the server periodically broadcasts "hot spots" of information without
explicit requests from the clients.

There is research underway at a variety of levels:

• Operating Systems:

- The work of [WWDS94] to schedule CPU operations for low energy
(discussed in Chapter 17)

— The work at Sun [B+93] on energy-efficient features in operating sys
tems (discussed in Chapter 16)

• Communication Protocols:

- MAC Layer: such as in IEEE 802.11 and CDPD

— Application Layer: by using publishing mode, avoiding uplink trans
missions, etc.

• I /O and File systems:

The work of [DCK-l-94] dealing with spinning down the disk.

The main objective of the low-energy features of 802.11 is to let the mobile
unit keep the receiver off most of the time. This is accomplished by careful
synchronization between the MSS and the mobile unit. When the MSS receives
a message addressed to one of the mobile units which reside in its cell, it does not
forward the message directly, but buffers it. Periodically, the MSS broadcasts
a "preview" which is a list of identifiers of all the mobile units which have
an outstanding message to be delivered by the MSS. The mobile unit turns
its receiver on synchronously to listen to the periodic preview. If the preview
contains the the mobile unit's identifier, then the mobile unit either keeps its
receiver on until the message is received, or it informs the MSS as to when it
wants to receive its messages. In either case, if the mobile unit receives only a
few messages a day (even the most heavy e-mail users typically do not receive
more than 50-100 messages a day) it can keep the receiver off most of the time,

Introduction to Mobile Computing 29

saving considerable energy. For example in [IGP95], the energy savings for
the WaveLAN card are provided for a protocol which is a variation of 802.11.
With the average load of 30 messages a day, the receiver will be "on" for
approximately 10 seconds to a minute, rather than hours, leading to significant
energy savings. CDPD offers a similar low-energy feature. In [IGP95] some of
the effects of varying preview size are studied„ It would be useful to put some
of these features on the application layer, so that applications can influence the
size and the frequency with which the preview is broadcasted, based on their
tolerance of delay. It is also argued there that avoiding uplink transmissions
from the mobile unit to the MSS, which are very energy consuming (especially
in outdoor environments) is highly desirable. Therefore, solutions in which
the mobile unit stays active immediately following the preview message, which
contains unit's identifier, are preferable.

Further reduction in transmissions can be achieved by means of transport layer
modifications which cut down on the number of acknowledgements from the
mobile recipient. Perhaps, analogously to congestion control, we need power
control by controlling the number of acknowledgments depending on the power
resources of the client.

The energy management issues dealing with I/O operations are discussed in
Chapter 18, where it is demonstrated that replacing the disk with flash memory
can lead to very substantial energy savings.

3.4 Systems Issues in Mobile Computing

The key issue which will affect the basic design of file systems and, to a large
degree, database systems as well, is the issue of disconnection.

Operating System and File System Issues

Disconnection support is an important aspect of mobility support. Mobile users
will be often disconnected from the shared file systems and should be allowed to
work on their local file system until they reconnect again. On reconnection, the
changes to the file are propagated to the file server. The Coda file system which
is based on the Andrew file system allows for disconnected operation[KS92] (see
Chapter 19). A disconnected Coda client can continue to work by using any
data in the cache. When the client reconnects, the updates are reintegrated.
Update confiicts are handled similarly to reconnection process of a partitioned

30 CHAPTER 1

replicated database. It is possible that updates of a disconnected client will be
discarded if some other connected client has modified the files.

The Ficus replicated file system developed at UCLA[HPGP92] also supports
a form of disconnected access. In Ficus, each file is replicated to enhance
read availability. Further, it adopts a primary copy approach to replication
control. First, the update is propagated to the primary copy and later messages
are sent to the secondary copies. The exclusive-write/multiple-readers scheme
of synchronization is implemented by the use of write tokens. Only a site
with the write token can modify the file. Thus a disconnected client can be
considered as a server with write tokens for the files for which it has the primary
copy. However, on reconnection, communication to the secondary sites needs
to be accomplished. The file system proposal at Columbia [TD92] attempts
to alleviate the problem of expensive global communication of a replicated file
system by using a lazy update scheme. Further, to reduce update propagation,
two diflFerent read semantics (loose read, a best-effort value, and a strict read,
giving the most recent version) are provided.

Disconnected operation has been added to the AFS as part of the Little Work
project at the University of Michigan [HHRB92, HH93]. Before disconnec
tion, most recently accessed data is cached at the client. Upon reconnection,
file system updates that are recorded in a log are propagated to the server.
While in disconnected mode, the mobile unit performs local operations but
network operations are logged and deferred. When the network connection
is re-established, the cache manager iterates through the log and updates are
transferred to the server. If a conflict is detected, then the replay agent notifies
the user that manual resolution is needed.

Work in this area [KS92, HPGP92, TD92] has focused on environments in which
the users are connected either over a fast network or totally disconnected from
the network. Weak connectivity (wireless connection) and energy restrictions
have not been considered.

Caching in mobile environments is addressed in [BI94]. There, the MSS does
not keep the state information about clients but rather periodically broadcasts
invalidation reports so that, upon reconnection, the mobile unit can determine
which cached items are valid and which items are invalid without performing
expensive uplink requests.

Introduction to Mobile Computing 31

Database Systems Issues

It is clear that mobile clients will not run a complete database system lo
cally. Most likely, mobile users will use very lightweight client software on
their machines and use remote database servers to process most queries and
transactions.

Clients will, however, perform simple queries and transactions on local data,
especially when they are disconnected. Such transactions will generally use
operations of three types:

• Operations against closely-held data, in which the chance of data conflict
is low.

• Operations that commute, such as increment and decrement.

• Operations on a partition of the actual data. An example of this is a set of
tickets where a mobile unit may be allocated a subset of the set of available
tickets prior to disconnection [SS90].

If transactions follow the above restrictions, updating the shared database at
reconnect time is straightforward. Special applications may require more com
plex reconnection protocols and, possibly, human intervention. The impact of
mobility on transaction processing is described in [KJ96].

During periods when the mobile unit is connected, queries should be processed
in an energy-aware manner. This involves making tradeoffs between energy
used in communication and energy used locally. It may also mean choosing a
query processing plan that is suboptimal in terms of time, but optimal in terms
of energy (for example, by reducing the time the disk is spinning). This issue
is explored in detail in [AG92].

Many applications of mobile computing, especially those relating to travel
and traffic information, require the processing of location-dependent queries in
which the user's location is a parameter of the query. Processing such queries
is discussed in [IB92].

Recovery is an interesting issue since the mobile unit is subject to catastrophic
failures like theft, physical destruction, etc. Thus, there is no such thing as
truly stable storage on the mobile unit. As a result, the local log may have to
be uploaded periodically to the fixed network as described in [AB94a]. Further
more, since much of the mobile user's interaction is of a non-database nature,

32 CHAPTER 1

it is desirable to apply database-style recoverability to a broad set of mobile
applications.

Disconnection management is even more important in the database context
than it is in the context of file systems. Because disconnection is part of routine
mobile computing, rather than a failure mode, the database buffer manager
must be able to deal with periods of disconnection without the imposition of
high-overhead at the time of reconnection. [BI94] shows new techniques for
cache invalidation suitable for mobile and wireless environments.

For many, perhaps most, applications, the user interface will be application
specific. However, general-purpose interfaces require an alternative to SQL-
based languages. Graphical user interfaces designed for workstations tend not
to map well to the small screen of mobile computers. For casual database users,
and users of PDAs, a pen-based interface is required. Preliminary work in this
area is described in [AHK92].

A more detailed discussion showing which database issues will be most affected
in mobile and wireless environments is presented in [1] as well as in [IB94].

3.5 Research Prototypes

There are several research prototypes currently being developed, many of which
are described in this book. The Ubiquitous Computing project at Xerox, the
Infopad project at Berkeley, and Coda at CMU were among the most significant
early efforts. Xerox's work is described in this book in Chapters 2, 15, and 17.
The CMU work is described in Chapter 25. The Infopad work [SLBR94] repre
sents one extreme in the model of computation for a mobile system. It gives the
smallest role to the mobile station. While this imposes the disadvantage that
the mobile unit is useless without a network connection, it offers significant ad
vantages in power (100 milliWatts for the entire mobile unit), and in the ability
to devote the entire device to user interaction. In this work, it is assumed that
the mobile devices ("Pads") are always connected. Computation and storage
is handled by stationary machines on the backbone (wired) network, and the
mobile device (a multimedia terminal) need handle only bitmaps sent over the
wireless network (an RF line).

Introduction to Mobile Computing 33

4 BOOK CONTENT

In this section, we review the content of the book by briefly summarizing each
chapter o

After the first two chapters, the ordering of chapters is generally consistent with
the bottom up view of the OSI hierarchy. Thus, we begin at the network layer
by reviewing mobility management issues and ad-hoc networking (in Chapters
3 through 6), and then continue with the transport layer issues in Chapters 7
through 10. Chapters 11 through 14 discuss higher level protocols for infor
mation services, and Chapters 15 through 21 general systems issues in mobile
computing. Finally, Chapters 22 through 25 review some research prototypes
and applications.

Chapter 2 presents a comprehensive summary of the most prominent and ex
tensive research prototype: the Ubiquitous Computing project at Xerox. In
the Xerox model, there is no fixed attachment between the user and the mobile
terminal. Xerox's vision predicts that small computers will become as univer
sal as paper pads and that mobile users will possibly use different terminals
at diff̂ erent locations. The PARCTab system integrates a palm-sized mobile
computer into an oflSce network with small-cell wireless communication. Three
different types of devices, PARCTab (a palm sized computer), PARCPad (an
electronic notepad), and Liveboard were built to illustrate three different scales
of devices. The paper presents the basic philosophy of ubiquitous computing
and describes the system design and application components of this pioneering
work. Thus, it serves as a good overall guide to the broad issues facing the
designer of a mobile system.

Mobility management is addressed in Chapters 3 and 4. Chapter 3, "Scalable
Support for Transparent Mobile Host Internetworking," by David Johnson,
describes the current status of work on Mobile IP in the form of a review of
the latest IETF proposal. This chapter reviews the main concepts introduced
by the IETF proposal such as registration, tunneling, foreign agents, etc. It
also discusses the location update mechanisms and location caching. Chapter
4, "Mobility Management in Internet and Cellular Environments," by B. R.
Badrinath and T. Imielinski, compares work on mobility management on the
Internet with the work on location management in cellular telephony. Two
distinct research communities are working on this problem. The paper attempts
to compare different approaches and points out similarities and differences in
network and system assumptions.

34 CHAPTER 1

Work on ad-hoc networking protocols is presented in Chapters 5 and 6. Chapter
5, "Dynamic Source Routing in Ad Hoc Wireless Networks," by David B. John
son and David A. Maltz, presents a routing protocol for ad-hoc networks which
is based on dynamic source routing. An intesting feature of this protocol is that
it adapts quickly to routing changes when hosts movement is frequent, yet it
requires little overhead when hosts move less often. The overall overhead of the
protocol is measured through simulations and is determined to be quite low,
falling to just 1% of the total data packets transmitted. Chapter 6, "Routing
over Multi-Hop Wireless Network of Mobile Computers," by Charles Perkins
and Pravin Bhagawat, offers an alternative approach to routing in ad-hoc net
works. The mobile hosts are viewed as routers which periodically advertise
their view of the interconnection topology to other mobile hosts. The key chal
lenge is to avoid advertising unstable routes. To this end, a route updating
mechanism, which is based on the past history, is designed. The routing algo
rithm is an extension of the today's distance vector approach (Bellman - Ford)
with additional features which reduce the impact of fluctuations in unstable
routes.

The transport-layer issues in wireless and mobile environments are discussed
in Chapters 7 through 10. Chapter 7, "Improving the Performance of reliable
Transport Protocols in Mobile Computing Environments," by Ramon Caceres
and Liviu Iftode, introduces the basic challenges of designing transport-layer
protocols for wireless and mobile environments. As we have pointed out ear
lier, reliable transport protocols such as TCP interpret delays and losses re
sulting from handofFs and disconnections as signs of network congestion. This
degradation is quantified in this chapter through the measurement of protocol
behavior in a wireless networking test bed. It is demonstrated that the current
TCP implementation produces unacceptably long pauses in communication dur
ing cellular handoff's (800 milliseconds or longer). The need for differentiation
between motion-related and congestion-related packet losses is postulated and
preliminary solutions are sketched. Chapter 8, "I-TCP, Indirect TCP for Mobile
Hosts," by A. Bakre and B. R. Badrinath, is an implementation of a solution to
the problem reported in Chapter 7. I-TCP splits the end-to-end transport-layer
interaction into two parts: the fixed network part and the wireless part. The
fixed network part remains unchanged (which is beneficial since it is imprac
tical to assume that the entire TCP will have to be changed to accommodate
mobile hosts), while the wireless part, between the MSR and the mobile host
is new. The wireless part of the I-TCP "understands" that the handoff should
not cause exponential backoff. The experimental results present significant per
formance gains (throughput) especially for wide-area communication and with
moves occurring between nonoverlapped cells. Chapter 9 provides an extension
of TCP for wireless environment which is also based on the concept of indirec-

Introduction to Mobile Computing 35

tion (as in Chapter 8). The proposed "Mowgli" communication architecture
is designed to split the channel with end-to-end control into two parts with a
store-and-forward type interceptor. This interceptor allows implementation of
two separate subsystems, one wireline-oriented and the other, wireless-oriented.
Thus, similarly to the work in Chapter 8, the existing TCP/IP communication
infrastructure can be retained, while the special purpose protocol has to be
implemented only for the wireless link.

Chapter 10, "Asynchronous Video: Coordinated Video Coding and Transport
for Heterogeneous Networks with Wireless Access," by J. Reason, L. C. Yun,
Allen Lao and David Messerschmidt, addresses transport-layer problems deal
ing with the transmission of asynchronous video over wireless networks. The
main goal of this work is to minimize the perceptual delay, that is, the delay
perceived by the end user. Two related techniques are introduced in order to
reduce this perceptual delay: coding the video in such a way that there is no
need for transcoders, and asynchronous reconstruction of the video presenta
tion at the receiver. For instance, the low motion areas are more tolerant of
delay than the high motion ones. This leads to the additional compression
through discarding fine-resolution information in the areas of high motion and
transporting information in low-motion areas less often. Analytical and simula
tion results are presented that demonstrate substantial gains in traffic capacity.
Allowing the worst-case transport-layer delay to increase may actually increase
the overall network traffic capacity. This is particularly advantageous on wire
less access links, though it is incompatible with the approach taken by existing
MPEG compression standards for video.

Chapters 11 through 14 discuss the higher level issues (above transport layer)
dealing with the wireless access to information. Chapter 11, "Wireless Publish
ing: Issues and Solutions," by T. Imielinski and S. Vishwanathan introduces
the concept oi publishing into client-server interactions in wireless environments.
Publishing is a periodic broadcasting of information by the MSS over a wireless
medium. Publishing mode is intended for information which is likely to be
requested frequently and its advantages include reduction in uplink traffic, as
well as power savings on the client platform. Chapter 11 provides an overview
of different addressing methods for publishing mode, which are based either
on temporal or on multicast addressing. Addressing allows clients to tune se
lectively to relevant pieces of published data and switch to a low-power mode
of operation (CPU in the doze mode, the receiver switched off, etc.), while no
relevant information is being published. Algorithms for adaptive scheduling of
publishing mode in conjunction with the standard "on-demand" client-server
interactions are presented as well.

36 CHAPTER 1

Chapter 12, "Broadcast Disks: Data Management for Asymmetric Communi
cation Environments," by S. Acharya, R. Alonso, M. Franklin and S. Zdonik
views repetitive broadcast (publishing mode) as a "disk on air". The paper
describes different scheduling policies with frequency of broadcast proportional
to the access probability. Similarly to [IVB94a], periodic broadcast is viewed
as a form of a cache on air and another level of memory hierarchy.

Chapters 13 and 14 present first attempts (along with the DataMan project
described earlier) to study the design and development of location-dependent
information services.

Chapter 13, "Application Design for Wireless Computing," by Terri Watson,
presents principles for partitioning functionality at the application-level be
tween a mobile, wireless client and a proxy on the the static network. As an
example of a wireless application, the paper presents W*, a Web client browser.
This browser is explicitly designed to optimize wireless communication and al
low for a proxy to cache and/or parse documents on behalf of the mobile client.

Chapter 14, "Mobisaic: An Information System for a Mobile and Wireless
Computing Environment," by G. Voelker and B. Bershad, deals with primitives
necessary to build location-dependent applications. The location-dependent
context of mobile hosts is abstracted there as <dynamic variable, value> pairs.
Changes to the values of such variables are propagated to interested parties
using a publisher-subscriber mechanism. Based on this availability of "mobile
computing contexts" of users, the authors present two interesting concepts (and
their implementations): dynamic URLs and active documents. The paper also
presents the necessary extensions to HTML for authoring active documents.

Chapter 15, "Providing Location Information in a Ubiquitous Computing En
vironment," by Mike Spreitzer and Marvin Theimer, reviews security issues
dealing with the control information about location. A new architecture is
presented in which users have primary control over location information.

Chapters 16 through 21 deal with broad systems issues of mobile computing,
ranging from the operating and file system issues to database applications for
mobile computers.

Chapter 16, "Unix for Nomads: Making Unix Support Mobile Computing,"
by Michael Bender, et al., addresses the design issues for extensions of Unix^^
(and, specifically Solaris) to support nomadic computing. It is argued there

^Unix is a trademark of X/Open

Introduction to Mobile Computing 37

that substantial changes ranging from the kernel level through the user com
mand set are necessary to support mobile computing. The paper discusses the
kernel changes to support power management, the PCMCIA standard, serial
line networking and new electronic mail applications designed to specifically
deal with slow, serial line connections.

Energy-management issues are discussed in Chapters 17 and 18 (along with
Chapter 11).

Chapter 17, "Scheduling for Reduced CPU Energy," by Mark Weiser, Brent
Welch, Alan Demers, and Scott Shenker, discusses modifications in the CPU
scheduling policies to reduce energy consumption. The metric of interest is
how many instructions are executed for a given amount of energy, or MIPJ
(Instructions per Joule). Trace driven simulations are provided to compare
different classes of schedules with varying computing speeds allowing the CPU
to use lower voltage and consequently, reduce energy consumption.

Chapter 18, "Storage Alternatives for Mobile Computers," by F. Douglis, et
al., investigates the impact of new storage devices such as small hard disks,
flash-memory disk emulators, and flash memory cards on file system design.
As in Chapter 17, one of the main issues is power consumption. It is concluded
that using magnetic disks for file storage on mobile computers is basically un
acceptable from an energy point of view. To extend battery life, it is possible
to spin down the disk when it is idle. But even then, the power consumption
is an order of magnitude higher than for a file system using flash memory. In
general, a flash-memory file system has the most attractive quality with respect
to energy and performance. However, the price and capacity limitations are
still major drawbacks.

Chapters 19 and 20 deal with the impact of disconnection on file system de
sign. Disconnection is one of the central issues in mobile computing and Coda
was the first implementation of the file system explicitly supporting disconnec
tion. Chapter 19, "Disconnected Operation in the Coda File System," by James
Kistler and M. Satyanarayanan, describes the design and implementation of the
Coda file system at CMU. Clients view Coda as a single, location-transparent
Unix file system. While a client is disconnected, its file system requests are
serviced solely based on the contents of local caches. File replication is used
in order to improve availability. While Chapter 19 describes design and imple
mentation issues. Chapter 20, "Experience with Disconnected Operation in a
Mobile Computing Environment," by M. Satyanarayanan et al., presents qual
itative and quantitative data on file access using Coda file system over a period
of about 2 years. This chapter describes the results of quantitative evalua-

38 CHAPTER 1

tions including disk space requirements, reintegration latency, and the value of
log optimization» Hoarding and hoard profiles, which describe the path names
identifying objects of interest to the user, lead to cache-content optimization.
The impact of more advanced concepts such as multi-level hoard priorities and
"meta expansions" to minimize the size of hoard profiles is described as well.

Chapters 21 and 22 deal with some of the database issues in mobile computing.
Chapter 21, "Mobility Support for Sales and Inventory Operations," by N. Kr-
ishnakumar and Ravi Jain, describes the use of an escrow mechanism to allow a
distributed server architecture in which a mobile transaction can execute using
the data held by the server to which it is directly connected. The mobile sales
and inventory applications are examples of a well-defined market segment, but
the solutions described in the paper are more general, and can apply to any
set of mobile users who share a common database. Chapter 22, "On Query
Processing Strategies for Mobile Computing," by Masahiko Tsukamoto, Rieko
Tanaka, and Shojiro Nishio, considers queries that request data from mobile
hosts or request data about mobile hosts (such as location). This work con
siders several different query processing strategies based on either broadcast
or notification. The optimal strategy depends upon parameters of the system
(computers and network), the degree of mobility of the mobile hosts, and rate
of query submission.

Chapters 23 and 24 describe some of the ongoing research prototype work.
Chapter 23, "The Case for Wireless Overlay Networks," by Randy Katz and
Eric Brewer describes a heterogeneous architecture for future mobile informa
tion services that is based on a wireless overlay network. In an overlay network
several possibly different wireless networks may coexist. For example, a high
bandwidth infrared network can be overlayed with a lower bandwidth radio net
work to provide connectivity between the areas of IR coverage. The resulting
architecture is discussed in detail along with the new issues of overlay network
management and application support services. A new testbed project "Bay
Area Research Wireless Access Network (BARWAN)" is described. Chapter 24,
"The DIANA Approach to Mobile Computing," by A. Keller et al., provides an
approach to deal with heterogeneity in the mobile environment. Not only must
applications run on the wide variety of mobile platforms available (and likely
to become available), but a given instance of an application may have to move
from one platform to another - and possibly to a different kind of platform.
The DIANA system attempts to separate user interface and display manage
ment from the underlying system and communication support. The DIANA
environment also addresses the problem of application development by allow
ing applications to be tested in a simple environment before being interfaced
into DIANA,

Introduction to Mobile Computing 39

Chapters 25 and 26 focus on two important applications of mobile comput
ing: maintenance and repair systems and travel information systems. Chapter
25, "The CMU Mobile Computers as Maintenance Assistants," by Daniel P.
Siewiorek and Asim Smailagic, describes a "wearable computer" called "Vu-
Man." An earlier version of VuMan was used as a campus navigational assis
tant. The current version is targeted at maintenance operations by the U. S.
Marines. It provides a means for the user to access maintenance manuals while
performing repairs in locations where it is not practical to access a printed
manual. (Current procedures require two people - one to do the work and
the other to read the manual.) In addition to providing manual access, this
system allows input of maintenance data via a simple user interface. Chapter
26, "Genesis and Advanced Traveler Information Systems (ATIS)," by Shashi
Shekhar and Duen-Ren Liu, pertains to the application domain of transporta
tion systems. Unlike many of the well-publicized services that provide routing
information based on a static database of maps and real-time positional data,
the Genesis project at Minnesota is including real-time traflBc data as a param
eter in routing decisions. This creates significant demands on the system, since
traffic data must be processed promptly and triggers must be used to inform
vehicles whose routes may be affected by accidents or reported congestion.

REFERENCES

[AB94a] A. Acharya and B. Badrinath. Checkpointing distributed applica
tions on mobile computers. In Proc. Third International Conference on
Parallel and Distributed Information Systems, Austin, Texas^ pages 73-80,
September 1994.

[AB94b] A. Acharya and B. R. Badrinath. Delivering multicast messages in
networks with mobile hosts. In Fourteenth International Conference on
Distributed Computing Systems, June 1994.

[ABIN95] A. Acharya, B. R. Badrinath, T. Imielinski, and J. Navas. Towards
Mosaic Hke location dependent services. Technical report, Rutgers Univer
sity, May 1995.

[AG92] R. Alonso and S. Ganguly. Energy-efficient query optimization. MITL-
TR-33-92, Matsushita Information Technology Laboratory, Princeton, NJ,
1992.

40 CHAPTER 1

[AHK92] R. Alonso, E. Haber, and H. F. Korth. A database interface for mobile
computers. In Proceedings of the 1992 Globecom Workshop on Networking
of Personal Communication Applications, December 1992.

[AK93] R. Alonso and H. F. Korth. Database system issues in nomadic com
puting. In Proceedings of ACM-SIGMOD 1993 International Conference
on Management of Data, Washington B.C., 1993.

[B-l-93] M. Bender et al. Unix for nomads - making Unix support mobile
computing. In First Usenix Symposium on Location Dependent Computing,
August 1993. Also included in this volume.

[Bat94] Bud Bates. Wireless Networked Communications. McGraw-Hill, 1994.

[BB95a] Ajay Bakre and B. R. Badrinath. I-TCP: Indirect TCP for mobile
hosts. In 15th International Conference on Distributed Computing Sys
tems, May 1995.

[BB95b] Ajay Bakre and B. R. Badrinath. M-RPC: A remote procedure call
service for mobile clients. In First ACM Conference on Mobile Computing
and Internetworking, May 1995.

[BBMI93] B. R. Badrinath, Ajay Bakre, Roy Marantz, and T. ImieUnski. Han
dling mobile hosts: A case for indirect interaction. In Fourth Workshop on
Workstation Operating Systems (WWOS-IV), pages 91-97, October 1993.

[BI94] D. Barbara and T. ImieUnski. Sleepers and workoholics: caching strate
gies in mobile environments. In Proceedings of ACM-SIGMOD 1994 In
ternational Conference on Management of Data, Minneapolis, Minnesota,
pages 1-13, May 1994.

[BI96] B. R. Badrinath and T. ImieUnski. MobiUty management in Interenet
and cellular telephony. In this volume, 1996.

[Cal88] George Calhoun. Digital Cellular Radio. Artech House, 1988.

[CB92] Ananth Chandrasekaran and R. W. Broderson. A portable multimedia
terminal for personal communications. IEEE Communications Magazine,
pages 64-75, December 1992.

[Che92] D. Cheriton. Dissemination-oriented communication systems. Techni
cal report, Department of Computer Science, Stanford University, 1992.

[CI95] Ramon Caceres and Liviu Iftode. Improving the performance of reliable
transport protocols in mobile computing environments. In IEEE Journal
on Selected Areas in Communications, pages 850-857, June 1995. Also
included in this volume.

Introduction to Mobile Computing 41

[DCK-l-94] F. Douglis, Ramon Caceres, M« Frans Kaashoek, P. Krishnan, Kai
Li, Brian Marsh, and Joshua Tauber. Storage alternatives for mobile com
puters. In SOSDI Usenix Symposium, November 1994. Also included in
this volume.

[FZ94] G, Forman and J Zahorjan. Mobile wireless computing. IEEE Spectrum,
1994.

[Goo91] David J. Goodman. Trends in cellular and cordless communications.
IEEE Communications Magazine, June 1991.

[HH93] Lo B, Huston and Peter Honeyman. Disconnected operation for AFS.
In USENIX Conference on Location Dependent Computing, August 1993.

[HHRB92] Peter Honeyman, L. Huston, J. Rees, and D. Bachmann. The Little
Work Project. In Proceedings of the Third IEEE Workshop on Workstation
Operating Systems, April 1992.

[HPGP92] J. S. Heidemann, T. W. Page, R. G. Guy, and G. J. Popek. Primarily
disconnected operation: Experiences with Ficus. In Proceedings of the
Second Workshop on the Management of Replicated Data, November 1992.

[IB92] T. Imielinski and B. R. Badrinath. Querying in highly mobile and dis
tributed environments. In Proceedings of the Eighteenth International Con
ference on Very Large Databases^ Vancouver, 1992.

[IB94] T. Imielinski and B. R. Badrinath. Mobile computing - solutions and
challenges in data management. Communications of ACM, October 1994.

[IGP95] T. Imielinski, M. Gupta, and S. Peyyeti. Energy efficient data com
munication and filtering. In Proceedings of Usenix Symposium on Location
Dependent Services, April 1995.

[IV94] T. Imielinski and S. Vishwanathan. Adaptive wireless information ser
vices. In Proceedings of SIGDB, October 1994.

[IV96] T. Imielinski and S. Vishwanathan. Wireless publishing: Issues and
solutions. In this volume, 1996.

[IVB94a] T. Imielinski, S. , and B. R. Badrinath. Energy efficient indexing on
air. In Proceedings of ACM-SIGMOD 1994 International Conference on
Management of Data, Minneapolis, Minnesota, pages 25-37, May 1994.

[IVB94b] T. Imielinski, S. Vishwanathan, and B. R. Badrinath. Power efficient
filtering of data on the air. In Proc. of EDBT, volume 779, pages 245-258,
March 1994.

42 CHAPTER 1

[JMP95] D. Johnson, A. Myles, and C. Perkins. Overview of MobilelP. In
RFC, April 1995.

[KH-94] Frans Kaashoek et al. Dynamic documents: Mobile wireless access to
WWW. In Workshop on Mobile Computing Systems and Applications,
December 1994.

[Kar91] P. Karn. MACA - a new channel access method for packet radio.
Technical report, Qualcomm, 1991.

[Kat94] Randy Katz. Adaptation and mobility in wireless information systems.
IEEE Personal Communications, pages 6-17, 1994.

[KJ96] Narayanan Krishnakumar and Ravi Jain. Mobility support for sales
and inventory applications. In this volume, 1996.

[KMM95] R. Kohno, R. Meidan, and L. Milstein. Spread spectrum access
methods for wireless communications. IEEE Communications Magazine,
33(l):58-68, January 1995.

[KS92] J. Kistler and M. Satyanarayanan. Disconnected operation in the
CODA file system. ACM Transactions on Computer Systems, 10(1),
February 1992. Also included in this volume.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus
- an architecture for extensible distributed systems. In Proc. of the 14th
ACM Symposium on Operating Systems Principles, December 1993.

[PB94] Charles Perkins and Pravin Bhagawat. Routing over multi hop wireless
network of mobile computers. In Proc. ACM SIGCOMM'94, 1994. Also
included in this volume.

[PGH95] Jay E. Padgett, Christoph G. Gunter, and Takeshi Hatori. Overview
of wireless personal communications. IEEE Communications Magazine,
pages 28-41, January 1995.

[SLBR94] S. Seshan, M. T. Le, F. Burghard, and J. Rabaey, Software ar-
chitechture of the InfoPad System. Mobidata Workshop, November 1994.

[SS90] N.R. Soparkar and A. Silberschatz. Data-value partitioning and virtual
messages. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Nashville, pages 357-367,
April 1990.

[TanSl] A. S. Tanenbaum. Computer Networks. Prentice Hall, New Jersey,
1981.

IntroducUon to Mobile Computing 43

[TD92] C. Tait and D. Duchamp. An efficient variable consistency replicated
file service. In Usenix File System Workshop, pages 111-126, May 1992.

[VB94] G. Voelker and B. Bershad. Mobisaic: An information system for mo
bile wireless computing environment. In Workshop on Mobile Computing
Systems and Applications, December 1994. Also included in this volume.

[Wat94] Terri Watson. Application design for wireless computing. In Workshop
on Mobile Computing Systems and Applications, December 1994. Also
included in this volume.

[WCW91] David J. Goodman W, C. Wong. A packet reservation multiple
access protocol for integrated speech and data transmission. Technical
report, Rutgers University, September 1991.

[WSA+96] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin
Petersen, David Goldbert, John R. Ellis, and Mark Weiser. The PARCTab
ubiquitous computing experiment. In this volume, 1996.

[WWDS94] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker.
Scheduling for reduced CPU energy. In First Symposium on Operating
Systems and Design (OSDI), November 1994. Also included in this vol
ume.

2
THE PARCTAB UBIQUITOUS
COMPUTING EXPERIMENT

Roy Want, Bill N. Schilit,
Norman I. Adams, Rich Gold, Karin Petersen,

David Goldberg, John R. Ellis, Mark Weiser

Xerox Palo Alto Research Center, Palo Alto, California, USA

ABSTRACT

The PARCTAB system integrates a palm-sized mobile computer into an office
network. This project serves as a preliminary testbed for Ubiquitous Comput
ing, a philosophy originating at Xerox PARC that aims to enrich our computing
environment by emphasizing context sensitivity, casual interaction and the spa
tial arrangement of computers. This paper describes the Ubiquitous Computing
philosophy, the PARCTAB system, user-interface issues for small devices, and
our experience developing and testing a variety of mobile applications.

1 INTRODUCTION

For the past 30 years the operating speed and component density of digital
electronics has steadily increased, while the price of components has steadily
decreased. Today, designers of consumer goods are incorporating digital elec
tronics into more and more of their products. If these trends continue, as we
expect they will, many everyday items will soon include some form of computer.

Although computers are becoming ever more common in appliances such as
VCRs, microwave ovens, and personal digital assistants, they remain largely
isolated from one another and from more powerful desktop and laptop ma
chines. We believe that in the future many computers will provide more valu
able services in combination than they can in isolation. Ideally, many kinds

^This work was supported by Xerox and ARPA under contract DABT63-91-C-0027. Por
tions of systems described here may be patented or patent pending.

46 CHAPTER 2

of specialized machines will work together via networks to let users access and
control information, computation and their physical and electronic environ
ments.

In the Computer Science Laboratory (CSL) at Xerox PARC we have estab
lished a number of research projects to explore this vision, which we call Ubiq
uitous Computing. This paper presents the results of the PARCTAB project,
an experiment intended to clarify the design and application issues involved in
constructing a mobile computing system within an office building. The PARC
TAB system provides a useful testbed for some of the ideas of the Ubiquitous
Computing philosophy, which is described briefly in the next section. The sys
tem is based on palm-sized wireless PARCTAB computers (known generically as
"tabs") and an infrared communication system that links them to each other
and to desktop computers through a local area network (LAN). Although tech
nological and funding limitations forced us to make numerous compromises
in designing the PARCTAB hardware, nevertheless the system, as described in
Section 3, meets most of our design goals. Likewise the sniall size and low res
olution of the PARCTAB displays requires an innovative user interface design
to allow efficient text entry and option selection. Our solutions are presented
in Section 4.

A community of about 41 people at Xerox PARC take part in the system's
operation and in PARCTAB application development, which are covered in some
detail in Sections 5 and 6. To date, we have developed and tested more than
two dozen PARCTAB applications that allow users to access information on
the network, to communicate through paging and e-mail, to collaborate on
shared drawings and texts, and even to monitor and control office appliances.
Descriptions of the various PARCTAB applications as well as data on users'
experiences with them are given in Sections 7 and 8, respectively.

By designing, constructing, and evaluating a fully operational mobile comput
ing system and developing applications that exploit its unique capabilities, we
have gained some insight into the practical benefits and real-world problems of
such systems. In the paper's final section, we collect these lessons and present
some of the many intriguing ideas that the PARCTAB project has spawned for
future work in Ubiquitous Computing.

The ParcTab Ubiquitous Computing Experiment 47

2 UBIQUITOUS COMPUTING

As inexpensive computers add limited intelligence to a wider variety of everyday
products, a new model of computing becomes possible.

2.1 The Ubiquitous Computing Philosophy

This new technology aims for the flexibility of a far simpler and more ubiquitous
technology: printed text. Depending on the need, print can be large or small,
trivial or profound, verbose or concise. But though print surrounds us in myriad
forms, it does not dominate our thoughts the way computers do today. We do
not need to log on to road signs to use them or turn away from our colleagues
to jot notes on a pad of paper. Similarly, ubiquitous computers would demand
less of our concentration than present commercial computer interfaces that
require users to sit still and focus their attention. Yet through casual interaction
they would provide us with more information and all the advantages of an
intelligently orchestrated and highly connected computer system.

Creating such an intuitive and distributed system requires two key ingredients:
communication and context. Communication allows system components to
share information about their status, the user and the environment—that is,
the context in which they are operating. Specifically, context information might
include such elements as:

The name of the user's current location;

The identities of the user and of other people nearby;

The identities and status of the nearby printers, workstations, Liveboards,
coffee machines, etc.;

Physical parameters such as time, temperature, light level and weather
conditions.

The combination of mobile computing and context communications can be a
powerful one [40, 29, 27, 31, 32, 30]. Consider, for example, an employee who
wants to show a set of figures to his manager. As he approaches her office, a
quick glance at his tab confirms that the boss is in and alone. In the midst
of their conversation, the employee uses the tab to locate the data file on the
network server and to request a printout. The system sends his request by

48 CHAPTER 2

default to the closest printer and notifies him when the job is finished. Many
more examples of the Ubiquitous Computing philosophy are presented in Mark
Weiser's article ^The Computer of the 21st Century" [39].

2.2 A Ubiquitous Computing Infrastructure

Attaining the goals of Ubiquitous Computing will require a highly sophisticated
infrastructure. In the ideal system, a real-time tracking mechanism will derive
the locations and operational status of many system components and will use
that context to deliver messages more intelligently. Users will be able to choose
from among a variety of devices to gain mobile, high-bandwidth access to data
and computational resources anywhere on the network. These devices will
be intuitive, attractive and responsive. They will automatically adapt their
behavior to suit the current user and context.

Although one can speculate about the design of a future system, unfortunately
the components needed to build such an infrastructure have yet to be invented.
Current processors and microcontrollers are slow and power-hungry compared
to their likely descendants 10 years from now. We reasoned that we could
bridge this technology gap by constructing an operational system that resembles
an optimal design. Despite the inevitable compromise of some engineering
characteristics, we could then use the system to assess the advantages and
disadvantages of Ubiquitous Computing as if we had glimpsed into the future.

It is impossible to predict the range of device forms and capabilities that will
be available a decade from now. We therefore based our device research on
size, a factor that is likely to continue to divide computers into functional
categories. A useful metaphor that highlights our approach is to consider the
traditional English units of length: the inch, foot and yard. These units evolved
because they represent three significantly different scales of use from a human
perspective.

Devices on the inch scale, in general, can be easily attached to clothing or
carried in a pocket or hand.

Foot-sized devices can also be carried, though probably not all the time.
We expect that office workers will use foot-sized computers similar to the
way that they use notebooks today. Some notebooks are personal and are
carried to a particular place for a particular purpose. Other notepads are

The ParcTab Ubiquitous Computing Experiment 49

scattered throughout the work environment and can be used by anyone for
any purpose.

In the future office there will be computers with yard-sized screens. These
will probably be stationary devices analogous to whiteboards today.

2.3 Ubiquitous Computing Experiments at
PARC

Researchers at PARC have built computer systems at the three scales described
above [41]:

inch PARCTAB, a palm-sized computer;
foot PARCPAD, an electronic notepad;
yard Liveboard, an electronic whiteboard.

These experimental devices use different mechanisms for communication and
computation within the building's distributed system. The Liveboard is not
mobile and connects directly to an Ethernet. Our mobile devices extend battery
life by using low-power communication technologies: infrared (IR) signalling
for the PARCTAB and near-field radio [6] for the PARC PAD. We have also
investigated how operating system design can reduce power consumption [43]
and this is well suited to mobile computers. The PARCPAD and Liveboard are
described elsewhere by Kantarjiev [16, 11] and Elrod [8].

Our goals for the PARCTAB project were:

To design a mobile hardware device, the PARCTAB, that enables personal
communication;

To design an architecture that supports mobile computing;

To construct context-sensitive applications that exploit this architecture;

To test the entire system in an oflBce community of about 41 people acting
as both users and developers of mobile applications.

50 CHAPTER 2

3 PARCTAB SYSTEM DESIGN

We set several design goals for the PARCTAB hardware. It had to be physically
attractive to users, compatible with the network, and capable of modifying
its behavior in response to the current context. We believed that in order to
fulfill these goals the PARCTAB had to be small, light and aesthetically pleasing
enough that users would accept it as an everyday accessory. It needed reliable
wireless connectivity with our existing networks and a tracking mechanism
capable of detecting its location down to the resolution of a room. It had to
run on batteries for at least one day without recharging.

We also believed that the PARCTAB's user interface had to let people make
casual use of the device, even if they had only one free hand. The screen had to
be able to display graphics as well as text. We wanted users to be able to make
marks and selections using electronic ink, so the screen needed touch sensitivity
with a resolution at least equal that of the display. Furthermore, the cost of
the hardware and the network infrastructure had to be within reasonable limits
so that we could deploy the system for lab-wide use.

Cost was not the only limitation on our design options. Some factors were also
limited by available technology, such as the device's communication bandwidth,
display resolution, processor performance and battery capacity.

3.1 PARCTAB Mobile Hardware

We carefully weighed the limitations and requirements above when making the
engineering decisions that shaped the final appearance (Figure 1) and func
tionality of the PARCTAB hardware. One primary trade-off balanced weight,
processor performance, and communications bandwidth against battery life.
We also had to strike a compromise between screen resolution and the device's
size, cost and processor speed.

Packaging

We believed an ergonomic package would be essential if people were to carry and
use the tab regularly. We thus enclosed the PARCTAB in a production-quality
custom plastic case with a removable belt clip. The tab is about half the size
of current commercial personal digital assistants (PDAs), at 10.5cm x 7.8cm
X 2.4cm (4.1in x 3.0in x 0.95in). It weighs 215g (7.5oz). We designed the tab
so that users could choose either one-handed use with buttons or two-handed

The ParcTab Ubiquitous Computing Experiment 51

use with a stylus. Because the package is symmetric, the tab can be used in
either hand—an important feature for left-handers who wish to use the stylus.
To convert from right- to left-handed use, the user executes a setup command
that rotates the display and touch-screen coordinates by 180 degrees.

Display and Control Characteristics

We found that commercially available touch-sensitive displays provided ade
quate resolution for our needs. We chose a 6.2cm x 4.5cm (2.4in x 1.8in) LCD
display with a resolution of 128 x 64 monochrome pixels.

The PARCTAB is most easily operated with two hands: one to hold the tab,
the other to use a passive stylus or a finger to touch the screen. But since
office workers often seem to have their hands full, we designed the tab so that
three mechanical buttons fall beneath the fingers of the same hand that holds
the tab (see Figure 1), allowing one-handed use. The device also includes a
piezo-electric speaker so that applications can generate audio feedback.

Power Management

Power is the overriding concern that drives most of the design decisions of most
small electronic devices, and the PARCTAB is no exception. With more power,
there could be faster communication over longer distances, higher-resolution
displays, and faster processors. But existing battery technology places stringent
limits on the power available for such small components.

We found the prismatic (rectangular) Nicad cell to be the most suitable bat
tery technology given our size, weight and performance goals. Four cells were
sufficient to provide a rechargeable power source for the tab while meeting
all the packaging requirements. We designed the core of the device around a
12MHz, 8-bit microcontroller (87C524), an Intel 8051 derivative, for two rea
sons. First, its on-board EPROM, RAM and I/O ports ensured a compact
design. But equally important, this processor can be programmed to enter a
low-power mode. The PARCTAB takes advantage of this mode when idle in or
der to extend battery life. The display, touch screen, additional RAM and the
communication electronics can also be powered down by the microcontroller.

During normal operation a tab consumes 27mA at 5V. In low-power mode it
consumes less than 30/xA. We considered nominal use to be 10 minutes per hour,
eight hours per working day. In operation, however, we found that the one-

52 CHAPTER 2

F i g u r e 1 The PARCTAB mobile hardware

day use requirement was easily met. In fact, using a battery storage-capacity
of 360mAh, the typical tab need only be charged once per week. A smaller
battery may suffice, in which case we estimate that the PARCTAB could be
reduced to one-third of its current weight and volume if it were produced today
by a commercial electronics company instead of a research lab. We anticipate
that within a few years the functions of the PARCTAB probably could be put
into a watch.

3.2 PARCTAB Communication

Limited space and power constrained our choice of a wireless communication
technology to just two options: radio and infrared (IR). We chose 880nm IR to
exploit the small, inexpensive IR components that were commercially available.
These offered low power consumption at the modest communication speeds of
9600 and 19200 baud. Because IR signals are contained by the walls of a room,
this technology also made it easier to design a cellular system. Moreover, IR

The ParcTab Ubiquitous Computing Experiment 53

communication is unregulated. A radio link would have required more space,
higher power equipment and potentially government operating licenses.

We decided that a cellular system [5] would best handle the competition for
bandwidth that inevitably would arise in a building-wide system supporting
many users. By creating small, room-sized communication cells (nanocells), we
could minimize the communication distance from the hub to the mobile user,
reducing power needs concomitantly. Since the radiated signal would be blocked
by walls, messages would be more secure than if they were broadcast widely.
Users are also less likely to interfere with one another's signals in a cellular
system, although some situations—such as heavy tab use during a break in a
large meeting—can still place large loads on the IR transceivers. Finally, small
cells enable the system to pin down a user's location to the resolution of a room.

The tab infrared network [1, 26] thus consists of nanocells defined by the walls
of a room surrounding an IR transceiver. Large open rooms and hallways may
also support nanocells if transceivers are carefully placed out of communication
range of each other. Transceivers connect to a LAN through the RS-232 ports
of nearby workstations.

Transceiver Design

A transceiver serves as a communication hub for any PARCTABS located in its
particular cell. Typically its communication radius is about 20 feet—less if
limited by the walls of an office. The transceiver hardware performs numerous
functions in addition to transmission and reception, including:

Coding and decoding infrared packets;

Buffering data;

Executing link-level protocol checks (e.g., format or checksum);

Providing a serial interface to a workstation's RS-232 port;

Indicating visually its communication status.

We designed the transceiver conservatively to ensure reliable communication.
For transmission, two dozen IR emitters are placed at 15 degree intervals on
a circular printed circuit board. For reception, two detectors provide a total

54 CHAPTER 2

viewing angle of 360 degrees (Figure 2). The transceiver is designed to be at
tached to a ceiHng, preferably in the middle of a room as this usually gives an
unobscured communication path over the required area. But since transceivers
and PARCTABS can sense infrared light reflected from surfaces, it is not neces
sary that there be a line of sight between the two for them to communicate.
Thus a single transceiver usually covers a room completely.

F i g u r e 2 The PARCTAD transceiver

Local Area Network Interface

We found the approach of extending an existing LAN to provide wireless
nanocellular communication very attractive for a number of reasons. The addi
tional cost is small because the LAN wiring already exists. Most offices in our
building are equipped with at least one workstation that has a spare RS-232
port. We thus had to string only a small amount of additional phone cable to
connect ceiling-mounted transceivers to our UNIX workstations and, through
them, the ethernet. And since well established communication mechanisms
already exist between workstations in commercial distributed systems, we did

The ParcTab Ubiquitous Computing Experiment 55

not have to reinvent that infrastructure. Transceivers could be attached to
networks of other platforms, such as the PC or Macintosh, in much the same
way.

Transmission Control

The decision to use infrared communication prompts a further design issue:
how to enable many PARCTABS to share the medium? Conventional IR detec
tors have difficulty tuning narrow frequency ranges, ruling out the possibility
of using frequency-division multiplexing to divide the bandwidth into several
subchannels. We thus chose a simple digital packet-contention scheme that
shares the medium using time-division multiplexing.

In this scheme, all data is bundled into packets formed by the baseband mod
ulation of an IR carrier into a sequence of pulses. The pulses are uniform—
all have a duration of Afis—but the gaps between them are not. The variable
duration of the silence between pulses encodes the data bits. The durations of
the gap encoding a logic 1, logic 0, packet-start synchronization, and data-byte
synchronization are all unique and may be decoded using a simple algorithm.
By defining data as the absence of a signal, this technique minimizes power
consumption, since the infrared carrier is switched off for most of a transmis
sion.

The link-layer packets are divided into several fields, as shown in Figure 3 below.
The packet type field is always sent at 9600 baud, and a subfield of the packet
type defines the speed at which the rest of the packet will be transmitted. This
permits variable speed transmission and allows future high-speed systems to
remain backward-compatible. The present system transmits packets at 9600
and 19200 baud.

PKT
TYPE

LENGTH

(0-255)
1

DESTINATION

4

SOURCE

4

DATA PAYLOAD

3-247

CS

2

Figure 3 Format of the data fields for a link-layer IR packet (lengths in
bytes).

The second field contains the length of the packet. Packets vary in length from
14 bytes for most uplink packets to a maximum of 256 bytes for a downlink

56 CHAPTER 2

packet. Next follow unique 4-byte addresses of the destination and source
devices, up to 247 bytes of pay load data and finally a 2-byte checksum.

We assumed that communications traffic inside a cell would normally be low
since applications are driven by user-generated events, such as button clicks.
We thus expected a screen update to be followed by a relatively long si
lence while the user made the next selection. Because we also assumed that
small packets generated under lightly loaded conditions would be delivered
promptly, we chose to use a symmetric non-persistent carrier-sense multiple-
access (CSMA) protocol to provide access to the IR channel. This protocol
simply uses carrier sense and a random-exponential backoff whenever the chan
nel is busy. It does not wait for a packet currently occupying the channel to
complete before entering a new backoff period [33].

Reliability and Interference

The PARCTAB system cannot detect packet collisions because any IR transmis
sion creates such a powerful signal that it saturates the local receiver, making
it impossible to detect a packet sent simultaneously by another device. Mobile
hardware can avoid losing link-layer packets by setting a bit in the packet type
field that requests an acknowledgment. When a transceiver sees the request bit
set, it immediately transmits a reply back to the sender. In a multiple-access
network this type of acknowledgment is quite reliable, since the fact that the
request was received implies that there was no contention and therefore the
acknowledgment should also not encounter contention [36]. A PARCTAB sets
the request bit for some types of tab packets—user events, for example—and
then, if no acknowledgment arrives, resends the packet a fixed number of times
until finally generating an audible alarm to the user. In principle, downlink
packets sent from a transceiver to a PARCTAB could also use this mechanism.
Instead, as described in Section 7, we ensure downlink reliability at a higher
level of protocol.

When a PARCTAB is in view of two rooms—when in a hallway, for instance, with
doors opening into two cells—both cell transceivers might acknowledge event
packets simultaneously, corrupting the acknowledgment signal at the PARC
TAB. To avoid this problem transceivers that are close enough to interfere with
each other are given different network addresses and only acknowledge packets
addressed to them, although they still transfer all the packets that they receive
to the LAN. Whenever a PARCTAB enters a new cell the system notices events
that it produces (e.g., beacons or button clicks) and instructs the tab to use a
new transceiver address.

The ParcTab Ubiquitous Computing Experiment 57

4 USER-INTERFACE DESIGN FOR
PALM-SIZED COMPUTERS

As we developed applications for the PARCTAB, it became clear that a tradi
tional user interface designed for the 640 x 480-pixel color display of a typi
cal PC or workstation would not work well on the PARCTAB'S 128 x 64-pixel
monochrome display [25, 42]. Indeed, the PARCTAB'S tiny screen, offering less
than half the area of most PDA displays, forced us to devise innovative ways
to select, display and enter information in a very limited space. As advancing
technology produces higher resolution displays that can pack more information
onto a small screen, some of the problems we faced will undoubtedly disappear.
But text and symbols can shrink only so much before they become too small
to read. Also, as displays increase in resolution, new devices will probably
get commensurately smaller. Many of the user-interface solutions we describe
below will thus remain relevant.

4.1 Buttons vs. Touch Screen

Since the PARCTAB is well suited for casual, spur-of-the-moment use, we did
not want to compel users to free both hands to operate the device. The user
interface thus had to allow users to control applications with the device's three
buttons, its touch screen or a combination of both. This requirement compli
cated the interface design because a user selecting an item on the screen with
the buttons alone must then be presented with an intermediate screen allowing
her to invoke an operation on that item. Consequently, application developers
must decide whether to require two-handed use (of both stylus and buttons)
or whether to increase the number of screens in their program so that all the
functions can be accessed via the buttons.

We found one convention that seems to solve this problem best, and developers
incorporated it into several tab applications. It works as follows: on clicking
the middle push-button, a menu of commands pops-up. The top and bottom
buttons then move the cursor up and down, while a second click of the middle
button selects the command on which the cursor currently rests. On screens
that display scrolls or lists of text, the top and bottom buttons scroll the list
up or down, respectively. If menus are designed intelligently, then users must
usually just click the middle button twice to execute the most common action.
Two-handed users can press an on-screen button to pop up the menu and can
then point with the stylus to select an item directly.

58 CHAPTER 2

We have also settled on a preferred interface style for using the push-buttons
and the stylus to navigate a tree data-structure. The operator uses the stylus
to navigate down through the hierarchy one screen at a time and clicks the
middle button to navigate upward. This method works efficiently because users
descending the hierarchy must at each level make a choice, a task performed
simplest with the stylus. Ascending the tree, on the other hand, requires a
user to repeat the same operation over and over, a task well suited to repeated
push-button action.

4.2 Spurious Event Prevention

Because the PARCTAB applications often run elsewhere on the network there
can be modest delays between a button click or screen touch and the update of
the screen 5. The delay between event and response can occasionally cause er
rant behavior in the user interface. Consider the case in which a menu contains
a button icon that selects another screen with its own button icon in a similar
position. A user tapping the first button with the stylus might create multiple
pen-events, either by unintentionally bouncing the pen on the touch surface
or by impatiently tapping the button twice. The initial event will trigger a
transition to the next screen, but the latter events could then cause additional,
unwanted selections. We solved this problem by adding a field called an epoch
to the event packet structure. Every time an application transmits a screen
change, it also increments the epoch number in the PARCTAB. Any events that
were in the application input queue with a previous epoch number can now be
discarded, thus preventing any spurious transitions.

4.3 Text Display

We anticipated that it might be difficult to read text on the PARCTAB because
its small display can show only eight lines of 21 (6 x 8-pixel) characters. In
practice, this proved not to be a problem, as our popular e-mail application
exemplifies. Word-wrap and hyphenation algorithms can often fit three or four
words across the screen. The 8-line display is also small enough to update
quickly despite the limited communication bandwidth.

Users scroll through text either by clicking the top or bottom push-buttons or
by touching the upper or lower half of the display. The experience is similar
to reading a newspaper column through a small window that can be moved
up or down by the fiick of a pen. Although this is relatively efficient, it is

The ParcTab Ubiquitous Computing Experiment 59

nevertheless often useful to filter text information before it is displayed. For
example, the PARCTAB e-mail application replaces lengthy message headers
with a compressed form that includes only the sender and an abbreviated form
of the subject field.

4.4 Text Entry

We experimented with two methods of text entry: graphic, onscreen keyboards
and Unistrokes, a novel approach to handwriting recognition. Unistrokes [13]
is similar to Graffiti, a system marketed subsequently by Palm Computing.

Keyboard Entry

An onscreen keyboard requires both an array of graphic keys arranged in type
writer format and an area to display text as it is entered. We have experi
mented with several layouts. The first presents key icons across lines 2 through
8 of the screen and displays the characters that have been "typed" on line 1,
which scrolls left and right as necessary to accommodate messages longer than
21 characters. A delete-last-character function bound to the PARCTAB'S top
push-button allows easy correction of mistakes. One of the other push-buttons
serves as a carriage return that terminates an entry. We found that users could
enter about two characters per second using this keyboard layout. Experiments
with smaller keyboards show that they lower typing accuracy.

I =- <=̂ -- ^ rj n 1 Jx L A
a b c d e f g h i j k I m

a TT)o o< \ s - V \i \A^ /z
n o p q r s t u v w x y z

F i g u r e 4 The Unistroke alphabet

Unistrokes

Techniques for handwriting recognition have improved in recent years, and are
used on some PDAs for text entry. But they are still far from ideal since they
respond differently to the unique writing characteristics of each operator. We

60 CHAPTER 2

have experimented on the PARCTAB with Unistrokes, which depart from the
traditional approach in that they require the user to learn a new alphabet—one
designed specifically to make handwriting easier to recognize.

For each letter in the English alphabet there is a corresponding Unistroke char
acter which can be drawn in a single pen stroke. The direction of the stroke
is significant (Figure 4). To minimize the effort required to learn to write in
Unistrokes, all Unistroke characters are either identical to English letters (e.g.,
L, S and Z) or are based on a characteristic feature of the corresponding English
letter (e.g., the cross of T). We found that most people can learn the Unistroke
alphabet in under an hour.

Because Unistroke characters are directional and better differentiated than En
glish letters, they require less processing to recognize reliably. Because the
characters are single strokes, users can draw each Unistroke character right on
top of the previous one, using the entire screen. Thus the strokes themselves
need not appear on the writing surface, but instead the PARCTAB neatly dis
plays the corresponding English characters. Practiced Unistrokers found the
simplicity and speed of text entry very attractive.

4.5 Option Selection

The PARCTAB's small screen makes it difficult to present users with a long list
of options. We tried a number of different methods.

Text and Icon menus

The PARCTAB screen size places rather severe limits on the number of text or
icon options in a menu. Vertically, eight lines of text fit onscreen. Spreading
three text buttons per line across the display increases the number of selections
to 24. Arranging 16 x 16-pixel icons in an uncluttered format yields about 15
options per screen (see Figure 1). Larger lists require alternative approaches.

Scrolling Lists

Some applications, including Tabmail and Arbitron (Figure 5), present choices
in a scrolling list with each option represented by a single fine of text. The item
on which the cursor rests is highlighted; options that are unavailable because
they do not make sense in the current context are crossed out. As users press

The ParcTab Ubiquitous Computing Experiment 61

the top and bottom push-buttons to move the cursor up and down, the list
scrolls as necessary to expose more options.

[Cancel]
[Return]
[Suspend]
[Exii]

1
D

aji:raEB»aaagaMi|i

F i g u r e 5 A screen from the PARCTAB Arbitron application

We considered using the "proportional" scroll bars common in PC userjnter-
faces to allow fast touch-screen navigation of large ordered lists on the PARC

TAB. This scheme takes the horizontal or vertical position of a screen touch as
a percentage of the total screen dimension, then moves the cursor to a similar
position in the long list of options. Unfortunately, we found that the resolution
of the touch-screen restricts accurate selection to lists smaller than the maxi
mum number of pen positions that can be resolved. The PARCTAB can resolve
128 horizontal positions per line.

We also chose not to use this type of interface element because it demands
continuous display feedback for each movement of the pen. Typically the feed
back would be generated remotely, rather than by the tab itself, because the
appUcation generating the feedback is running elsewhere on the network. The
contention that would result between pen events and continuous display up
dates would make poor use of the communication bandwidth.

Elision and Incremental Searches

We used the PARCTAB to evaluate the efficiency of two somewhat more so
phisticated methods for selecting one item (such as a name or word) from a
large ordered list (such as a directory or dictionary): elision and incremental
searching. Elision is based on k-ary search techniques. The system divides the
list into 15 portions of roughly equal size and displays the first item in each

62 CHAPTER 2

section, followed by an ellipsis (Figure 6). The display ends with the last item
in the list»

atkinso. .
cJa^idso..
dummyJS.,
hda^v'is...
lauono)..,
norman..,
skimbal..
weliner

• .butcher . . .
. .dummijCS...
. . f r e d e r i . . .

wir ish

Figure 6 A screen from the PARCTAB locator application

The user selects the target item if it is displayed. Otherwise, selecting any
ellipsis redraws the screen to show an expansion of the selected region of the
list into 13 smaller portions as before. (The very first and last items in the
complete list are always displayed so that users can navigate back to other
regions.) The user continues "zooming in" on a particular region until the
target item appears.

Elision is reasonably eflScient. Because the PARCTAB screen can display 16
abbreviated words with ellipses between them, users need make at most log^g
N selections to reach any item, where N is the size of the list. To select one
item among one million, for example, requires no more than six selections. The
mean word length in the American Heritage online dictionary, containing 84433
words, is 8.9 characters. A user typing a word from this dictionary on a graphic
keyboard must thus make 8.9 selections, on average. Elision, by comparison,
can bring up any word in this dictionary with just four selections.

Incremental search techniques, implemented in the PARCTAB dictionary ap
plication, can do nearly as well. Here the user types the first few letters of
the item. With each letter entered, the appHcation narrows the list of possible
matches and displays the closest eight. We found that this method identified
the desired word after 4.3 characters on average—thus 5.3 selections, since one
more tap is needed to choose the correct match from the eight choices.

PARCTAB applications have made successful use of both elision and incremental
searches. We observed advantages and disadvantages for each. Elision is the

The ParcTab Ubiquitous Computing Experiment 63

more general method, since it performs well even when the ordered list has no
special properties. It also usually requires fewer selections-especially if it is
refined so that the system adjusts the size of the subsections to fall between
guide words that have been frequently selected. Many PARCTAB users object
to elision, however, because it demands hard thinking to pick the appropriate
ellipsis.

5 PARCTAB SYSTEM A R C H I T E C T U R E

A multilayer system architecture integrates the PARCTAB hardware into the
PARC office network so that network applications can easily control and re
spond to mobile devices based on the devices' current context. Although the
PARCTABS themselves behave more like terminals than independent computers,
they do execute local functions in response to remote procedure calls. PARC

TABS also generate events that are then forwarded by transceivers and the
infrared gateways that manages them to processes called tab agents, which
run on network machines. The agents keep track of the mobile tabs and link
them to workstation-based applications. PARCTAB applications are generally
event-driven, much like XI1 or Macintosh programs. Figure 7 illustrates re
lationships among PARCTABS, transceivers, gateway and agent processes, and
applications.

Developers can link into their applications a code library that hides the details
of PARCTAB tracking, message routing, and error recovery. Of course, any
application can obtain a tab's current location as needed so that the program
can modify its behavior appropriately. We developed the PARCTAB system in
the Unix programming environment (SunOS 4.3.1) running on SparcStation 2
connected by an ethernet. Communication between Unix processes is achieved
using Sun RPC.

5.1 PARCTAB Processing Capabilities

One perennial issue in distributed systems design is the question of partitioning:
how much computation should be performed by the mobile devices, and how
much by larger computers fixed to the network. One alternative is to execute
much of an application's interface locally in the mobile client, similar to the
way America Online, CompuServe and Prodigy put most of their user interface

64 CHAPTER 2

Conference Room

Bill's Office

v^^^^^^[7J

Roy's Office

ParcTab
infrared

Transceiver Gateway Ethernet
ParcTab
Agent Applications

Figure 7 The PARCTAB system architecture

onto users' PCs. At the extreme defined by PDAs, a tab might even run whole
applications and communicate only occasionally with the network.

Although this approach might reduce the load on the IR channel, it requires
a fast processor and much memory. But using today's technology, the power
requirements of state-of-the-art CPUs cannot be satisfied by conventional bat
teries of reasonable size and weight. With a 12MHz processor and 128Kb of
memory, the PARCTAB is roughly equivalent in computational power to a PC
from the early 1980s. To date, we have thus used tabs primarily as input/output
devices that rely on workstation-based applications for most computation. In
this model the mobile computer becomes a display device similar to a more
conventional graphics terminal. Recently, however, we have experimented with
a few applications that execute solely in the tab: taking notes using Unistrokes,
for example, and browsing files downloaded from the network.

The ParcTab Ubiquitous Computing Experiment 65

Tab Remote Procedure Call Mechanism

A simple communication mechanism called a tab remote procedure call (T-
RPC) allows applications to control various PARCTAB resources, such as the
display, touch screen, local memory and tone generator, while remaining obliv
ious to a tab's location and any underlying communication errors. This mecha
nism has been incorporated into a library of procedures available to application
designers. When an application makes a call into the library, the library as
sembles a request packet in a format defined by a request/reply protocol.

PAYLOAD
TYPE

SEQUENCE
NUMBER

1

FUNCTION

CODE

1

LENGTH

1

PARAMETERS
0-242

MORE FUNCTIONS END

1

Figure 8 Format of IR packet data payload as used by the request/reply
protocol (lengths in bytes)

The request/reply protocol is contained in the data payload of the link-layer
packet (Figure 8). The tab supports a set of about 30 function codes, several
of which can be combined into a single packet. For efficiency multiple function-
requests can be batched into a single packet under program control. A few
examples of PARCTAB functions are: display .text, display _bits, generate.tones,
set .epoch and wake.up.

An application delivers the request packet to a tab's agent process, which for
wards iet in turn to the tab. The application then waits for a reply. When
the PARCTAB finishes executing the request, it returns a reply packet to the
application containing an indication of its success and any appropriate results.

Sometimes a request or reply packet will be lost, or the system will be tem
porarily unable to determine the location of a tab. In that case, the agent will
automatically time-out the reply and will retry the request at intervals defined
by an exponential back-off algorithm. The back-off algorithm takes into ac
count whether the tab is detected by the network or not, and whether the tab
is free or busy executing another T-RPC request.

Only when a request is matched up with a corresponding reply will the the
application continue. The agent increments the sequence number for each new
request to ensure that retried packets do not inadvertently execute a request
twice. The agent likewise discards duplicate replies that result from retries or

66 CHAPTER 2

detection by multiple transceivers. Figure 9 shows the complete path taken by
a T-RPC call made from an application to a tab and back again.

APPLICATION

1

SUN RPC
"^ 8

AGENT

2 ^
SUN RPC

Z' ^
SUN RPCL

7 ^

IRGATEWAY

4
REQUEST

REPLY

5

T-RPC (Application to Tab Communication)

APPLICATION

5

SUN RPC

6

AGENT

3

SUN RPC

4

IRGATEWAY

Event Notification (Tab to Application Communication)

Figure 9 The path taken by a T-RPC call made from an application to a
tab.

PARCTAB Events

When a PARCTAB user presses a button or touches the screen, the device
transmits an event signal. The PARCTAB may also generate certain events
autonomously, such as a low-battery alert and a beacon. The beacon is a signal
transmitted every 30 seconds, even when the device is idling in low-power mode,
that allows the system to continue to monitor a PARCTAB's location when it
is not active. A similar system has been used to locate people using Active
Badges [38, 10, 14]. The power cost of waking up a tab every 30 seconds to
emit one packet is not high and, in fact, we also designed the tab to listen for a
moment after sending a beacon. If a wake-up request is received in this period
the PARCTAB will power-up completely. The system can thus deliver priority
messages to the device even when it is not in use.

The packet format used to signal PARCTAB events is similar to that used in the
request/reply mechanism. The payload type field distinguishes events, requests
and replies. In event packets, the function code is replaced by the appropriate
event code.

The ParcTah Ubiquitous Computing Experiment 67

5.2 Infrared Gateway

The IR-gateway process controls one or more infrared transceivers connected
to the serial ports of a workstation. The gateway receives IR packets forwarded
by transceivers and delivers them to tab agents. In the reverse direction, the
IR-gateway receives packets from an agent over a local-area network, encodes
them for IR transmission and delivers them to the appropriate serial port.
The transceiver then broadcasts the packets over the IR medium to any tabs
within its cell. These packets are coded according to the request/reply protocol
described in Section 5.1.

The IR-gateway uses a name service to determine which agent should receive
each packet. The gateway looks up the packet's source addresses (i.e., the tab's
unique address) in the name-service directory to obtain the network address of
the corresponding agent. Each gateway process maintains a long-lived cache of
agent network address so that it rarely needs to use the name service.

The gateway also appends a return address and a location identifier to every
packet it sends to an agent. The location identifier is a short textual descrip
tion (e.g., "35-2232") of the location of the transceiver that received the packet.
Context-sensitive applications can use the identifier in combination with cen
tralized location databases and services to customize their behavior.

In addition to its main functions, the IR-gateway performs configuration, error-
reporting, and error-recovery functions. Gateway processes also handle the flow
control that matches low-speed infrared communications with the high-speed
local area network.

5.3 Tab Agent

For each PARCTAB there is exactly one agent process, which acts like a switch
board to connect applications with tabs via IR-gateways. An agent performs
four functions:

It receives requests from applications to deliver packets to the mobile
PARCTAB that it serves;

In the reverse direction, it forwards messages (along with location identi
fiers) from its tab to the current application;

68 CHAPTER 2

It provides an authoritative source of tab location information for context-
savvy applications;

Finally, it manages application communication channels.

Since the agent is an intermediary on all messages, it has the most complete
information on the location of its tab. Even if the PARCTAB moves to a new
cell, its agent will soon receive a beacon signal and update the tab's location
accordingly. Whenever the tab's location or status changes, the agent notifies a
centralized location service [28] of the tab's last known location and its status:
"interactive" if it is being used, "idle" if it is transmitting beacons but no other
events, and "missing" if the tab is out of sight.

An agent also manages which application is allowed access to its tab at a partic
ular moment. Because the PARCTAB screen is so small, each appHcation takes
over the entire display. Although the tab may run many network applications
over time, only one "current application" can receive events from the tab and
send it messages at a given moment. In our system, a tab's agent interacts
with a special application called the "shell" (see Section 5.4) to decide which
application is current.

PARCTAB users can currently choose between two shells: the standard shell
described in the next section and an alternative described in Section 6.3.

5.4 Shell and Application Control

The shell is a distinguished application that provides a user interface for launch
ing or resuming other tab applications.

A tab agent launches a shell when the agent is initialized, and if the shell exits,
the agent automatically restarts it. When it is current, the shell displays an
application menu like that shown in Figure 10 and waits for the user to select
an application. If the user chooses to launch a program, then the shell creates
a new Unix process, registers it with the tab's agent, and finally instructs the
agent to switch to the new application. Whenever a user suspends or exits a
PARCTAB application, the agent makes the shell the current application.

The shell and other applications communicate with an agent through the Ap-
pControl interface. This interface offers four procedures: register, suspend,
resume, and quit. When an application invokes the 'suspend' or 'quit' com-

The ParcTab Ubiquitous Computing Experiment 69

\ 1 1 9
Bfi
A UTIL
^r iiTii

XID ? fF§

c Q i i
S(£)f

Figure 10 The top-level screen presented by the default Shell

mand, the agent switches control back to the shell. When a user chooses to
resume a suspended application or to switch to a newly registered process, the
shell calls the 'resume' procedure. If an application locks up in some way,
a PARCTAB user can transmit a special "agent escape" event that forces the
agent to suspend the current application and switch back to the shell.

The shell interface is based on user-customized screens. A screen contains active
regions (called buttons) and graphic labels, both of which may be represented
by text and bitmaps. Buttons invoke built-in actions: jumping to another
screen, starting or resuming an application, playing a tune over the PARCTAB

speaker, etc.

When the shell is started it loads a user's tabrc initialization file, or a standard
configuration file if that is not present. The contents of the tabrc file define the
buttons, bitmaps, text and active areas that the shell draws on the PARCTAB'S

top-level screen. The shell also looks for a user's tabrc-personal file and uses
that to extend the menus described by the tabrc file.

The grammar for the files consists of two parts, as shown below. The first
section defines the screen structure displayed on the tab. The second section
contains a list of actions, such as running a certain program, that the shell
performs when it starts up. In this format, the star ("*") indicates items that
can occur zero or more times; unstarred items occur exactly once.

70 CHAPTER 2

Tabic
Part

Screen
Widget

Action

-*
-^
—̂
-^

Part*
(I n i t i a l i z e Action*)
(Screens Screen*)
ilabel: Widget*)
(Text text x y invert)
(TextButton text x y Action)
(Bitmap bitmap-file x y)
(BitmapButton bitmap-file x y Action)
(Screen label)
(Beep duration octave note ...)
(Progreon program,-args)
(Load tabrc-file)

5.5 Example of System Operation

To explain how the PARCTAB system operates in practice, consider the follow
ing example. A user holding a PARCTAB in Roy's office presses a button. The
tab transmits a button event packet and requests an acknowledgment.

A transceiver nearby picks up the signal, transmits an acknowledgment back
to the tab, and then forwards the event packet over the serial connection.
The IR-gateway process listening to the serial line receives the packet, extracts
its source address and looks up the network address for the agent associated
with the tab that sent the packet. The gateway stamps the packet with the
transceiver's location identifier and its own network address, then sends it off
to the agent.

When the agent receives the message, it first verifies that this is not a duplicate
of a previous packet. It then forwards the data to whichever application is
current. The application decodes the event and triggers a procedure call defined
by the application developer.

If, for example, the application wants to update the PARCTAB display, then it
calls a tab library function and the transmission process reverses. First, the
library procedure packs the application's display data into a T-RPC request
packet and sends the request to the appropriate agent. The procedure also
blocks the application until the call is completed. Next the agent forwards the
packet to whichever IR-gateway sent it a message last.

The IR-gateway encodes the request packet for transmission and sends it over
the serial link to a transceiver, which broadcasts the data over the IR medium.
When the PARCTAB to which the request is addressed receives the packet, it

The ParcTab Ubiquitous Computing Experiment 71

decodes and executes the functions and then transmits a reply back to the
IR-gateway indicating its success. The gateway duly forwards the reply to the
correct agent as described above.

6 DEVELOPING SYSTEM AND
APPLICATION COMPONENTS

Members of the experimental community have built PARCTAB applications us
ing three different approaches: Modula-3 libraries, Tcl/Tk and the MacTabbit
system. Each offered different levels of access to the PARCTAB and its capabil
ities.

6.1 Modula-3

Modula-3 was a natural choice to build the first PARCTAB applications be
cause it is also the language for the PARCTAB's system software [21]. It had
many characteristics that recommend it for both tasks, along with a number
of shortcomings.

Modula-S and System Development

Modula-3 is a relatively new language; it has a number of features that we
believe are valuable in building large systems. These include garbage collection,
light-weight threads, type safety, and support for modules and object-oriented
programming. PARC's earlier successes using Cedar (an ancestor of Modula-
3) for systems work influenced our decision. In addition, we hoped that the
combination of type safety and object-orientation would result in higher quality,
more reusable code.

Modula-3's threads were important for our design because they simplified the
architecture of the IR-gateway and agent. Both are long running servers that
interact with many clients at the same time. Each client has its own dedi
cated thread: if one client doesn't return promptly from a remote procedure
call, others are not adversely affected. Building a non-blocking server without
threads would require either changing the remote procedure call (RPC) mecha
nism to make it asynchronous or abandoning RPC in favor of some lower-level
communication mechanism.

72 CHAPTER 2

Modula-3 and Application Writers

Modula-3 also facilitated the development of reusable libraries for tab appli
cation writers. For example, we developed an object-based widget library to
handle the user interface. The object-oriented approach meant that each addi
tion could build on previous work.

To simplify development work, we also built a PARCTAB simulator in Modula-
3. This program uses an X-window to mirror the PARCTAB display and mouse
events to simulate the PARCTAB pen and buttons. In many cases developers
prefer the simulator to the mobile hardware for program testing.

Although Modula-3 as a language met our needs well, the implementation we
used had a number of deficiencies. Modula-3 is still a young language, and so
the programming environment lacked certain tools, especially for debugging. In
particular, there was no support for debugging multiple threads: tracking down
the deadlocks and race conditions that come with multi-threaded programs was
particularly challenging. Modula-3 also produced very large runtime images
which occasionally taxed even our 64MB workstations.

To compensate for this shortcoming we built support mechanisms into the tab
system software. Each process can write selected information to a log file, and
system components have network-accessible interfaces for debugging and con
trol. Programmers can use these interfaces to examine and set parameters, and
to restart components. The IR-gateway, for example, has extensive commands
for checking the status of the transceiver hardware.

6.2 Code Libraries

We implemented a class-based hierarchy of composable widgets, loosely mod
eled on the Trestle window toolkit [21], to provide routine components such as
iconic and text buttons, scrollbars, bitmaps, text labels, scrollable text areas,
and dialog boxes. The PARCTAB'S very small screen generally precludes over
lapping of widgets, so our widgets do not need to do the clipping required by
a conventional window system. This greatly simplified the implementation.

We also built the TabGroup programming interface to support concurrent use
of multiple tabs by a single application. A group of tabs could act as a shared
whiteboard or notepad, for example, displaying what was drawn on one tab to
all the others in the group. With TabGroup, a program can wait for all pending

The ParcTab Ubiquitous Computing Experiment 73

output to be delivered to all its tabs, synchronize on input or other events, and
detect tabs that have stopped responding. Using a single process to control
a group of tabs with standard interfaces provided by the tab programming
library is often easier than running a separate process for each tab and having
the processes communicate by application-specific RPC.

6.3 The Tshell and Tel

Originally the only software available to support developers was the widget
library. Developers used it much as they might use a language specific win
dowing toolkit like Xt[15] to write X-windows applications. As a result, they
had to focus on low-level properties of the window system rather than on what
they wanted to accomplish. Furthermore, for designers implementing simple
user interfaces the turn around time of writing an application in a language
like Modula-3 or C was too long. It became apparent that we had to provide
fast prototyping capabilities and support the implementation of simple user
interfaces at a higher level.

We created the Tshell [24], a PARcTAB-shell extended with a Tel interpreter
and a subset of Tk [23], thus providing both a scripting language that supports
remote communication and a windowing toolkit. The choice of Tcl/Tk over
other extension languages was based mostly on three reasons:

1. Tcl/Tk is widely used.

2. Tk provides a complete set of building blocks for creating graphical user
interfaces. We could quickly select and implement a subset of widgets
useful for the PARCTAB'S small display size.

3. Tcl/Tk can be embedded into applications so that Tel interpreters in dif
ferent applications can exchange commands.

The design of Tab-Tk, the port of Tk to the Tab, focused on maintaining
the natural look and feel of the Tk widgets while exploiting the small area of
the Tab display as much as possible. We made several key observations and
decisions during the port:

• The PARCTAB screen is too small to display multiple windows at the same
time. Screen management therefore employs the same "one window at a
time" philosophy as other tab applications.

74 CHAPTER 2

Because the Tab's screen area is limited, it makes extensive use of menus.
They must be intuitive to use and have good response times.

PARCTAB size and limited processing capabilities call for simplicity. The
current implementation of the Tk toolkit for the Tab therefore provides a
core widget set of buttons, labels, menus, text, entries, frames and toplevel-
windows. We left out such features as the packer and canvas, a full-fledged
drawing widget.

Tcl/Tk provides a high level language to rapidly prototype the graphical user
interfaces for PARCTAB applications and a communication platform that allows
programs to exchange commands with Tel interpreters in other applications.
In a matter of three months, members of our community created a wide range
of new applications, including a context-based reminder system, a remote con
troller for a presentation manager, a pan/tilt camera controller, a remote editor
for leaving notes on a workstation.

6.4 The MacTabbit system

Our colleagues at the Rank Xerox Research Centre (RXRC - formally called
"EuroPARC") used a different approach to develop applications for the PARC

TAB. The Apple Macintosh is the computer of choice at RXRC, and tab users
there wanted to access Macintosh applications. MacTabbit does this by arrang
ing for the PARCTAB to control a small portion of the Mac screen. It echoes
updates in this region to the tab and sends pen and button events on the tab
to the Macintosh.

Using graphical application builders on the Mac such a HyperCard, users can
quickly prototype specialized Tab interfaces on the Mac Screen. When the
interface works correctly, it takes but a few seconds to move it on to a tab.
Furthermore, once the connection has been made to HyperCard, a user may
select from a variety of Hypercard-based applications.

MacTabbit has provided an excellent prototyping environment for people unfa
miliar with the conventional tab programming environment, and it has drawn
in developers who would not normally have become involved. System perfor
mance was also good given the small tab screen. An extension of the MacTabbit
mechanism caches commonly used image fragments in the tab, thus reduc
ing bandwidth requirements and further improving performance. RXRC has
used the MacTabbit mechanism to prototype many tab applications such as

The ParcTab Ubiquitous Computing Experiment 75

Forget-me-not (see Section 7.1), an automatic diary and reminder system, and
a media-space controller (see Section 7.2).

A CLASSIFICATION OF PARCTAB
APPLICATIONS

Mobile Application Categories

Information Access
Communication
Computer Supported Collaboration
Remote Control
Local data/applications

Table 1 Mobile Application Categories

Three characteristics differentiate a tab and the kinds of applications that it
supports from traditional personal computers:

1. Portability: very small form factor, low-weight

2. Communication: low-latency interaction between users and system

3. Context-sensitive operation

Our system represents context by a combination of factors: location, the pres
ence of other mobile devices, and the presence of people. Context also includes
time, nearby non-mobile machines and the state of the network file system.
Traditional computer systems have had access to much of this information, but
they have typically not made much use of it. Context can be used to adapt the
user interface, criteria for extracting and presenting data, system configuration,
and even the effects of commands. Although context may be used to present
the options most likely to be chosen, a well-designed system would also allow
a user access to the full range of choices on request.

Some of the applications we describe are available on small commercial PDAs
whose size is comparable to that of a tab, but no PDA has the network infras
tructure to support the full range of applications supported by the P A R C T A B .

76 CHAPTER 2

The combination of a wireless network and the use of context make this system
uniqueo A summary of the application categories we have experimented with
is given in Table 1 and described in some detail in the following sections.

7.1 Information Access

Access to information stored in our computer networks has become central
to the way we conduct our work. The PARCTAB I R network has provided a
mechanism to make information access independent of location. (Note that
although all stored information is accessible from any networked workstation,
people tend not to use someone else's machine.)

Each PARCTAB is linked to our local area network and so can retrieve any
information available through it or through remote networks connected to it.
For example, the commonly used weather program displays the current weather
forecast (obtained from the Internet) and the local temperature and wind-speed
(obtained from a weather station on the local network). PARCTAB users also
have at their fingertips a dictionary, a thesaurus, a Unix file browser and a
connection to the World Wide Web. The WWW protocol is a popular way
to access information stored all over the Internet. Some care must be taken,
however, to adapt the information retrieved to the small PARCTAB screen.

PARCTAB applications have also been integrated with existing desk-top ap
plications. The PARCTAB calendar manager, for example, works with Sun's
calendar manager ("cm"), already in use. An update to a user's calendar ei
ther on a workstation or on a PARCTAB will enable the data to be viewed on
both systems.

The tab location-based file browser shows how context can be used to filter
information. Instead of presenting the complete file system hierarchy, it shows
only files whose information is relevant to the particular room it is in. Such a
mechanism can be used to provide a guided tour for a visitor or to provide infor
mation that is relevant to a location, such as the booking procedure associated
with a conference room.

More complex uses of context can be seen in tools built at RXRC such as
Forget-me-not [19, 22, 20, 18, 17]. This application provides a tab user with an
automatic biography of their life by remembering for each day details such as:
where the person went in the office, whom they met, the documents they edited
or printed, and any phone calls that were made or received. The motivation

The ParcTab Ubiquitous Computing Experiment 77

behind this work is to provide an aid to our fallible human memories, a so called
memory-prosthesis. The application operates by providing an iconic interface
that allows a user to search and filter the biography for a particular event. For
example, suppose a forgetful user were trying to find the name of a document
that she was editing when Mike came into the room a short while after the
seminar last week. The filter would be set up to show documents in use when
Mike was around, on the day of the seminar. As we seem to waste a great deal
of our lives searching for things we have either misplaced or information we have
forgotten, Forget-me-not has the potential to help us work more eff'ectively.

7,2 Communication

Electronic mail has long been a popular communication tool for computer users.
Mobile access further enhances e-mail by increasing its availability.

Group meetings often account for a large amount of our work time, and so
electronic mail has been an important application for the PARCTAB. Access to
e-mail during meetings seems to have satisfied a genuine need.

The PARCTAB e-mail application could be extended to use context to generate
filters for displaying messages or notifying users of incoming mail. For example,
all messages might be delivered while a user is alone, but only urgent ones would
be delivered during a conference. In related work [12] a query language has been
used to filter incoming mail.

Locator and Pager Operation

The PARCTAB system inherently provides a locator system, assuming that the
person who needs to be found is carrying a PARCTAB. In an office, people
can use context to decide whether to disturb a colleague, once they have been
located [37]. For example, a person is more likely to welcome interruptions
alone in their office than while in a meeting. With the PARCTAB system, a
person may be paged unconditionally, or the importance of the page can be
assessed in association with the recipient's context, so that the message will be
either delivered or delayed until the context is more favorable.

78 CHAPTER 2

Media Applications

Another RXRC application is the "Communicator", a context-sensitive media-
space controller. A description of the original media-space concept is given
by Buxton [4] — a video-conferencing mechanism based on an analog-switch
controlled by workstations, allowing users to establish video connections to
various places in an appropriately wired building. The tab has been used to
enhance this facility through an application that will suggest the easiest way
to communicate with the person you wish to contact, and then help establish
the connection. Knowledge of where the recipient is situated is known to the
system because they are carrying a tab, the calling party only needs to know
their name. If a media-space terminal is not available, the application might
suggest the best alternative: a phone number, let you know they are actually
next door, or offer to send an e-mail note from the tab screen. More recent
work at the University of Toronto has taken this work further and combined
Ubiquitous Computing with video in a reactive environment [3].

An application that pushes the PARCTAB'S communication abilities to their
limits is media windowing. An otherwise unused IR channel can transmit one
low-resolution frame of slow-scan video in about 1.5 seconds. These images
are very grainy because of the coarse resolution of the PARCTAB screen and
the limited bandwidth of the link. Nevertheless people are remarkably good at
recognizing faces and scenes, and the images are still useful. Future systems
with improved screens and higher bandwidth links could provide applications
for remote monitoring and mobile communication using sound and video.

7.3 Computer Supported Collaboration

People often gather with a common goal or interest, perhaps at a lecture, or
else to arrive at a common decision. Because the PARCTAB is small, it can
easily be used in these collaborative situations.

Group Pointing and Annotation

A PARCTAB used as a pointing device operates much like a mouse. However,
a PARCTAB can connect to different computers depending on its location.

Many PARCTABS can also connect to the same computer. Consider, for ex
ample, the case in which a lecture is presented using a large electronic display
such as a Liveboard (see 2.3). Each tab in the audience can control a different

The ParcTab Ubiquitous Computing Experiment 79

pointer on the display. We have built a remote display pointer using the PARC

TAB screen as both a relative and absolute positioning tool: the user controls
the location and motion of the pointer by moving a finger over the PARCTAB'S

touch surface^ o

Voting

The PARCTAB can also be used when members of a group wish to arrive at a
consensus, perhaps anonymously. Even if anonymity is not important, simulta
neous voting can collect data that is unbiased by the voting process. If people
vote in sequence, earlier viewpoints inevitably bias later ones.

We have built a voting application called Arbitron for the PARCTAB system.
It has proved particularly interesting in the context of presentations. Audience
members with PARCTABS vote on the quality and pace of the material being
covered by a presenter. The votes are collected anonymously and displayed on
the Liveboard. The board is visible to both the audience and the presenter;
thus everyone knows whether their colleagues are as bored or entranced as they
are. Without the PARCTAB listeners would have to interrupt the presentation
to ask the speaker to speed up, slow down, or move to another point.

Multi-tab Virtual Paper

Tabdraw is a multi-tab application that allows the tab screen to be used as if
it were a piece of scrap paper. Each PARCTAB participating in the application
owns a piece of virtual paper and can draw on it. The participants also have
the option of seeing the drawings of their colleagues by superimposing them on
their own work. This scheme ensures that users "own" the line segments they
draw; no one else can erase them. As a result, many users can work together
in a coordinated fashion without impairing fair participation.

The shared drawing is generally defined by the room that people are in. A
group in one room will automatically obtain a separate drawing surface from
that in another room. Alternatively, a group might arrange to share a drawing
regardless of location.

^A tab-bsLsed remote pointing and annotation tool was demonstrated as part of the Xerox
exhibit at Expo '92 in Seville

80 CHAPTER 2

7.4 Remote Control

Television and stereo system remote-controls have popularized the notion of
control at a distance. In fact so many pieces of consumer electronics have such
controllers that one can now buy universal remote controls that control many
devices at the same time. A PARCTAB can also act as a universal controller.
Furthermore, it can command applications that traditionally take their input
from a keyboard or a mouse.

Since a tab can display arbitrary data, the controls available to a user can be
changed depending on context. (Commercial universal remote controllers, in
contrast, tend to need a large array of buttons.) Enabling the remote control
application in an office may trigger a tab to provide a control panel that adjusts
lighting and temperature, whereas in a conference room the interface might be
biased toward presentation tools.

Program Controllers

During our experiments with group drawing and pointing tools it became clear
that a PARCTAB has some interesting control possibilities as a drawing interface
for a drawing program. It can make additional commands available without
cluttering the main screen, and it can also provide a more powerful set of
commands than was available in the original program by providing a single
button that controls a sequence of low-level drawing primitives. If a program
is already intended for remote use and has a network interface, controlling it
with a PARCTAB is very easy.

XI0 Remote Control

Another Ubiquitous Computing project at Xerox PARC, the Responsive En
vironment Project [9], has been exploring how environmental control can save
energy during the day-to-day operation of a building. The project had created
servers that control power outlets through a commercial system called XIO [2].

Because the servers controlling appliances in part of the building being studied
by the Responsive Environment project were already connected to the local
area network, it was a simple matter to build PARCTAB applications to control
them.

The ParcTab Ubiquitous Computing Experiment 81

7,5 Local Operation

The PARCTAB is near one extreme of a spectrum of possible devices ranging
from the remote terminal (devoid of function without its connection to the
network) to the standalone computer (capable of many operations without any
communication links). The latest revision of the tab hardware has 128K of on
board memory, so that data and programs can be downloaded through the IR
link and executed in a stand-alone mode. Operating the tab in this way frees a
user from the IR network, but of course severely limits the tab's functionality.

The storage capacity of a mobile device will probably always be small compared
to the expectations of its user. Consequently applications must take care to
download only the most relevant information. For example, if a user has unread
electronic mail at the end of a work day, the system might transfer the messages
to the PARCTAB SO that they could be read in transit or at home. (Currently,
all downloading of information and programs occurs under the user's control.)

8 EXPERIENCES WITH THE PARCTAB
SYSTEM

The PARCTAB system has been in use since March 1993 and now serves a small
community of users. We have made a number of useful observations during this
period and have begun to understand its successes and failures.

8.1 The Experimental Network at P A R C

PARC was a convenient test site for the PARCTAB system because installation
was very easy. Before the project began every office already contained a work
station connected by an ethernet. The hallways and common areas also had
access to nearby workstations. It was easy to install a communication cell in
an office by using velcro to attach a transceiver to the ceiling and then to run
phone cable down a wall into a junction box. The junction box usually rests
on the floor under a desk and has a power cable, and connects to the RS232
port of the workstation. Typically, the installation takes about 15 minutes.

Some users also installed cells in their homes. They already had ISDN lines,
which connect a home ethernet to the office network, and so a transceiver

82 CHAPTER 2

connected to a workstation at home was effectively tied to the PARCTAB in
frastructure.

The first PARCTAB system released in March '93 consisted of 20 users and 25
cells. The experience gained in this time enabled a second release in April '94.
The latter system was somewhat larger with a community of about 41 users
and 50 cells. It included many improvements that enhanced the performance
of the communication channel and the tabs' perceived reliability.

For example, the original system relied on a central name-and-maintain service
(see Section 5.2) to route packets to tabs; when the service was unavailable the
PARCTAB system could not function. The new release has a distributed name
service that uses a network multicast mechanism to determine the address of
system components.

We discovered in the first release there were problems caused by high utilization
of the infrared network. High loads cause three problems: infrared packets
are more likely to be corrupted; transmit buff'ers in the transceiver overflow,
causing packets to be dropped; and the corrupted and dropped packets caused
more retransmissions, increasing the load. The high load exposed bugs in the
system design and implementation such as race conditions and badly-tuned
retransmission policies.

To improve user's confidence in the system, we had to increase its reliability
and availability. This involved not only fixing bugs but also mundane improve
ments such as a low-battery indicator for tabs. System components also needed
mechanisms for self monitoring. All the PARCTAB system processes now have
control panels designed to provide information in the event of a failure. We
have also put new mechanisms in place to monitor and maintain the IR-gateway
and the agent processes.

8.2 Infrared Interference

The PARCTAB could not be used effectively in several rooms in our building
because of IR noise due to fluorescent lamps controlled by electronic ballasts.
This is a waste of a unique form of communication bandwidth. Unfortunately,
electronic ballasts are slowly replacing the older magnetic ballasts because they
are more energy eflScient. We found a considerable variation in interference
levels from lamps made by diff̂ erent manufacturers. Some produce acceptable

The ParcTab Ubiquitous Computing Experiment 83

levels of IR, and it would be useful if lamp manufacturers were required to
adhere to a maximum limit for IR emissions.

Positioning of a room transceiver is also important. Installers should avoid
direct sunlight, that can change position throughout a day (and during the
year), and proximity to fluorescent lamps and to obstructions on the ceiling.
Transceivers in adjacent cells should be positioned carefully so that their signals
do not pass through doorway or interior windows and cause interference.

8.3 Usage Data Measured from the PARCTAB

System

Part of the benefit of building a real system has been the opportunity to study
how a versatile personal information-terminal might be used in advance of a
commercial system. We studied the 1994 release of the tab system for three
months to determine its use characteristics. The participants all consented to
automatic logging of system events.

We began recording two weeks after system deployment so that users could
familiarize themselves with the PARCTAB. TO limit the data to a manageable
quantity, we logged only the following events: Interactive, Switch, Idle, and
Missing^, Interactive occurs when a user powers up a tab, Switch occurs when
a user switches to a new application. Idle is generated when a tab has not been
used for 4 minutes, and Missing is a timeout event generated by the system
when the infrared network cannot detect a particular tab. Each event was
recorded along with a timestamp and cell location. In addition, there were two
questionnaires given out to our users, one at the outset of the tab use study
and one at the close. This provided contextual information, and information
to interpret the logging data.

Which Applications were Popular?

The switch events can be used to determine the relative popularity of the
various PARCTAB applications. Figure 11 shows the percentage of invocations
accounted for by each application. Four were distinctly more popular than the

^During the 3 month study some system processes died and were restarted causing some
events not to be logged. This results in minor, but conservative, inaccuracies in the reported
statistics.

84 CHAPTER 2

rest: e-mail, weather, file browser, and the loader. Possible implications of
these results are discussed in Section 9,

12

11 H

10

9-1

8 J

7-1

6

5-\

4

3-1

2-^

r i n

I Normalized Invocations (%)
I Invocations (%)

teimoi
y^^y^-^ yy^Awyyy-^^y^W
Figure 11 Histogram showing the number of invocations for each application
(not including the shell or tshell) expressed as a percentage of the total invo
cations of these applications during the test period. Normalized results only
count one invocation per day per user to remove distortions that might arise
when users experiment with an application several times during a brief period.
Applications that might normally be invoked several times a day suffer under
this measure.

How Long were Applications in Use?

Another way of looking at application popularity is to consider how long each
application was in use (see Figure 12). It should be noted that the total ap
plication interaction time is 4871 minutes over 3 months (13 weeks) for 41
users. This amounts to only 119 minutes/user or about 1.8 minutes/user/day
(65 days, excluding weekends). From our logs the total number of application
switches for all tabs throughout the study was 2996 and therefore the average
interaction time was about 97 seconds.

The ParcTab Ubiquitous Computing Experiment 85

The application popularity ranking is somewhat different from Figure 11. The
e-mailer, unistroke test and learn program, unistroke notetaker, file browser,
and the loader are the most long-lived applications. The weather program falls
to 8th place (perhaps because it only imparts a small amount of information at
any one time). Meanwhile the note-taker moves up to 3rd place - not surprising,
as taking notes is by its nature a time-consuming activity. It is interesting to
observe that reading e-mail, browsing system files, and loading data turn out
to be the most used in both measurements.

This use pattern differed from the participants own expectations of use. Al
though they expected to read e-mail, (four of the participants did not use e-mail
on the tab at all, due to incompatible mail systems), over half commented that
they expected to use the tab primarily as a calendar. It is also worth noting
that according to user reports the e-mail program was used to read e-mail much
more than to send e-mail using Unistrokes. The Unistroke test and learn pro
grams appear in the ranking even though they are typically not activated very
often; users may spend a block of time running them when first acquiring the
skill.

Graph 13 shows the percentage of application interactions that last less than
a given time. We have removed interactions of less than 10 seconds because
users often turn a tab on and then off immediately to confirm that it is working
normally. From this graph we can see that 50% of interactions last less than
100 seconds (1.7 mins), 75% less than 230 seconds (3.8 mins) and 90% less
than 500 seconds (8.3 mins). This supports our notion of the tab as a device
for "casual" interactions.

Figure 14 shows what fraction of users had their tabs turned on for various
total periods of time. The study group can be roughly divided into three user
types. 7% (3 people) used the tab for 360-480 minutes during the test (6.4 min
utes/day). 15% (6 people) used it for 144-360 minutes (3.9 minutes/day) and
78% (32 people) used it for less than 144 minutes in total (1.1 minutes/day).
The average use time for the majority was very small, implying their interac
tions were generally very brief.

Who Used the P A R C T A B , HOW Long and Where?

Figure 15 shows interaction time for each user, subdivided according to location:
in their own office (black); in a common area such as a conference room, tea area
or seminar room (grey); or in a hall or another person's office (white). Only 3
people used a tab primarily (for more than 50% of their total interaction time)

86 CHAPTER 2

Mm<^wy v^y^^y^^A^A^^
Figure 12 Histogram showing the total interaction time by users for each
application in the tab system during the 3 month test period (not-including
the shell, 1273 minutes, and the tshell, 1081 minutes).

in somebody else's office. Approximately 61% (25 people) of our community
used the tab primarily in their own rooms, and 27% (11 people) used it primarily
in a common area. Interestingly enough, for each pattern of use the preference
was quite clear.

By pooling the results of Figure 15 we can determine that people used tabs in
their own offices 57% of the time, in a common area 32% of the time , and in
another office 11% of the time (see Figure 16). 7% of own-office interactions
are in the presence of other tabs. 90% of common area interactions and 85%
of other-office interactions are also in this category.

The multiple-user applications, group drawing and remote pointing, were not
available for the duration of the use study. Group applications like this would
have generated a much higher network-load in the common areas, but are likely
uses of a ubiquitous mobile device.

The ParcTab Ubiquitous Computing Experiment 87

Application Interaction Length (seconds)

Figure 13 Graph showing the percentage of application interactions that
were under a given time during the test period.

Figure 15 shows that there is not a typical use pattern among the study group.
Our questionnaires showed that there were as many different expectations of
the tab system as there were participants in the study. For example, researchers
developing applications on the tab that expected to use the tab a great deal
did not necessarily have the largest interactions times, even though they had
to use the tab for their daily work. In contrast, some researchers who did not
expect to use the tab found that visitor demonstrations of the device added
significantly to their total usage time.

These results are important for overall system design because multiple tabs
interacting in the same area have a strong impact on the available bandwidth.
The PARCTAB system needs to be able to handle a usage pattern in which at
least 42% of all interactions occur with multiple tabs present.

88 CHAPTER 2

o

Minutes of Use

Figure 14 Histogram showing the number of users against their total inter
action time divided into 20 equal divisions.

8.4 Discussion

Although the previous graphs give an indication of the way the tab was used
it is important to acknowledge the limitations of this study in representing the
use of the tab as a consumer item. First, the the user group was too small for
statistically significant results. Second, the system was still under development
and the applications were not fully supported. Furthermore, participants in
the study were not customers but rather laboratory staflF using the tab as a
prototype. It was up to them to invent ways to use the tab, develop new appli
cations and create ways to incorporate the tab into established work patterns.
As a result, we must qualify the numbers with anecdotal evidence and further
discussion of the ways people used the tab. Some of these remarks are listed
below:

Rich Gold: does not see any value in using a tab in his own office because a
powerful workstation is at hand.

The ParcTab Ubiquitous Computing Experiment 89

o In hall or office of another person.
m In common area,
• i In own office.

IDQlRDnmBa—
Users

Figure 15 Histogram showing the total interaction time for each user in
seconds split between three location types: a user's own office, a common area,
a hall or another person's office.

John Ellis: prefers to use the tab in his own office to read his e-mail so that he
does not have to rearrange the windows on his workstation screen.

Dan Swinehart: found the tab system had a long response time, but found that
the tab system was faster than Mosaic for finding the definition of a word.

Helen Davis: has used the email application and Unistrokes to take notes during
seminars and then mailed them to herself.

A number of people found the PARCTAB too heavy or awkward to wear.

Two women tab users (Karin Petersen and Nancy Freige) remarked that the
design of the belt clip was oriented towards a particular clothing style. For
example, not all outfits include belts, and furthermore not all belts work well
with clip on devices. Doug Terry also found the tab clip inadequate for his
use. Instead he used a small zippered nylon and (infrared transparent) fishnet
pouch to hold a tab so that it could be attached to his belt and continue to
report his location.

90 CHAPTER 2

2500-

2000"

E
^ 1500H

o
E

500-

> ^ ^ ^

• tab in use alone (In Own Office)
^ tab in use alone (In Common Area)
D tab in use alone (Other)

Eac tab in use with other tabs

^
^

In Own Office
(57%)

In Common Area
(32%)

Other
(11%)

F i g u r e 1 6 H i s t o g r a m showing t h e t o t a l i n t e r ac t ion t i m e by all u se r s for each
of t h e t h r e e genera l a reas : a u se r ' s own office, a c o m m o n a rea , a hal l or a n o t h e r
p e r s o n ' s office.

A researcher who preferred to remain anonymous commented on the difficulties
of building new applications in Modula-3: 'I don't want to say anything against
Modula-3 but if I have to learn a new language at the same time as trying to
program a new [computer] I may not get much done.'

The ease of reading text on the small screen surprised most of the participants
in the use study. At the beginning of the study we found almost 1/2 of the
participants had commented that because of the low resolution of the screen
they did not intend to read longer files.

As the list above indicates, it is difficult to suggest a 'typical' use of the PARC-

TAB The PARCTAB system was an experiment that many people volunteered
to participate in. It was shaped by their own ideas, needs and contributions.
A direct consequence of building a system that can be used by a community is
that it is possible to gain understanding of the real problems (see Section 9),
issues to be addressed, and activities that need to be supported.

The ParcTab Ubiquitous Computing Experiment 91

8e5 Research at other Sites

To gain more general experience we gave the tab system (including tabs, trans
ceivers, and software) to a number of other research departments. The largest
of these sites was the Rank Xerox Research Centre (Cambridge, England) with
12 transceivers and 10 PARCTABS. Flinders University (Adelaide, Australia)
University of Washington, University of Toronto and Olivetti Research Ltd
(Cambridge, England) also received small numbers of PARCTAB system com
ponents for their own research. RXRC produced a number of applications
(see Section 7), and the University of Toronto now uses tabs to control the
equipment in its ''telepresence" room.

9 CONCLUSION

The PARCTAB system enables a unique set of applications that have used com
munication and context to enhance their operation. By designing a system and
deploying it, we were able to gain some insight into the benefits and problems
faced by mobile systems. The following sections draw some conclusions.

9.1 Design Perspective

The PARCTAB architecture depends on small-cell wireless communication. It
thus combines portability with information about context. A downside of this
approach was that the PARCTAB was not very useful out of contact with the
network. Some of our users were dissatisfied that the tab had only very limited
use when disconnected from the network. Perhaps the real value of a PDA
comes from both connected and disconnected operation. One without the other
leaves them dissatisfied.

Our system design was based on a distributed architecture containing many
components. Although each component was relatively simple the complete sys
tem presented a level of complexity that made it difficult to debug. We learned
to remove as many points of failure as possible to allow users to understand
what was going on.

92 CHAPTER 2

9.2 Bandwidth Limitations

One of our early design assumptions was that a 19.2k baud link was adequate
for building the PARCTAB system. If users do not often share cells or do not,
on average, operate their PARCTABS at the same time, the system can usually
respond within 1 or 2 seconds. In meetings, however, these assumptions seldom
hold true. Users tend to operate tabs at the beginning of meetings, at short
breaks and perhaps when they are bored, resulting in synchronized use and
poor performance.

We now recognize that such systems have to be engineered to deal with the
maximum congestion that can result from the maximum number of mobile
units in a room. Figures based on average usage patterns do not justify cutting
corners.

9.3 Characteristics of User Generated Traffic

Another early design assumption was that applications would have repeating
usage patterns of the form 1) event 2) screen update 3) delay, with the delay
caused by the time it takes a user to read the screen. However the Unistroke
interface changed this pattern. A Unistroke writer can make several strokes per
second. In combination with other Unistroke traffic, this can generate a load
greater than the IR network was designed to handle. As a result, we have begun
work on improving the partitioning of apphcations between the PARCTAB and
the rest of the system. The Unistroke recognizer has recently been ported to
the PARCTAB firmware, allowing us to send packets of characters rather than
a sequence of stylus positions. This approach uses significantly less bandwidth
in both directions and will be included in a future PARCTAB release. Display
keyboards could work the same way.

The largest impediment for people using Unistrokes was the slow response-time
of the system when displaying a character after each stroke of the stylus. Many
of the participants who had learnt Unistrokes, claimed to be able to write faster
than the system could keep up. All of those who learnt Unistrokes felt that it
was a superior form of text input.

The ParcTah Ubiquitous Computing Experiment 93

9.4 Factors Affecting Acceptance

Whether or not a tab is adopted in the workplace turns out to depend on many
factors: among them size, appearance, convenience, peer pressure, application
types, and critical mass of applications. People, in general, have well established
work habits that are a barrier to learning a new system. Applications that
solve a real problem are however compelling, and a diversity of application
type makes the tab a solution to many problems.

It has become clear that changing the nature of a single characteristic can tip
the balance between acceptance and rejection of the device e.g., the design of
a suitable belt/clothes clip. Small changes in design can have large effects and
this makes it difficult to make predictions. Building a system intended for use
is the only way to really find out.

We have discovered how difficult it can be to persuade people to make changes
to their daily routine in order use a device like the PARCTAB. Furthermore,
an individual's style of dress has a significant impact on whether a tab can be
easily attached and worn like a pager. One user's tab fell off a belt in a parking
lot, damaging the device, and making the user less willing to carry it.

Many people expressed an interest in a system that could be used both inside
and outside the building, and if this had been the case, they might have adopted
it in more readily. It is clear that a conventional radio broadcast scheme would
allow greater mobility, but at the expense of bandwidth and the lack of con
text. A more comprehensive system might use a combination of nano-cellular
communications for in-building use and a packet-radio scheme for outside use.

There were two important aspects of tab use in the CSL study that were demon
strated by the logging data. First, the brief period that applications were used
(50% were under 100 seconds), and second, the generally infrequent usage-
pattern.

Given that the typical behavior is of short user-interaction-times, we might be
able to better support a user's needs by supplying more casual interfaces that
summarize data on the tab top-level screen (e.g., time, weather, amount of
mail to read etc), enabling a user to retrieve information at a glance. Perhaps
icons that change state to represent the activity of their underlying applications
would address this issue, replacing the desktop metaphor currently in use by a
wrist-watch metaphor.

94 CHAPTER 2

The total interaction-time combined for all tabs was not very large. This is
as much a reflection on the context of use as any inherent difficulties with the
tab. The researchers and support staff participating in this experiment work
in a computer-saturated environment. They are never far from a workstation,
and apart from attending meetings, their work practices typically do not rely
on being mobile (see Figure 16, percentage of time spent in an office). This
suggests that further work for integrating the tab into the office environment
needs to be considered, for example, using the tab as another computer monitor.
But it also suggests that in a manufacturing environment, or a hospital, tabs
might support established mobile work-practices.

It should also be noted that the tab system is a prototype and is not supported
to the same extent as an established product (e.g., no user manuals). In this
case study, the users are participating in the development and therefore it is
more appropriate to think of them as participants rather than users.

In the near future, a device capable of performing the PARCTAB'S functions
could be made about one third the thickness and one third the weight of the
current version (3-4 mm thick and perhaps 70 grams). This may further en
courage its use.

9.5 Application Development

We set out from the start to encourage the user community to become involved
in writing applications. The original Modula-3 programming environment, al
though a state-of-the-art approach to building systems, was unfamiliar to many
of the users. In some cases learning it was too much trouble for producing a
relatively simple application. In addition, the compiler created large binaries
(often greater than 3MB for each application), imposing a significant load on
machine resources when many applications were active. Making it possible to
write applications in Tcl/Tk and HyperCard was significant in broadening the
interest of application developers.

9.6 Importance of User Interface

An innovative part of building the PARCTAB system has been the design of
user interfaces that are suited to a small screen e.g., elision and Unistrokes.
The latter is a powerful technique that can be used with pen-based computers
of any size.

The ParcTab Ubiquitous Computing Experiment 95

The design of the PARCTAB packaging was clearly successful. In particular,
our users liked a design that was adapted to either right or left handed people.
It was also clear that three physical buttons usually provided an unambiguous
mode of use. Although it was tempting to design the user interface with more
buttons, enforced simplicity has turned out to be a bonus.

9.7 Popular Applications

Our system provided many programs that could be used in the work environ
ments It is interesting to consider the four most commonly invoked. In first
place was the electronic mail reader, providing access to e-mail that is nor
mally only available at a workstation„ Perhaps this is not surprising given that
the study was carried out at a computer-science research laboratory. However,
electronic mail is becoming more popular in the business community and this
result might be significant in predicting a future market.

The weather program scored second highest. It is possible this shows an in
herent fascination with weather, or the program may just be good demo-ware.
We hope that this indicates a deeper interest in information that is up-to-date
and easily accessed. In that case, a mobile interface to the World Wide Web
or other information services might prove compelling.

In third place was the file browser, providing access to text and command files
stored in the Unix Network Filing System. Since the entire study group works
almost entirely with electronic documents which are available on-line, this is
a likely result. Finally, in fourth place was the tab loader, which allows users
to store information in the tab's local memory and use it outside the infrared
network. It is not surprising it has also been popular.

Although the unistroke notetaker was not invoked very often, it accounted for
a significant chunk of total tab usage. It is possible that note-taking could
become a heavily-used application, especially if local processing of unistrokes
yields the expected improvements in performance.

Of the remaining applications there is one result that appears to be out of place.
The PARCTAB calendar/diary appeared mid-way through both the popularity
and runtime results. In the initial questionnaire all but two of the users had
stated that they intended to use the calendar manager regularly. Although
there was some difiiculty with the compatibility of electronic calendars in use,
80% of the participants could use the appropriate calendar manager on the

96 CHAPTER 2

tab. Given that office environments have schedules that involve many meetings
and numerous visitors, this result seems low. We have found, however, that
users often have traditional solutions to this problem in place (e.g., pocket-book
diaries). New solutions that are as good, or only marginally better (such as
tab access to an on-line calendar) are not easily adopted.

9.8 System Benefits

One important contribution of the PARCTAB system has been the experimen
tal infrastructure that allows users to prototype new application ideas. The
system has been something of a catalyst in generating new ideas in the area of
Ubiquitous Computing and has inspired novel applications. Because the infras
tructure is easily assembled and can be exported to other test sites, we have
also had the benefit of stimulating other research.

9.9 Future Work

Many system issues still need to be explored, for example, how to resolve con
flicts during disconnected operation when related information has changed in
both the mobile and the fixed part of the system [7, 35, 34]. Another area that
needs exploring is how to partition system functionality across a wireless link
with the aim of reducing communication latency. An extension of the existing
work that would allow us to make better use of system context, is the design of
a mechanism for the precise location of objects in a building. Ubiquitous com
puting could take advantage of precise location information: knowing which
screen a user is currently looking at, for example, is invaluable when deciding
how to present urgent information. Finally, the whole area of miniature user-
interface research deserves further study and has the potential for many more
innovations.

Ubiquitous computing has been the main inspiration for the PARCTAB project.
The use of this system has allowed us to study context-sensitive applications.
These prototype applications have demonstrated the potential for innovation
in this area. In the future we expect to continue to carry out research with
the PARCTAB, and also other hardware and software that will help define the
future of ubiquitous computing. Our experience with the PARCTAB systems
look very promising and brings us a step closer to realizing that future.

The ParcTab Ubiquitous Computing Experiment 97

Acknowledgements

We wish to thank the many summer interns that have contributed to this
project and made it fun to work on: Michael Tso, Nina Bhatti, Angie Hin-
richs, David Maltz, Maria Okasaki, and George Fitzmaurice. We also wish to
thank: Jennifer Collins and Sonos Models for facilitating the PARCTAB pack
aging; Bill Buxton (University of Toronto) for his advice concerning UI design;
Terri Watson, Berry Kercheval and Ron Frederick for developing novel appli
cations; Natalie Jeremijenko for collecting and processing results from the tab
usage experiment; Olivetti Research Ltd (ORL) and Andy Hopper for collab
orating with us while developing the communication hardware; Brian Bershad
(University of Washington), Craig Mudge(Flinders) and Mike Flynn for their
keen advice and collaboration; and Wayt Gibbs and Paul Wallich for editing
this paper. Finally, we wish to thank and acknowledge Mik Lamming for his
original contributions and support during the lifetime of the project.

REFERENCES

[1] Norman Adams, Rich Gold, Bill N. Schilit, Michael Tso, and Roy Want. An
infrared network for mobile computers. In Proceedings USENIX Sympo
sium on Mobile & Location-independent Computing, pages 41-52. USENIX
Association, August 1993.

[2] Jeff Bachiochi. X-10 interfacing with plix. Circuit Cellular INK, pages
74-79, Oct/Nov. 1992.

[3] William Buxton. Living in augmented reality: Ubiquitous media and re
active environments. To appear in CACM, 1995.

[4] William Buxton and Tom Moran. EuroPARC's Integrated interactive in
termedia facility (iiif): early experiences. North-Holland, 1990.

[5] George Calhoun. Digital Cellular Radio. Artech House Inc, 1988.

[6] Alan Demers, Scott Elrod, Christopher Kantarjiev, and Edward Richley. A
nano-cellular local area network using near-field rf coupling. In Proceedings
of Virginia Tech^s Fourth Symposium on Wireless Personal Communica
tions, pages 10.1-10.16, June 1994.

[7] Alan Demers, Karin Petersen, Michael Spreitzer, Douglas Terry, Marvin M.
Theimer, and Brent Welch. The bayou architecture: Support for data shar-

98 CHAPTER 2

ing among mobile users. In Proceedings Workshop on Mobile Computing
Systems and Applications. IEEE, December 1994.

[8] Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz,
William Janssen, David Lee, Kim McCall, Elin Pedersen, Ken Pier, John
Tang, and Brent Welch. Liveboard: A large interactive display supporting
group meetings, presentations and remote collaboration. In Proc. of the
Conference on Computer Human Interaction (CHI), pages 599-607, May
1992.

[9] Scott Elrod, Gene Hall, Rick Costanza, Michael Dixon, and Jim des Riv
ieres. Responsive office environments. CACM, 36(7):84-85, July 1993. In
Special Issue, Computer-Augmented Environments.

[10] Neil Fishman and Murray S. Mazer. Experience in deploying an active
badge system. In Proc. of IEEE Globecom Workshop on Networking of
Personal Communications Applications, December 1992.

[11] Jim Fulton and Chris Kent Kantarjiev. An update on low bandwidth X
(LBX). Technical Report CSL-93-2, Xerox Palo Alto Research Center,
February 1993.

[12] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. CACM, 35(12):61-
70, Dec 1992.

[13] David Goldberg and Gate Richardson. Touch typing with a stylus. In
Proc. Conference on Human Factors in Computing Systems (INTERCHI),
pages 80-87. ACM/SigCHI, Apr 1993.

[14] Andy Harter and Andy Hopper. A distributed location system for the
active office. IEEE Network, pages 62-70, January/February 1994.

[15] Oliver Jones. Introduction to the X Window System. Prentice Hall, 1989.

[16] Christopher Kent Kantarjiev, Alan Demers, Robert T. Krivacic Ron Fred
erick, and Mark Weiser. Experiences with X in a wireless environment. In
Proceedings US ENIX Symposium on Mobile & Location-independent Com
puting, pages 117-128. USENIX Association, August 1993.

[17] Mik Lamming. Towards future personalised information environments.
In FRIEND21 Symposium on Next Generation Human Interfaces, Tokyo
Japan, 1994. Also available as RXRC TR 94-104, 61 Regent St., Cam
bridge, UK.

The ParcTab Ubiquitous Computing Experiment 99

[18] Mik Lamming, P. Brown, Kathy Carter, Marge Eldridge, Mike Flynn,
GifFord Louie, Peter Robinson, and Abi Sellen. The design of a human
memory prosthesis. Computer Journal, 37(3):153-163, 1994.

[19] Mik Lamming and Mike Flynn. Forget-me-not: intimate computing in
support of human memory. In FRIEND21 Symposium on Next Generation
Human Interfaces, Tokyo Japan, 1994. Also available as RXRC TR 94-103,
61 Regent St., Cambridge, UK.

[20] Robert Langreth. Total recall. Popular Science, pages 46-82, February
1995.

[21] Greg Nelson. System Programming with Modula-3. Series in Innovative
Technology. Prentice Hall 1991.

[22] William Newman and Mik Lamming. Interactive System Design. Addison-
Wesley, 1995.

[23] John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

[24] Karin Petersen. Tcl/tk for a personal digital assistant. In Proceedings of
the USENIX Symposium on Very High Level Languages (VHLL), pages
41-56, Santa Fe, New Mexico, October 26-28 1994. USENIX Association.

[25] Ken Pier and James A. Landay. Issues for location-independent interfaces.
In Xerox Pare Blue& White P92-00159, December 1992.

[26] Bill N. Schilit, Norman Adams, Rich Gold, Michael Tso, and Roy Want.
The PARCTAB mobile computing system. In Proceedings Fourth Workshop
on Workstation Operating Systems (WWOS-IV), pages 34-39. IEEE, Oc
tober 1993.

[27] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In Proceedings Workshop on Mobile Computing Systems and
Applications. IEEE, December 1994.

[28] Bill N. Schilit and Marvin M. Theimer. Disseminating active map infor
mation to mobile hosts. IEEE Network, pages 22-32, September/October
1994.

[29] Bill N. Schilit, Marvin M. Theimer, and Brent B. Welch. Customiz
ing mobile application. In Proceedings USENIX Symposium on Mobile
& Location-Independent Computing., pages 129-138. USENIX Association,
August 1993.

100 CHAPTER 2

[30] Mike Spreitzer and Marvin Theimer. Providing location information in a
ubiquitous computing environment. In Proceedings of the Fourteenth ACM
Symposium on Operating System Principles, pages 270-283, Asheville, NC,
December 1993. SIGOPS, ACM.

[31] Mike Spreitzer and Marvin Theimer. Scalable, secure, mobile computing
with location information. CACM, 36(7):27, July 1993. In Special Issue,
Computer-Augmented Environments.

[32] Mike Spreitzer and Marvin Theimer. Architectural considerations for scal
able, secure, mobile computing with location information. In Proc, 14th
IntL Conf. on Distributed Computing Systems, pages 29-38. IEEE, June
1994.

[33] Andrew Tanenbaum. Computer Networks. Prentice Hall, 1981.

[34] Douglas Terry, Alan Demers, Karin Petersen, Michael Spreitzer, Marvin M.
Theimer, and Brent Welch. Session guarantees for weakly-consistent repli
cated data. In Proc. 3rd International Conference on Parallel and Dis
tributed Information Systems, pages 140-149, September 1994.

[35] Marvin M. Theimer, Alan Demers, Karin Petersen, Michael Spreitzer,
Douglas Terry, and Brent Welch. Dealing with tentative data values in
disconnected work groups. In Proceedings Workshop on Mobile Comput
ing Systems and Applications. IEEE, December 1994.

[36] Mario Tokoro and K. Tamaru. Acknowledging ethernet. Compcon, pages
320-325, October 1977.

[37] Roy Want and Andy Hopper. Active badges and personal interactive com
puting objects. IEEE Transactions on Consumer Electronics, 38(l):10-20,
Feb 1992.

[38] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The
active badge location system. ACM Transactions on Information Systems,
10(1):91-102, Jan 1992.

[39] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):94-104, September 1991.

[40] Mark Weiser. Hot topic: Ubiquitous computing. IEEE Computer, pages
71-72, October 1993.

[41] Mark Weiser. Some computer science issues in ubiquitous computing.
CACM, 36(7):74-83, July 1993. In Special Issue, Computer-Augmented
Environments.

The ParcTab Ubiquitous Computing Experiment 101

[42] Mark Weiser. The world is not a desktop. Interactions, pages 7-8, January
1994.

[43] Mark Weiser, Alan Demers, Brent Welch, and Scott Shenkar. Scheduling
for reduced CPU energy. In Operating System Design and Implementation
(OSDI), Monterey, CA, 1994.

3
SCALABLE SUPPORT FOR

TRANSPARENT MOBILE
INTERNETWORKING

David B. Johnson

Computer Science Department

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3891

USA

ABSTRACT

This paper considers the problem of providing transparent support for very large num
bers of mobile hosts within a large internetwork such as the Internet. The availability
of powerful mobile computing devices and wireless networking products and services
is increasing dramatically, but internetworking protocols such as IP used in the In
ternet do not currently support host movement. To address this need, the Internet
Engineering Task Force (IETF) is currently developing protocols for mobile hosts in
the Internet. This paper analyzes the problem to be solved, reviews the current state
of that effort, and discusses its scalability to very large numbers of mobile hosts in a
large internetwork.

1 INTRODUCTION

The global Internet is growing at a tremendous rate. There are now about
5 million hosts connected to the Internet, and this number is doubling approx
imately every year. The average time between new networks connecting to
the Internet is about 10 minutes. Initiatives such as the National Information
Infrastructure and the increasing commercial uses of the Internet are likely to
create even faster growth in the future.

Previously appeared in Wireless Networks, special issue on "Recent Advances in Wireless
Networking Technology," 1995. Copyright ©1995 by Baltzer Science Publishers. Reprinted
by permission.

104 CHAPTER 3

At the same time, portable computing devices such as laptop and palmtop
computers are becoming widely available at very affordable prices, and many
new wireless networking products and services are becoming available based
on technologies such as spread-spectrum radio, infrared, cellular, and satellite.
Mobile computers today often are as capable as many home or office desktop
computers and workstations, featuring powerful CPUs, large main memories,
hundreds of megabytes of disk space, multimedia sound capabilities, and color
displays. High-speed local area wireless networks are commonly available with
speeds up to 2 megabits per second, and wide-area wireless networks are avail
able that provide metropolitan or even nationwide service.

With these dramatic increases in portability and ease of network access, it
becomes natural for users to expect to be able to access the Internet at any
time and from anywhere, and to transparently remain connected and continue
to use the network as they move about. However, internetworking protocols
such as IP [23] used in the Internet do not currently support host mobility.
A mobile user, today, must generally change IP addresses when connecting to
the Internet at a different point or through a different network; the user must
modify a number of configuration files and restart all network connections,
making host movement difficult, time consuming, and error prone.

To address this need in the Internet, the Mobile IP Working Group of the
Internet Engineering Task Force (IETF) has been working over the past few
years to develop standard protocols to support mobile hosts operating in the
Internet [6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 21, 22, 25, 29, 30, 31, 32, 34].
The IETF is the principal standards development body for protocols in the
Internet. This work on IETF Mobile IP represents the contributions of many
people within the Working Group, and development of these protocols is still
underway. This paper analyzes the problem to be solved, reviews the current
state of that effort, and discusses its scalability to very large numbers of mobile
hosts in a large internetwork.

Section 2 of this paper describes the general problem of mobility management
and packet routing to mobile hosts in a large internetwork. Section 3 gives
a summary of the current state of the basic IETF Mobile IP protocol, and
Section 4 describes extensions to this protocol also being developed within the
IETF for optimizing packet routing to mobile hosts. Section 5 discusses the
scalability of this work to very large numbers of mobile hosts, and Section 6
presents conclusions.

Scalable Support for Transparent Mobile Internetworking 105

2 P R O B L E M ANALYSIS

2.1 Internetwork Routing

In order to provide scalable routing support, internetworking protocols such as
IP [23], ISO CLNP [27], NetWare IPX [33], and AppleTalk [28], use hierarchical
addressing and routing schemes. For example, in IP, the network address of
a host is divided into two levels of hierarchy: a network number identifying
the network to which the host is connected, and a host number identifying the
particular host within that network. Routers within the Internet know (and
care) only how to route packets based on the network number of the destination
address in each packet; once the packet reaches that network, it is then delivered
to the correct individual host on that network.

Aggregating the routing decision at each level of the hierarchy in this way re
duces the size of the routing tables that each router must maintain, reduces
the size of the routing updates that routers must exchange, and simplifies the
decisions at each router. Hierarchical addressing and routing has proven to be
essential to keep up with the exponential growth of the Internet, in particu
lar. The original two-level hierarchy of Internet addressing in IP has already
been transparently extended at the bottom with subnetting [16] and at the top
through use of CIDR [5]. In the lETF's "IPng" effort to develop the next gen
eration of the IP protocol [2], support for many more levels of hierarchy than
in the present version of IP is an explicit design goal [15].

However, this hierarchy in addressing and routing prevents packets from being
routed correctly to a mobile host while it is away from its home network. Since
a host's address logically encodes its location, without special handling for
mobility, packets addressed to a mobile host will be routed by the Internet
only to the mobile host's home network. This problem exists with any protocol
using a hierarchical addressing and routing scheme, whether the hierarchy is
provider-based or geographical.

2.2 Location Registry

It is important to be able to support packet routing to mobile hosts from exist
ing correspondent hosts that have not been modified to support mobility. Given
the very large number of hosts already deployed within the Internet, it seems
quite likely that some will not be upgraded to support mobility for some time.
Furthermore, some existing hosts may never be upgraded, for example because

106 CHAPTER 3

the organizations owning them may lack the interest or resources to upgrade,
or because the original vendor no longer offers support for particular products
owned by some customers. The ability to support unmodified correspondent
hosts also allows any correspondent host to communicate with any other host
without being concerned whether or not it is currently mobile and away from
its home network.

It therefore becomes logical to provide basic mobility support for a mobile
host through a location registry recording the mobile host's current location,
that can be accessed through the mobile host's home network. An unmodified
correspondent host (or one that simply does not know that a particular mobile
host is in fact mobile) will send IP packets for that mobile host in the same
way as all IP packets are sent today. Such packets will thus reach the mobile
host's home network, where they may be intercepted by some mobility support
agent and forwarded to the mobile host's current location.

Requiring the sender to instead explicitly query the location registry before
sending a packet is incompatible with the goals of supporting existing unmodi
fied correspondent hosts and of not requiring the sender to be aware of whether
a particular destination host is currently mobile. Accessing the location reg
istry through the mobile host's home network also avoids any requirement for
changes to the basic routing algorithms of the Internet, and allows each orga
nization owning some network to manage this functionality for all of its own
mobile hosts with this home network, improving scalability and easing man
ageability.

In addition, requiring the location registry to be explicitly queried in this way,
either would require this overhead to be added for all destination addresses or
would require restrictions on the assignment of IP addresses. If a host's address
encodes information as to whether it is a mobile or a stationary host, then only
packets destined for mobile host's need to cause the location registry to be
queried. However, this encoding would require permanently designating each
host into one of these two classes, greatly reducing flexibility and complicating
host and network administration.

2.3 Packet Tunneling

Some mechanism is needed to cause a packet addressed to a mobile host to be
routed to that host's current location rather than (only) to its home network.
In order to avoid distributing routing information for a mobile host throughout

Scalable Support for Transparent Mobile Internetworking 107

the Internet so that the new routing decision could be made at each hop, it
must be possible to modify each packet for a mobile host in such a way that
the routing infrastructure of the Internet will route the modified packet to a
location identified in the packet. This type of packet forwarding is known as
tunneling. For IP, tunneling may in general be done using an encapsulation
protocol or through an IP option such as loose source routing [23].

In tunneling a packet from one node to another, only these two nodes (the two
endpoints of the tunnel) need know that tunneling is taking place. Routers
between the node tunneling the packet and the new destination node to which
the packet is tunneled, simply route the packet at each hop in the same way
as any ordinary IP packet. There is thus no need to modify existing routers,
such as within the Internet backbone, nor to modify existing Internet routing
algorithms.

2.4 Caching and Consistency

The mechanisms suggested above allow packets for a mobile host to be sent to
it at its current location, but support forwarding only through an agent on the
mobile host's home network. For example, if a mobile host, say MHl, is visiting
some network, even packets from a correspondent host on this same network
must be routed through the Internet to this agent on MHl's home network,
only to then be tunneled back to the original network for delivery to MHl.
If the correspondent host in this example is actually another mobile host, say
MH2, then packets from MHl to MH2 must likewise be routed through some
agent on MH2's home network and back to the original network for delivery
to MH2. This indirect routing places unnecessary overhead on the Internet,
on each mobile host's home network, and on the agent providing forwarding
service from each home network. Such indirect routing may also significantly
increase the latency in packet delivery to a mobile host.

Correspondent hosts that have been modified to support mobility should be
able to learn the current location of a mobile host with which they are com
municating, and to then use this location to tunnel their own future packets
directly to the mobile host. By caching this location, the expense of discover
ing this location can be avoided on each individual packet sent to the mobile
host. However, this caching creates the problem of cache consistency when the
mobile host then moves to a new location, since the correspondent host's cache
will still point to the old location. In order to support smooth handoff from one
location to another, the protocol must be able to update correspondent host's

108 CHAPTER 3

caches, and should provide some support for packets that may be tunneled
based on a temporarily out-of-date cache.

3 THE BASIC MOBILE IP PROTOCOL

This section provides an overview of the current state of the basic IETF Mobile
IP protocol [20], The protocol provides transparent routing of packets to a
mobile host and requires no modification to existing routers or correspondent
hosts. No support is provided, however, for caching a mobile host's location
at correspondent hosts or for allowing correspondent hosts to tunnel packets
directly to a mobile host's current location. These features are being developed
within the IETF as a separate set of extensions to this basic protocol, and are
discussed in Section 4.

3.1 Infrastructure

Each mobile host is assigned a unique home address in the same way as any
other Internet host, within its home network. Hosts communicating with a
mobile host are known as correspondent hosts and may, themselves, be either
mobile or stationary. In sending an IP packet to a mobile host, a correspondent
host always addresses the packet to the mobile host's home address, regardless
of the mobile host's current location.

Each mobile host must have a home agent on its home network that maintains
a registry of the mobile host's current location. This location is identified as
a care-of address, and the association between a mobile host's home address
and its current care-of address is called a mobility binding, or simply a binding.
Each time the mobile host establishes a new care-of address, it must register
the new binding with its home agent so that the home agent always knows the
current binding of each mobile host that it serves. A home agent may handle
any number of mobile hosts that share a common home network.

A mobile host, when connecting to a network away from its home network, may
be assigned a care-of address in one of two ways. Normally, the mobile host
will attempt to discover a foreign agent within the network being visited, using
an agent discovery protocol. The mobile host then registers with the foreign
agent, and the IP address of the foreign agent is used as the mobile host's care-
of address. The foreign agent acts as a local forwarder for packets arriving for

Scalable Support for Transparent Mobile Internetworking 109

the mobile host and for all other locally visiting mobile hosts registered with
this foreign agent. Alternatively, if the mobile host can obtain a temporary
local address within the network being visited (such as through DHCP [4]), the
mobile host may use this temporary address as its care-of address.

While a mobile host is away from its home network, a mobile host's home agent
acts to forward all packets for the mobile host to its current location for delivery
locally to the mobile host. Packets addressed to the mobile host that appear
on the mobile host's home network must be intercepted by the mobile host's
home agent, for example by using "proxy" ARP [24] or through cooperation
with the local routing protocol in use on the home network.

For each such packet intercepted, the home agent tunnels the packet to the
mobile host's current care-of address. If the care-of address is provided by a
foreign agent, the foreign agent removes any tunneling headers from the packet
and delivers the packet locally to the mobile host by transmitting it over the
local network on which the mobile host is registered. If the mobile host is using
a locally obtained temporary address as a care-of address, the tunneled packet
is delivered directly to the mobile host.

Home agents and foreign agents may be provided by separate nodes on a net
work, or a single node may implement the functionality of both a home agent
(for its own mobile hosts) and a foreign agent (for other visiting mobile hosts).
Similarly, either function or both may be provided by any of the existing IP
routers on a network, or they may be provided by separate support hosts on
that network.

3.2 Agent Discovery

The agent discovery protocol operates as a compatible extension of the existing
ICMP router discovery protocol [3]. It provides a means for a mobile host to
detect when it has moved from one network to another, and for it to detect
when it has returned home. When moving into a new foreign network, the
agent discovery protocol also provides a means for a mobile host to discover a
suitable foreign agent in this new network with which to register.

On some networks, depending on the particular type of network, additional
link-layer support may be available to assist in some or all of the purposes of
the agent discovery protocol. A standard protocol must be defined for agent
discovery, however, at least for use on networks for which no link-layer support

n o CHAPTER 3

is available. By defining a standard protocol, mobile hosts are also provided
with a a common method for agent discovery that can operate in the same way
over all types of networks. If additional link-layer support is available, it can
optionally be used by mobile hosts that support it to assist in agent discovery.

Home agents and foreign agents periodically advertise their presence by mul
ticasting an agent advertisement message on each network to which they are
connected and for which they are configured to provide service. Mobile hosts
listen for agent advertisement messages to determine which home agents or
foreign agents are on the network to which they are currently connected. If a
mobile host receives an advertisement from its own home agent, it deduces that
it has returned home and registers directly with its home agent. Otherwise,
the mobile host chooses whether to retain its current registration or to register
with a new foreign agent from among those it knows of.

While at home or registered with a foreign agent, a mobile host expects to
continue to receive periodic advertisements from its home agent or from its
current foreign agent, respectively. If it fails to receive a number of consecutive
expected advertisements, the mobile host may deduce either that it has moved
or that its home agent or current foreign agent has failed. If the mobile host
has recently received other advertisements, it may attempt registration with
one of those foreign agents. Otherwise, the mobile host may multicast an agent
solicitation message onto its current network, which should be answered by an
agent advertisement message from each home agent or foreign agent on this
network that receives the solicitation message.

3.3 Registration

Much of the basic IETF Mobile IP protocol deals with the issue of registration
with a foreign agent and with a mobile host's home agent. When establishing
service with a new foreign agent, a mobile host must register with that foreign
agent, and must also register with its home agent to inform it of its new care-of
address. When instead establishing a new temporarily assigned local IP address
as a care-of address, a mobile host must likewise register with its home agent to
inform it of this new address. Finally, when a mobile host returns to its home
network, it must register with its home agent to inform it that it is no longer
using a care-of address.

To register with a foreign agent, a mobile host sends a registration request
message to the foreign agent. The registration request includes the address of

Scalable Support for Transparent Mobile Internetworking 111

the mobile host and the address of its home agent. The foreign agent forwards
the request to the home agent, which returns a registration reply message to
the foreign agent. Finally, the foreign agent forwards the registration reply
message to the mobile host. When registering directly with its home agent,
either when the mobile host has returned home or when using a temporarily
assigned local IP address as its care-of address, the mobile host exchanges the
registration request and reply messages directly to its home agent.

Each registration with a home agent or foreign agent has associated with it a
lifetime period, negotiated during the registration. After this lifetime period
expires, the mobile host's registration is deleted. In order to maintain continued
service from its home agent or foreign agent, the mobile host must re-register
within this period. The lifetime period may be set to infinity, in which case no
re-registration is necessary. When registering with its home agent on returning
to its home network, a mobile host registers with a zero lifetime and deletes its
current binding, since a mobile host needs no services of its home agent while
at home.

3.4 Registration Authentication

All registrations with a mobile host's home agent must be authenticated in order
to guard against malicious forged registrations that could arbitrarily redirect
future packets destined to a mobile host. In particular, without authentication,
an attacker could register a false care-of address for a mobile host, causing the
mobile host's home agent to misroute packets destined for the mobile host.
An attacker could, for example, reroute the mobile host's packets in order to
eavesdrop on its traffic, alter any packets destined for the mobile host, or deny
service to the mobile host by misdirecting its packets. Registration authentica
tion must verify that the registration request legitimately originated with the
mobile host, that it has not been altered in transit to the home agent, and that
an old registration request is not being replayed (perhaps long after the mobile
host was at that care-of address).

Although any authentication algorithm shared by a mobile host and its home
agent may be used, the IETF protocol defines a standard authentication al
gorithm based on the MD5 message-digest function [26], using a secret key
shared between these two nodes. MD5 is a one-way hash function, in that it is
considered to be computationally infeasible to discover the input to the hash
function given its output, or to find another sequence of input that produces
the same output. A "keyed MD5" algorithm is used, in which the MD5 hash

112 CHAPTER 3

over the bytes of the shared secret key and the important fields of the mes
sage is included in each registration message or reply; the secret key itself is
not included in the message sent over the network. This authentication value
allows the receiver to verify the source of the message and the fact that none of
the important fields in the message (included in the hash) have been changed
since the message was sent. If the hash matches at the receiver, the registration
message must have been generated by a node knowing the secret key and must
not have been modified in transit; without knowledge of the secret key included
in the MD5 hash, no other node can modify or forge a registration message.

Administration of the shared secret key should be fairly simple, since both the
mobile host and its home agent are owned by the same organization (both
are assigned IP addresses in the home network owned by that organization).
Manual configuration of the shared key may be performed, for example, any
time the mobile host is at home, while other administration of these nodes is
being performed.

Replay protection for registration messages may be provided under the IETF
Mobile IP protocol using either nonces or timestamps. Using nonces, the home
agent generates a random value and returns it to the mobile host (in cleartext)
in its registration reply message, and the mobile host must include this same
value in its next registration request message. If the value in the message does
not match on the next registration attempt, for example because the mobile
host has lost its saved state containing this value, the home agent returns a
registration error and includes the correct new value in the registration reply.
The next registration attempt by the mobile host should then succeed, and no
other node can use this value in the message to forge a registration message,
since it does not know the share secret key used in the message authentication
that must be computed and included in each registration message. The use of
timestamps for replay protection is similar, except that the timestamp included
in the registration message must closely match the current time at the receiver.

3.5 Tunneling

The Mobile IP protocol allows the use of any tunneling method shared between
a mobile host's home agent and its current foreign agent (or the mobile host
itself when a temporary local IP address is being used as a care-of address).
During registration with its home agent, a list of supported tunnehng methods
is communicated to the home agent. For each packet later tunneled to the
mobile host, the home agent may use any of these supported methods.

Scalable Support for Transparent Mobile Internetworking 113

0

1 Vers

4

iHL

8

TOS

1 IP Identification

1 TTL Mobile IP

16 19 31

Total Length 1

Flags Fragment Offset 1

1P Header Checksum 1

1 Tunnel Source IF Address 1

1 Care-of Address 1

1 Vers IHL TOS

1 IP Identification

1 ^̂'- Orig Protocol

Total Length 1

Flags Fragment Offset 1
1

IP Header Checksum 1

1 Original Source IP Address 1

1 IP Address of Mobile Host 1

TCP/U DP/etc

Figure 1 Mobile IP tunneling using "IP in IP" encapsulation

The protocol requires support for "IP in IP" encapsulation for tunneling, as
illustrated in Figure 1. In this method, to tunnel an IP packet, a new IP header
is wrapped around the existing packet; the source address in the new IP header
is set to the address of the node tunneling the packet (the home agent), and the
destination address is set to the mobile host's care-of address. The new header
added to the packet is shaded in gray in Figure 1. This type of encapsulation
may be used for tunneling any packet, but the overhead for this method is the
addition of an entire new IP header (20 bytes) to the packet.

Support is also recommended for a more efficient "minimal" tunneling proto
col [10, 12], which adds only 8 or 12 bytes to each packet. This tunneling
protocol is illustrated in Figure 2, with the new header added to the packet
shaded in gray. Here, only the modified fields of the original IP header are

114 CHAPTER 3

16 19 31

1 Vers IHL TOS

1 IP Identification

1 TTL Mobile IP

Total Length 1

Flags Fragment Offset 1

IP Header Checksum 1

1 Tunnel Source IP Address 1

1 Care-of Address 1

1 Orig Protocol S Tunnel Header Checksum 1

1 iP Address of Mobile Host 1

1 Original IP Source Address (only present if S set) 1

TCP/U DP/etc 1

F i g u r e 2 Mobile IP tunneling using the minimal tunneling protocol

copied into a new forwarding header added to the packet between the original
IP header and any transport-level header such as TCP or UDP. The fields in
the original IP header are then replaced such that the source address is set to
the address of the node tunneling the packet (only if the packet is being tun
neled by a node other than the original sender), and the destination address is
set to the mobile host's care-of address. This type of encapsulation adds less
overhead to each packet, but it cannot be used with packets that have already
been fragmented by IP, since the small forwarding header does not include the
fields needed to represent that the original packet is a fragment rather than a
whole IP packet.

Scalable Support for Transparent Mobile Internetworking 115

4 ROUTE OPTIMIZATION

The basic IETF Mobile IP protocol fulfills its primary goal of providing trans
parent packet routing to mobile hosts operating in the Internet. However,
all packets for a mobile host away from home must be routed through the
mobile host's home network and home agent, severely limiting the performance
transparency of the protocol and creating a significant bottleneck to potential
scalability.

As suggested in Section 2, what is needed is the ability for correspondent hosts
to be able to cache the location of a mobile host and to then tunnel packets
directly to the mobile host at its current location. This functionality has be
come known within the IETF as route optimization, and a group consisting
of Andrew Myles of Macquarie University, Charles Perkins of IBM, and the
author have been working particularly to develop this functionality within the
IETF protocol [14]. This section provides an overview of the current state of
the protocol extensions for route optimization.

4.1 Location Caching

Any node may optimize its own communication with mobile hosts by maintain
ing a binding cache in which it caches the binding of one or more mobile hosts.
When sending a packet to a mobile host, if the sender has a binding cache entry
for this mobile host, it may tunnel its own packet directly to the care-of address
indicated in the cached binding. Likewise, a router when forwarding a packet
may tunnel the packet directly to the destination mobile host's care-of address
if the router has an entry in its binding cache for the destination IP address
of the packet; such a router may thus optimize the mobile host communication
for a group of nodes not supporting the route optimization extensions.

In the absence of any binding cache entry, packets destined for a mobile host
will be routed to the mobile host's home network in the same way as any other
IP packet, and are then tunneled to the mobile host's current care-of address by
the mobile host's home agent. This is the only routing mechanism supported by
the basic Mobile IP protocol. With route optimization, though, as a side effect
of this indirect routing of a packet to a mobile host, the original sender of the
packet is informed of the mobile host's current mobility binding (Section 4.3),
giving the sender an opportunity to cache the binding.

116 CHAPTER 3

A node may create a binding cache entry for a mobile host only when it has
received and authenticated the mobile host's binding. Likewise, a node may
update an existing binding cache entry for a mobile host, such as after the
mobile host has moved to a new foreign agent, only when it has received and
authenticated the mobile host's new binding.

A binding cache will, by necessity, have a finite size. Any node implement
ing a binding cache may manage the space in its cache using any local cache
replacement policy such as LRU. If a packet is sent to a destination address
for which the cache entry has been dropped from the cache, the packet will
be routed normally to the mobile host's home network and will be tunneled to
the mobile host's care-of address by its home agent. As when a binding cache
entry is initially created, this indirect routing to the mobile host will result in
the original sender of the packet being informed of the mobile host's current
binding, allowing it to add this entry again to its binding cache.

Optimal routing of packets from a correspondent host can be achieved if the cor
respondent host implements a binding cache. A router implementing a binding
cache can also provide routing assistance for packets that it forwards from
correspondent hosts that do not implement the Mobile IP route optimization
extensions. For example, a local network of nodes that do not implement route
optimization could be supported by a common first-hop router that maintains
a binding cache. Router software should be configurable, however, to allow
disabling the maintenance of a binding cache, such as within backbone routers,
where little or no benefit of caching could be obtained.

4.2 Foreign Agent HandofF

When a mobile host moves and registers with a new foreign agent, the basic
Mobile IP protocol does not notify the mobile host's previous foreign agent
that the host has moved. After the mobile host's new registration at its home
agent, IP packets intercepted by the home agent are tunneled to the mobile
host's new care-of address, but any packets in flight that had already been
tunneled by the home agent to the old care-of address are lost and are assumed
to be retransmitted by higher-level protocols if needed. The old foreign agent
eventually deletes the mobile host's registration after the expiration of the
lifetime period established when the mobile host registered with that foreign
agent.

Scalable Support for Transparent Mobile Internetworking 117

Route optimization extends the registration protocol to provide a means for
a mobile host's previous foreign agent to be reliably notified that the mobile
host has moved, and optionally to inform it of the mobile host's new binding.
When registering with a foreign agent, a mobile host may establish a "regis
tration key," acting as a session key for its registration with this foreign agent.
When the mobile host later moves and registers a different care-of address, it
may notify this previous foreign agent by sending it a binding update message;
this binding update message is authenticated in the same way as registration
messages between a mobile host and its home agent, but in this case, using the
registration key established when it registered with that foreign agent as the
shared secret key for the authentication. After being established, such a regis
tration key could also optionally be used to encrypt packets sent between the
mobile host and its foreign agent, in order to improve privacy in the common
case in which they are connected by a wireless link, but such use has not yet
been considered within the IETF.

Notifying the previous foreign agent that the mobile host has moved allows
packets in flight to this foreign agent, as well as packets tunneled from corre
spondent hosts with out-of-date binding cache entries for the mobile host (they
have not yet learned that the mobile host has moved), to be forwarded to the
mobile host's new care-of address. When notified of the mobile host's new
binding, the previous foreign agent may create a binding cache entry for the
mobile host, acting as a "forwarding pointer" to its new location. This notifi
cation also allows any resources consumed by the mobile host's registration at
the previous foreign agent (such as radio channel reservations) to be released
immediately, rather than waiting for the mobile host's registration to expire.

Such a "forwarding pointer" binding cache entry at a mobile host's previous
foreign agent is treated in the same way as any other binding cache entry. In
particular, this binding cache entry may be deleted from the cache at any time.
Suppose a node (such as this previous foreign agent) receives some packet that
has been tunneled to this node, but this node is unable to deliver the packet
locally to the destination mobile host (it is not the mobile host itself, and it does
not believe that it is currently serving as a foreign agent for this mobile host).
In this case, the node tunnels the packet to the mobile host's own address,
which will cause the packet to reach the home network and be intercepted by
the mobile host's home agent in the same way as any other packet addressed
to the mobile host. The home agent will then extract and re-tunnel the packet
to the mobile host's current location.

118 CHAPTER 3

4.3 Binding Cache Updates

When a mobile host's home agent intercepts a packet from the home network
and tunnels it to the mobile host, the home agent may deduce that the original
sender of the packet has no binding cache entry for the destination mobile
host. In this case, the home agent sends a binding update message to the
sender, informing it of the mobile host's current binding. No acknowledgement
for this binding update is needed, since any future packets intercepted by the
home agent from this sender for the mobile host will serve to cause transmission
of a new binding update.

Similarly, when a node receives a packet that was tunneled to this node, if the
node has a binding cache entry for the destination IP address of the packet
carried within the tunnel, the node may deduce that the original sender of the
packet has an out-of-date binding cache entry for this destination mobile host
(pointing to this node). In this case, the node sends a binding warning message
to the original sender of the packet, advising it to send a binding inquire message
to the mobile host's home agent to request the mobile host's current binding as
a binding update. As with the binding update message from the home agent,
no acknowledgement for this binding warning message is needed, as any future
packets tunneled to the same node from this sender for the mobile host will
serve to cause transmission of a new binding warning.

With the exception of the notification to a mobile host's previous foreign agent
(which is sent by the mobile host itself), all binding update messages are sent by
a mobile host's home agent, which is in complete control of which correspondent
hosts it allows to learn the mobile host's binding. If, for any local administrative
reasons, the home agent wants to keep a particular mobile host's current binding
private (from all or only some correspondent hosts), it is not required to send
a binding update that would otherwise be sent by the protocol.

Included in each binding update message sent by the home agent is an indication
of the time remaining in the lifetime associated with the mobile host's current
registration. Any binding cache entry established or updated in response to
this binding update must be marked to be deleted after the expiration of this
period. A node wanting to provide continued service with a particular binding
cache entry may attempt to reconfirm that binding before the expiration of this
lifetime period. Binding cache entry reconfirmation may be appropriate when
the node has indications (such as an open transport-level connection to the
mobile host) that the binding cache entry is still needed. This reconfirmation

Scalable Support for Transparent Mobile Internetworking 119

is performed by the node actively requesting the mobile host's home agent to
send a new binding update message to the node.

Each node must provide some mechanism to limit the rate at which it sends
binding update or binding warning messages to the same node about any given
binding. Some nodes will not implement the route optimization extensions
of the Mobile IP protocol, and those that do may be limited in the number
of bindings they can cache or the speed with which they can process these
messages. A new binding update or binding warning message should not be
sent for each individual packet described above that is received over a short
period of time; rather, some minimum interval should be maintained between
binding update or binding warning messages, and after a small number of these
messages have been sent to the same node about some binding, the sending
node must quickly increase the interval between new binding update or binding
warning messages.

4.4 Binding Update Authentication

All messages that add or change an entry in a binding cache must be au
thenticated using the same type of authentication algorithm as is used in the
basic Mobile IP protocol for registration with a mobile host's home agent (Sec
tion 3.4). This authentication verifies the source of the message and ensures
that none of the important fields of the message have been changed since the
message was sent.

In particular, a node receiving a binding update message must verify the mes
sage's authentication before altering the contents of its binding cache in re
sponse to the message. This requirement for authentication covers all binding
update messages: those sent to build or update a binding cache entry in re
sponse to a packet routed indirectly to a mobile host, as well as those sent to
notify a mobile host's previous foreign agent that it has moved. Without such
authentication, a malicious node anywhere in the Internet could forge a binding
update message, allowing it to arbitrarily intercept or redirect packets destined
for any other node in the Internet.

In the basic Mobile IP protocol, only a mobile host's registration with its home
agent must be authenticated, allowing the simple solution of a manually con
figured secret key shared between the mobile host and its home agent. For
route optimization, a home agent must in general be able to send an authen
ticated binding update message to any other node in the Internet, since any

120 CHAPTER 3

node may want to maintain a binding cache containing entries for one or more
mobile hosts served by that home agent. This form of general authentication
is currently complicated by the lack of a standard key management or authen
tication protocol in the Internet, and by the lack of any generally available
key distribution infrastructure; patent restrictions and export controls on the
necessary cryptographic algorithms have slowed development and deployment
of such facilities in the Internet.

A number of restricted authentication schemes for route optimization are possi
ble in the short term, however, before the necessary protocols and infrastructure
are available. The route optimization extensions within the IETF [14] have cur
rently been designed to utilize manually configured shared secret keys in the
same way as the authentication used in registration in the basic Mobile IP pro
tocol, but the required shared keys may be configured to reduce the number of
pairwise keys that must be maintained. In particular, by manually establishing
a shared secret key with a particular home agent, a node is able to receive
authenticated binding updates (and thus to maintain binding cache entries) for
all mobile hosts served by this home agent; if no shared secret key is available
for some node, no binding update messages are sent by the home agent to that
node, and only the basic Mobile IP protocol is used for packets sent to mobile
hosts from that node.

This configuration of manually established shared secret keys is fairly natural,
since the mobile hosts served by any particular home agent, in general, all be
long to a single organization (that also owns the home agent and the home
network). If the user of a node often collaborates with any number of peo
ple from this organization, establishing the shared secret key with this home
agent may be worthwhile. The route optimization procedures described in Sec
tions 4.2 and 4.3 have been designed with this restricted style of authentication
in mind, and may be modified when more general authentication mechanisms
become available.

This type of authentication is secure as long as the shared secret key remains
secret, and it is not subject to export restrictions since it does not use en
cryption. A simpler style of authentication that also does not use encryption
was proposed within the IETF for the IMHP protocol [13, 17, 22], and was
also used in recent mobile routing work done at Harvard University [1]. This
scheme relies on a general property of routing in the Internet in which nodes
not connected to the normal routing path of a packet cannot eavesdrop on or
reroute that packet. By including a randomly generated authenticator value in
a packet sent to another node, the original sender can authenticate the reply
from that node, by requiring that the same random value is returned in the

Scalable Support for Transparent Mobile Internetworking 121

reply. Although this simpler scheme requires no configuration of shared secret
keys, it is less secure, since this general property of Internet routing security has
been severely weakened by increasing attacks in recent years; in addition, this
scheme is further weakened, since any of the links over which such an authen
tication may take place may be wireless, enhancing the ability of any attacker
to eavesdrop on the exchange containing the authenticator value.

5 PROTOCOL SCALABILITY

The combination of the basic IETF Mobile IP protocol described in Section 3
and the extensions for route optimization described in Section 4 can provide
highly scalable support for packet routing to large numbers of mobile hosts in
the Internet. This section considers the different factors affecting the scalability
of the protocol.

5.1 The Home Network

Each organization owning an IP network supports all mobile hosts for which
this is the home network. As new networks are added to the Internet, each
deploys its own home agent to support its own mobile hosts. This arrangement
allows mobility support within the home network to scale as new organizations
and new networks connect to the Internet, avoiding any centralized support
bottleneck. Since a home agent maintains the location registry and tunnels
packets only for the mobile hosts for which this is the home network, this
approach allows these functions to scale with the number of networks containing
mobile hosts.

Each organization may also control the level of expense or effort which they
expend to support their own mobile hosts, and their own mobile hosts directly
benefit from these expenditures. For example, an organization wanting to pro
vide higher performance or more reliable access to the home agent for any of
its mobile hosts may install higher bandwidth or additional links connecting
their own home network to the Internet. The functionality of the home agent
may also be replicated or distributed on multiple nodes on the home network;
as long as a consistent view of the bindings of this home network's mobile hosts
is maintained, such arrangements are entirely at the option of the organization
owning the network and need not affect other nodes within the Internet. The

122 CHAPTER 3

home agent functionality and the home network may be scaled to support any
number of mobile hosts owned by this organization.

While a mobile host is at home, it is treated in the same way as any ordinary IP
host, and no overhead is added to packets sent to it while at home. When the
mobile host leaves home and registers a care-of address, its home agent begins
tunneling packets for it, binding cache entries are gradually created at different
correspondent hosts or routers, and they then begin tunneling packets for the
mobile host directly to the mobile host's current location. As the mobile host
moves from one care-of address to another, the binding caches are updated as
needed. When the mobile host later returns home, this same mechanism causes
these binding cache entries to be deleted; packets destined to this mobile host
are then sent in the same way as any IP packets sent to an ordinary stationary
host that has never been mobile.

It thus becomes feasible to upgrade all hosts, at any convenient time, to be
"mobile capable," with no performance penalty to the network or to the host
for the extra capability of being mobile [11]. Any mobile capable host could
then become mobile at any future time as needed simply by leaving its home
network and registering elsewhere. This property simplifies the installation of
new hosts, since no decision need be made as to whether each host will need to
be mobile at any future time.

5.2 The Foreign Network

Each organization owning an IP network that allows mobile hosts to visit de
ploys its own foreign agent to support mobile hosts visiting that network. This
arrangement allows mobility support within the foreign network to scale as new
organizations and new networks connect to the Internet. Since a foreign agent
maintains a list of only those mobile hosts currently registered with it, and
only locally delivers packets for these mobile hosts, this approach allows these
functions to scale with the number of networks that allow mobile hosts to visit.

In addition, each organization owning an IP network allowing mobile hosts to
visit may control its own resource allocation within that network as needed
by any local policies of that organization. For example, a foreign agent may
be configured to limit the number of simultaneous visitors that it allows to
register; if additional mobile hosts request registration, the foreign agent may
return an error to each indicating that registration has been denied due to
local resource allocation limits. Any organization may install additional or

Scalable Support for Transparent Mobile Internetworking 123

more powerful foreign agents or higher bandwidth local networks in order to
provide any desired level of support for visiting users. Each organization may
also impose any administrative policies on the provision of service to visiting
mobile hosts. For example, they may only allow mobile hosts for which prior
billing arrangements have been established to register.

By deploying one or more foreign agents, the protocol places no new demands
on IP address space allocation, avoiding the limits to scalability that would
otherwise be imposed by the current limits on available IP address space. Any
organization wanting to provide service for visiting mobile hosts but not willing
to deploy a foreign agent may support any number of visitors by reserving a por
tion of their local IP address space for dynamic allocation as care-of addresses
for visiting mobile hosts.

5.3 Binding Caches

The deployment and operation of a binding cache in any node is only an opti
mization to the protocol, and no binding caches are required, although the use
of binding caches is highly desirable. Each binding cache may scale to any size
as needed by any local administrative policies, but no specific binding cache
size is imposed by the protocol. Similarly, any local cache replacement policy
may be used to manage the space within the cache.

If the binding cache at some node is too small to be able to store a cached
binding for each mobile host with which this node is actively communicating,
the local cache replacement policy determines which entries are retained in the
cache. For example, the use of LRU replacement will keep the most recently
used entries in the cache. Other possible cache replacement policies might
weight each entry by the number of times it had been recently accessed, or by
some administratively assigned priority based on a list of preferred hosts for
which bindings should be cached. Such decisions are entirely local to the node
(and organization) implementing the binding cache.

The use of binding caches improves the scalability of the protocol by avoiding
the need to send most packets to and from the mobile host's home network, and
by avoiding the need for the home agent in the mobile host's home network to
handle each packet. The binding cache in a correspondent host maintains cache
entries only for the individual mobile hosts with which that correspondent host
is communicating. This approach scales well, as each individual correspondent
host will at any time only be communicating with a limited number of mobile

124 CHAPTER 3

hosts. Furthermore, since in general the set of mobile hosts with which a
correspondent host is communicating will change only slowly over time, any
reasonable cache replacement policy such as LRU should work well.

5.4 Impact on the Network

No changes to the routing infrastructure of the Internet are required to support
Mobile IP. By tunneling packets to a mobile host, all routers through which
the tunneled packet must pass treat the packet exactly as any ordinary IP
packet, using existing Internet routing algorithms. The routing scalability of
the Internet is thus maintained, since each router need not know the location
of any individual mobile hosts, even though it may forward packets to them;
only the two endpoints of the tunnel need know that tunneling is taking place
or need care that mobility is the purpose of the tunneling. The Mobile IP
protocol can thus be deployed incrementally, with each organization adding
home agents or foreign agents as the need arises. Any or all hosts and routers
can be upgraded at any time, if desired, to support binding caches.

By using route optimization, the overall overhead on the Internet can be min
imized. Routing packets indirectly to a mobile host through the mobile host's
home network and home agent places unnecessary overhead on all links and
nodes along this path, but route optimization allows this longer, indirect path
to be avoided. Route optimization also reduces the resource demands on each
home network, and avoids any possible performance bottleneck at the home
network or at the home agent.

6 CONCLUSION

Recent increases in the availability of mobile computers and wireless networks
provides the opportunity to integrate these technologies seamlessly into the
Internet. Mobile users should be able to move about, transparently remaining
connecting to the Internet, utilizing the best available network connection at
any time, whether wired or wireless. For example, a mobile host in its owner's
office may be connected to an Ethernet, but when disconnected and carried
away, it could transparently switch to a connection through a high-speed local
area wireless network. While moving around within the building, the host could
switch transparently from one wireless subnet to another, and when leaving the
building, could again switch transparently to a wide-area wireless data service.

Scalable Support for Transparent Mobile Internetworking 125

The current work in the IETF Mobile IP Working Group provides a good ap
proach to reaching this vision of seamless transparent mobility. These protocols
can efficiently scale to very large numbers of mobile hosts operating in a large
internetwork. Such scalability will become crucial as the Internet continues its
exponential growth, and as mobile users begin to account for a growing fraction
of this population.

Acknowledgements

This paper has benefited greatly from discussions with many other participants
in the Mobile IP Working Group of the Internet Engineering Task Force (IETF).
I would particularly like to thank Andrew Myles and Charlie Perkins for their
collaboration in our work within the IETF. I would also like to thank the
anonymous referees for their comments and suggestions which have helped to
improve the clarity of the paper. The protocols described in this paper are
a product of the Mobile IP Working Group of the IETF, but the views and
conclusions expressed here are those of the author.

This research was supported in part by the Wireless Initiative of the Informa
tion Networking Institute at Carnegie Mellon University, and by the National
Science Foundation under CAREER Award NCR-9502725.

REFERENCES

[1] Trevor Blackwell, Kee Chan, Koling Chan, Thomas Charuhas, James Gw-
ertzman. Brad Karp, H. T. Kung, W. David Li, Dong Lin, Robert Morris,
Robert Polansky, Diane Tang, Cliff Young, and John Zao. Secure short
cut routing for Mobile IP. In Proceedings of the USENIX Summer 1994
Technical Conference, June 1994.

[2] Scott Bradner and Allison Mankin. The recommendation for the IP Next
Generation protocol. Internet Request For Comments RFC 1752, January
1995.

[3] Stephen E. Deering. ICMP router discovery messages. Internet Request
For Comments RFC 1256, September 1991.

[4] Ralph Droms. Dynamic Host Configuration Protocol. Internet Request
For Comments RFC 1541, October 1993.

126 CHAPTER 3

[5] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing
(CIDR): an address assignment and aggregation strategy. Internet Request
For Comments RFC 1519, September 1993.

[6] John loannidis, Dan Duchamp, and Gerald Q. Maguire Jr. IP-based pro
tocols for mobile internetworking. In Proceedings of the SIGCOMM ^91
Conference: Communications Architectures & Protocols, pages 235-245,
September 1991.

[7] John loannidis, Gerald Q. Maquire Jr, and Steve Deering. Protocols for
supporting mobile IP hosts. Internet Draft, June 1992. Work in progress,

[8] John loannidis and Gerald Q, Maguire Jr. The design and implementation
of a mobile internetworking architecture. In Proceedings of the Winter 1993
USENIX Conference, pages 491-502, January 1993.

[9] David B. Johnson. Mobile host internetworking using IP loose source
routing. Technical Report CMU-CS-93-128, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, February 1993.

[10] David B. Johnson. Transparent Internet routing for IP mobile hosts. In
ternet Draft, July 1993. Work in progress.

[11] David B. Johnson. Ubiquitous mobile host internetworking. In Proceedings
of the Fourth Workshop on Workstation Operating Systems, pages 85-90,
October 1993.

[12] David B. Johnson. Scalable and robust internetwork routing for mobile
hosts. In Proceedings of the 14th International Conference on Distributed
Computing Systems, pages 2-11, June 1994.

[13] David B. Johnson, Andrew Myles, and Charles Perkins. The Internet
Mobile Host Protocol (IMHP). Internet Draft, February 1994. Work in
progress.

[14] David B. Johnson, Charles Perkins, and Andrew Myles. Route optimiza
tion in Mobile IP. Internet Draft, March 1995. Work in progress.

[15] Frank Kastenholz and Craig Partridge. Technical criteria for choosing
IP:the next generation (IPng). Internet Draft, May 1994. Work in progress.

[16] J. Mogul and J. Postel. Internet standard subnetting procedure. Internet
Request For Comments RFC 950, August 1985.

Scalable Support for Transparent Mobile Internetworking 127

[17] Andrew Myles, David B. Johnson, and Charles Perkins. A mobile host
protocol supporting route optimization and authentication. IEEE Journal
on Selected Areas in Communications, special issue on Mobile and Wireless
Computing Networks, 13(5):839-849, June 1995.

[18] Andrew Myles and Charles Perkins. Mobile IP (MIP). Internet Draft,
September 1993. Work in progress.

[19] John Penners and Yakov Rekhter. Simple Mobile IP (SMIP). Internet
Draft, September 1993. Work in progress.

[20] Charles Perkins, editor. IP mobility support. Internet Draft, May 1995.
Work in progress.

[21] Charles Perkins and Yakov Rekhter. Support for mobility with connec
tionless network layer protocols (transport layer transparency). Internet
Draft, January 1993. Work in progress.

[22] Charles E. Perkins, Andrew Myles, and David B. Johnson. The Internet
Mobile Host Protocol (IMHP). In Proceedings of INET9i/JENC5: The
Annual Conference of the Internet Society, held in conjunction with 5th
Joint European Networking Conference, pages 642-1-642-9, June 1994.

[23] J. B. Postel, editor. Internet Protocol. Internet Request For Comments
RFC 791, September 1981,

[24] J. B. Postel. Multi-LAN address resolution. Internet Request For Com
ments RFC 925, October 1984.

[25] Yakov Rekhter and Charles Perkins. Short-cut routing for mobile hosts.
Internet Draft, July 1992. Work in progress.

[26] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request
For Comments RFC 1321, April 1992.

[27] Marshall T. Rose. The Open Book: A Practical Perspective on OSI. Pren
tice Hall, Englewood Cliffs, NJ, 1990.

[28] Gursharan S. Sidhu, Richard F. Andrews, and Alan B. Oppenheimer. In
side AppleTalk. Addison Wesley, Reading, Massachusetts, 1990.

[29] C. Sunshine and J. Postel. Addressing mobile hosts in the ARPA Internet
environment. Internet Engineering Note lEN 135, March 1980.

128 CHAPTER 3

[30] Fumio Teraoka, Kim Claffy, and Mario Tokoro. Design, implementation,
and evaluation of Virtual Internet Protocol. In Proceedings of the 12th
International Conference on Distributed Computing Systems^ pages 170-
177, June 1992.

[31] Fumio Teraoka and Keisuke Uehara. The virtual network protocol for host
mobility. Internet Draft, April 1993. Work in progress.

[32] Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro. A network archi
tecture providing host migration transparency. In Proceedings of the SIG-
COMM '91 Conference: Communications Architectures & Protocols^ pages
209-220, September 1991.

[33] Paul Turner. NetWare communications processes. NetWare Application
Notes, Novell Research, pages 25-81, September 1990.

[34] Hiromi Wada, Tatsuya Ohnishi, and Brian Marsh. Packet forwarding for
mobile hosts. Internet Draft, November 1992. Work in progress.

4
LOCATION MANAGEMENT

FOR NETWORKS WITH MOBILE
USERS

B. R. Badr inath and Tomasz Imielinski

Department of Computer Science

Rutgers University, New Brunswick, NJ 08903

USA

ABSTRACT

Location management is one of the the most fundamental problems facing mobile net
working today. How does the network know where the intended recipient of a message
is currently located? Where should the information about the current location of a
user be stored? Who should be responsible for determining user's location? These are
examples of questions which location management attempts to address. Different lo
cation management schemes for networks such as Internet and analog voice networks
such as cellular have been proposed. Unfortunately, the picture that has emerged so
far is very confusing with several overlapping terms introduced that contribute to a
ballooning terminology. It does not help of course that the problem is being actively
addressed by two large and distinct communities: the Internet community and the
cellular/PCN community with each group favoring its own terminology. The objec
tive of this paper is to offer a general and hopefully a simplifying view of location
management. We will try to explain a number of different approaches to location
management using a small set of simple terms. We will show differences and similari
ties between different methods and generally discuss the most important performance
parameters. We will also discuss future research directions.

1 I N T R O D U C T I O N

Location management is one the most fundamental problems facing mobile net
working today. In this paper, we present an overview of location management
schemes with an emphasis on the basic approaches used in cellular networks
and the Internet. We will assume a general cellular architecture, where the
system is viewed as a collection of cells, as discussed in the chapter 1. The

130 CHAPTER 4

physical location of a mobile user is defined as the cell or the Mobile Support
Station (MSS) under which the user currently resides. The coverage of a cell
varies from a few miles, as in the current cellular networks, to a few meters, as
proposed for the future Personal Communications Network (PCN). Addition
ally, each network user has a unique identity such as ID number (e.g., social
security number), IP address, or terminal equipment number that enables the
network to identify the user. This forms the logical identifier of a user.

The mapping between the logical identifier of a user and his physical location
is called binding. If binding does not depend on time and is fixed, then the
problem of routing information to the recipient can be done using standard
routing techniques.^ The need for location management occurs when binding
changes over time.

As we have mentioned before, location management is actively studied in two
different environments: the Internet environment and the cellular telephony
environment. The Internet oriented work stems from the efforts of the Mo-
bilelP working group [15]. Work on MobilelP schemes deals with connection
less, packet oriented communication, while the cellular/PCN work deals with
a connection oriented environment which typical for voice applications. In
the cellular/PCN context the location of the recipient of a call is determined
during the call set up (connection setup). Once the location of the recipient
is established, the path of the route is fixed. In the Internet, initial packets
sent to a mobile host may not be "aware" of the current location and hence
take a detour, while subsequent packets may be routed in a more optimal way
when the location is determined. There is no separation of location manage
ment and connection management in MobilelP, while such separation exists in
cellular/PCN solutions.

The structure of cellular/PCN networks is typically hierarchical with a hierar
chy of location servers situated ''above" the MSS (base stations) Figure 1. The
Internet does not typically conform to a hierarchical topology.^

Finally, in terms of actual experience, there is a huge discrepancy between the
use of MobilelP and the use of location management schemes in cellular tele
phone networks. The cellular telephone system has been in operation for a
number of years, with millions of mobile cellular phone users across the coun
try. On the other hand, there are only "anecdotal" mobile user experiences

^ These include either IP routing or call set up methods used in standard telephone
networks

•^However, there has been a proposal to introduce border routers to handled location
updates in Mobile IP[1]

Location Management 131

f

L , c = ^ \

>() i .

/Y
/ \

To fixed network
/

\

Location server

Location server

^ x
Base stations

Mobile Units

Figure 1 Structure of PCN architecture

132 CHAPTER 4

in Internet^. There has been simply no practical experience with MobilelP
proposals involving massive numbers of users, due to the lack of appropri
ate infrastructure supporting wireless and mobile data communication today.
Moreover, as we elaborate later, there has been very little work reported on
modeling performance of MobilelP proposals. Thus, one should treat the work
on MobilelP as still being in its embryonic form.

One should also point out the fundamental philosophical difference that exists
between the Internet and cellular/PCN communities. The Internet community
essentially believes that the fixed network is "free" both in terms of bandwidth
(which eventually will be unlimited) as well as switching costs. Hence, Internet
based solutions typically express little concern over the actual network costs
of location management. The Cellular/PCN community, on the other hand, is
quite concerned about both switching cost and bandwidth overhead of location
management on the fixed network[12]. While the optimistic predictions about
the Internet may eventually turn out to be true, MobilelP researchers have
yet to face the real world challenges of user mobility. Acceptable location
management solutions should support massive numbers of users crossing the
Lincoln tunnel during rush hour (at 4 P.M.), and not just a few professors and
students moving between different campuses of a university!

The key problem of location management is maintaining the binding between
the logical identifier and the physical location of the user. The following are
the key issues:

• Where is the binding stored?

• Who is responsible for keeping the binding up to date?

• What happens if the binding is not available or is outdated?

The term location directory usually describes the directory used for storing
this binding information. Storing the location directory faces typical dilemmas
of distributed access: should the location directory be stored centrally or be
distributed? Should the replication be dynamic or static? Solutions include
maintaining one centralized location directory, a set of home directories stored
at each user's home location (distributed without being replicated) and even
location directories that are replicated[5, 15].

The responsibility of keeping the binding information up to date can fall either
on the mobile user, who will send location updates to the location directory.

^This refers to early Columbia MobilelP users.

Location Management 133

or on the sender, who may poll the user's location and update the location
directory accordingly. This issue is strongly related to the resolution of another
question: what happens when the location directory is not up to date? Two
basic choices include declaring failure or performing search in order to determine
the actual user location. Additionally, a combination of search and directory
lookup can be used, as described in [14]. Below, we review some of the existing
location management solutions starting with proposals for handling mobility
in the Internet.

2 LOCATION MANAGEMENT IN THE
INTERNET

Below, we establish a basic framework for location management inspired by the
recent terminology used by Internet Engineering Task Force (IETF). We will
subsequently use this framework to explain some of the existing MobilelP and
cellular solutions. In the Internet, the identity of a user (IP address) normally
reflects the physical location. This correspondence is obviously lost for mobile
users. The problem of location management in the Internet is maintaining this
correspondence for mobile users.

2.1 Sony's Virtual IP Proposal:

In this proposal[5, 6, 7], every mobile host has a virtual address and a physical
address identified by the tuple <VN, PN>. The virtual address, indicated by
the VN part of the binding, is the permanent address of the mobile host. The
physical address, indicated by the PN part of the binding, is acquired by the
mobile host when it moves to a new network and stays the same as long as
the host stays with in the same network. The physical address and the virtual
address are identical for a host attached to the home network or if the physical
address of the host is unknown.

The binding for mobile hosts is maintained at the home gateway of the mobile
host. Binding is updated by the mobile whenever it obtains a new physical
address. To send a packet, the sender uses the virtual address of the target
host and thus normal IP routing suffice to relay the packets to the home gate
way. The location directory at the home gateway is then used to determine the
current physical address. If the binding information in the location directory
indicates a PN that is different from VN, the packets are stamped with the

134 CHAPTER 4

move

MH

LD

MH

Mobile host
Location directory

Sender has no binding information, sends packets to home network

Home network fon^^ards with PN = current address
On a move, MH informs home gateway of new address, home redirects

Senders and intermediate gateways can cache binding information and
send packets directly with PN = current address of MH

F i g u r e 2 Location management in SONY VIP proposal

current PN and forwarded to the destination network of the mobile host. Fig
ure 2 is a schematic that depicts various paths taken by packets under SONY's
scheme.

Intermediate gateways that forward location updates directed from the mobile
host to the home gateway can cache the binding as well. In this manner, binding
information gets propagated to parts of the network that need information to
route the packets to the mobile host. Once the binding information is available
at a given location, the packets from that location to the mobile hosts are
routed directly without having to go to the home gateway. Unlike the bindings
in the home gateway, bindings in the intermediate gateways periodically expire
or get invalidated by special location management packets.

To summarize, the SONY scheme stores binding at the home location of the
given user and also replicates it dynamically along the route from the sender

Location Management 135

to the target host. Notice that the physical location of the user in this scheme
is not necessarily defined as the current cell but rather as the temporary IP
address. This address need not correspond to the current cell or MSS.

2.2 IBM Proposal

In this scheme[18], the physical location of the mobile host is defined as the
current cell or, more precisely, as the IP address of its base station - MSS. The
logical identifier is still the (permanent) IP address of the mobile user. The
binding is defined as the mapping between the permanent IP address of the
mobile host and the IP address of the current MSS. In this scheme the physical
location corresponds to the IP address of the current MSS where as in the
Sony scheme it is an acquired temporary IP address. Another difference is in
how caching is done;in the Sony scheme, the binding information is cached by
routers in the network while in IBM scheme, the binding information is cached
by the senders. None of the two schemes uses search when binding information
is not available or obsolete. Packets are simply dropped in this case.

The binding is kept in a location directory which is stored at the home gate
way of the mobile host. Loose source routing (LSR option) is used for actual
redirection of packets sent originally to the home gateway of the mobile host.
When a sender uses the IP address of the target host, normal routing relays the
packets to the mobile host's home gateway. The binding stored at the home
gateway is then used to redirect. This is done by inserting the IP address of
the mobile host's current MSS as the first hop in the LSR option.

Since a mobile host can also use redirection (LSR option) and reply to the
sender, the current binding can be cached by the sender. Updating the binding
information, as in Sony's VIP scheme, is the responsibility of the mobile host.
A location update is sent every time the mobile host registers with a new MSS.
Binding information is further replicated in the network via any reply packets
received from the mobile host by its correspondent (sending) hosts. Figure 3 is
a schematic that depicts various paths taken by packets under the IBM scheme.

2.3 Columbia Proposal

In this scheme[8], binding, relationship between the logical identity of the user
and the physical location, is defined as in the IBM scheme. However, there
is no concept of a home location directory. Rather, the location directory is

136 CHAPTER 4

move

MH

LD

Mobile host

Location directory

Sender has no binding information, sends packets to home network
Home MSS using LSR option redirects packets to current MSS
MSS has no binding, return It to Home MSS

MH updates Home MSS; Home MSS using LSR option redirects to new MSS
Sender has binding information (use LSR option to send directly)

F i g u r e 3 Location management in IBM proposal

Location Managem.ent 137

maintained at several Mobile Support Stations (MSS) which cover the mobile
subnet within a campus. MSSs advertise reachability to the mobile subnet and
normal IP routing forwards the packets to one of several MSSs that constitutes
the mobile subnet. The location directory at the MSS is then used to determine
the MSS with which the mobile host is currently registered. The MSS that
receives a packet encapsulates the packet with the IP address of the current
MSS as the destination. This packet called the IP within IP packet is routed to
the destination MSS. The destination MSS on receiving the packet decapsulates
the IP within IP packet and forwards the inner packet to the mobile host.

When a mobile host moves and registers with a new MSS, it is his responsibility
to inform the new MSS about its previous MSS. The new MSS then sends a
forward pointer to the old MSS» The previous (old) MSS not only forwards
any packets wrongly routed to it but also sends a message (sender redirect)
to the MSS that wrongly forwarded the packet. This sender redirect message
enables the MSS with stale binding to update the location directory with the
new binding. It is also possible that a given MSS may not have any binding
information for a particular mobile host. In this case, the MSS resorts to search;
i.e., sends a message to all MSSs to check if the MH is registered. The MSS with
which the MH is registered responds. This enables the MSS which initiated the
search to insert a new entry in the location directory. Thus, Columbia Mobile
IP scheme is unique in that it resorts to search as well as a directory look up to
locate a mobile host. The binding information stored at the MSSs periodically
expires unless it is refreshed by a packet or by the explicit search mechanism.
Senders and intermediate gateways do not cache binding information.

In the case of Columbia MobilelP proposal, moves are classified as intra-campus
moves and inter-campus moves. For the intra-campus moves, the logical identi
fier of the mobile host remains the same and only the binding (the current MSS
with which a particular mobile host has registered) changes. For intercampus
moves, the logical identifier of the mobile host changes and the mobile host ac
quires a new temporary address known as the nonce address. Packets are sent
first to the home network of the recipient. The Home MSS then tunnels the
packet to the foreign network(FN) using the new identity for the mobile host
or the nonce address. Thus, it is possible for packets originating from a mobile
host MHl in a foreign network FN to another mobile host MH2 attached to
the same network as MHl to traverse to the home MSS of MH2 and then come
back to the FN. Similarly, the reply packets from MH2 go to the home MSR of
MHl and are then tunneled back to the FN to which MHl is attached.

Summarizing, in Columbia MobilelP proposal, there is no concept of a home
location directory. Instead, a set of MSSs maintain the binding information. If

138 CHAPTER 4

Sender

move

MH

MH Mobile host
LD Location directory

Sender has no binding information, sends packets to home network
MSS receiving the packet forwards to current MSS
On a move, new MSS informs old MSS, old MSS forwards packets
Old MSS sends redirect to source MSS
Source MSS forwards subsequent packets to new MSS

F i g u r e 4 Location management in Columbia MobilelP proposal

Location Management 139

binding information is not valid, search is used by the MSSs to find the up to
date binding. Finally, the logical identity of the mobile user is local only to his
campus and changes for intercampus, wide area moves. Figure 4 is a schematic
that depicts various paths taken by packets under the IBM scheme.

2.4 IETF proposal

The definition of binding in the IETF proposal is the same as in the previ
ously discussed MobilelP proposals. In the basic IETF proposal, each mobile
host belongs to a home network and is assigned a home agent. The home
agent is responsible for maintaining information about the current location of
the mobile host and tunneling packets to that location. When a mobile host
moves to a new network (called the foreign network), it can either acquire a
temporary IP address (change identity) or the mobile host can register with
a foreign agent (maintain identity). The basic IETF protocol allows for both
these possibilities. The temporary address or the IP address of the foreign agent
is known as the care-of-address and the home agent keeps track of the mobile
host's care-of-address. The problem of location management is to maintain
the mapping between the permanent address or identity and either the current
care-of-address or the IP address of the foreign agent with which the mobile
host has registered. The bindings in the location directory are of the form <IP,
care-of-address >.

When a mobile host moves, either it registers with a new foreign agent or
obtains a care-of-address (acquired locally through DHCP). When a mobile host
registers with a foreign agent, the foreign agent sends the binding information
<IP, IP address of foreign agent> to the home agent. The home agent inserts
this binding information in the location directory. When a mobile host acquires
a new care-of-address as opposed to registering with a foreign agent, the mobile
host sends the binding information <IP, care-of-address> directly to the home
agent. The binding information stored at the home agent periodically expires
unless it is refreshed by the mobile host by re-registration. The lifetime of the
registration is negotiated during registration and it is the responsibility of the
mobile host to re-register before the binding expires.

Packets from a sender to a mobile host are initially routed to the home agent
as the only known identity of the mobile host is an address that belongs to
the home network. The binding information at the home agent is then used
to tunnel the packets either to the foreign agent or directly to the mobile host
using the care-of-address. In the latter, the mobile host acts as its own foreign

140 CHAPTER 4

LD

Sender

Foreigry Agent

^^Home Agent

" LD

MH Mobile host
LD Location directory

Sender sends to home agent, home agent tunnels packets to foreign agent
New foreign agent sends registration message to home agent
Home agent tunnels packets to new foreign agent

F i g u r e 5 Location management in IETF proposal

agent. For proper location management, every time the mobile host registers
with a new foreign agent or acquires a new address, updates to the binding
have to be sent to the home agent. Figure 5 is a schematic that depicts various
paths taken by packets under the IBM scheme.

There are a number of extensions to the basic IETF proposal that are being
explored. These include route optimization and the use of cache agents. Route
optimization allows a source to cache the binding information and tunnel pack
ets directly to the mobile host. Cache agents (similar to the special gateways
of Sony proposal) are allowed to store binding information and tunnel packets
directly to the current location of the mobile host. The problem of how to
maintain cache consistency, who should update the cache entries and on what
basis should the updates be propagated are still being investigated.

The work on MobilelP is still in progress. So far little attention has been
paid to issues of performance. In fact, there does not even exist a agreed
upon performance model. There is very little experimental or simulation data.
Particularly, it is not even clear how the different methods or the eventual
MobilelP standard will scale to millions of users making wide area moves.

Location Management 141

1 Proposal

1 SONY

IBM

Columbia

IETF

Binding
Information

<VN, PN>

<IP, IP of
MSS>

<IP, IP of
MSS>

<IP, care-of-
address>

or <IP, IP of
foreign
agent >

Where is it
stored?

at home gate
way, source, and
intermediate
gateways

at home MR,
source

at MSRs of the
mobile subnet

at home agent

at home agent
and at foreign
agent

How
is binding infor
mation used?

Use PN to
route,
Normally PN =
VN, when away
PN reflects cur
rent location
Use IP of MSR
as a loose source
route
Encapsulate us
ing IP of MSR

Encapsulate us
ing
care-of-address
Encapsulate us
ing IP of foreign
agent

How is consis
tency
maintained?

Explicit delete,
or when incon
sistency of map
ping is detected

Explicit update 1

Timer ex- 1
piry and sender
redirect |
Timeout and 1
reregistration

T a b l e 1 Comparison of location management in MobilelP proposals

Some argue that it is premature to talk about standard solutions when no
real infrastructure exists and no experience is reported. We will discuss the
performance issues and some of our concerns in more details later in the paper.

LOCATION MANAGEMENT IN
CELLULAR TELEPHONE NETWORKS
AND IN PCN

As we pointed out before, one of the main distinctions between cellular networks
and Internet is that the cellular network services are connection oriented and
the network has a hierarchical topology. Below, we briefly review location
management schemes in the American Mobile Phone System (AMPS), Cellular
Digital Packet Data (CDPD), and finally, proposals for the future Personal
Communication Network (PCN).

142 CHAPTER 4

Location management in A M P S

AMPS system configuration, for all practical purposes, is similar to the one
discussed at the beginning of the paper. Currently, the average size of a cell is
of the order of 1-2 miles in diameter [13]. Several base stations are connected to a
switch also known as the Mobile Telephone Switching Office (MTSO). MTSOs
are interconnected and connected to a public switched telephone network as
welL

The logical identifier of the subscriber is defined by a unique terminal equipment
number assigned to the cellular phone. As soon as the phone is turned on, it
is registered with the MTSO for that area.

In order to find the location of the callee, base stations within the home area (
home MTSO) are paged for the terminal equipment number. The appropriate
cell then responds completing the connection establishment. Thus, the initial
set up is based on search that may involve potentially a large number of base
stations. As the mobile user moves from one base station to another, any active
connection is automatically handed over to the new base station. If no call is in
progress, no updates are needed for cell crossing. However, if the mobile user
moves to a new area, then it has to re-register with a new MTSO. This process
is called roaming and is still user initiated rather than being automated by the
switching network. The new MSTO, then informs the home MSTO about the
new location of the user.

Location management in C D P D

In CDPD, the mobile unit (called the mobile end system (MES)) communicates
with a base station (known as mobile data base station (MDBS)). Several
MDBSs are connected to a MDIS (mobile data intermediate system)[17].

The identity of the subscriber is defined by a unique terminal equipment number
or an IP address assigned by the MDIS. As soon as the MES is turned on,
the MES is registered with the MDIS for that area. Packets to the MES
are first routed to the MDIS which in turn routes them to the MES via the
current MDBS. As the mobile users move from one base station to another,
the connection is automatically handed over to the new base station. Unlike in
cellular telephony, where the base station is responsible for handoff, in CDPD,
the MES initiates the handoff. When a mobile user moves to a new MDIS, it
has to re-register with the new MDIS and the appropriate forwarding of packets
from the old MDIS to the new one is provided.

Location Management 143

Notice, that both AMPS and CDPD use a general concept of a "home agent"
although, admittedly, in a rather primitive form. Additionally, CDPD uses the
two-level hierarchical network topology. The advantages of hierarchical location
management are further explored in the PCN proposals as described below.

Location management in P C N

The future Personal Communication Network is expected to have a high density
of mobile subscribers moving across possibly very small cells (picocells). A
central database will be very inefficient to handle the high volume of database
traffic due to location updates. Similarly, searching for a user by paging all
the base stations will not scale with number of base stations and the number
of users. Hence, most of the architectures proposed for PCN including GSM
(Global System for Mobile Telecommunications, chosen for PCN in Europe) use
a set of databases that are distributed in a hierarchical network[2]. There are
two basic databases called HLR (Home Location Register) and VLR (Visitor
Location register) which store the location information of the mobile users.
The HLR plays a role similar to that of the home agent in Mobile IP and VLR
plays a role similar to that of the foreign agent in Mobile IP. A user who wants
to register away from his home area has to register with the VLR and the VLR
updates the HLR. A pointer to this VLR is maintained at the HLR to route
incoming calls. Thus, the HLR has to be informed when the user registers
with a new VLR. When a user enters a new location area, it registers in the
VLR of the new location area and deregisters from the VLR of the old location
area. With VLRs and HLRs, a more directed search for a mobile user can be
initiated by paging just the base stations under the home database (HLR) or
visitor database (VLR).

Several location management methods have been proposed for the PCN to
take advantage of the hierarchical topology of the network. In this multilevel
structure, leaves correspond to base stations (MSS) and the higher level nodes
represent location servers. Instead of sending location updates on every move
(crossing a base station), location updates are sent only when the mobile termi
nal enters a region covered by a different location server. Thus, these methods
deliberately leave a (controlled) level of uncertainty about the user's exact lo
cation. The imprecision is eventually eliminated by different types of locating
algorithms or search strategies.

The two important decisions for a search strategy in the PCN are: i) where
to begin the search and ii) how to progress? Depending upon these decisions,
there are three general schemes described in [16].

144 CHAPTER 4

1. Flat: this is an extreme approach. Starting from the root of the location
server hierarchy, the entire network is searched. However, the search pro
cess is highly parallel as search at each level can be conducted concurrently.
The latency of the search (time taken to locate) is equal to the height of
the tree and the cost is equal to the number of children for the root.

2. Expanding: this is an incremental approach. First, the home location
server is queried. If the user is not located here, then the parent of the
home location server is queried, which in turn queries all its children and
so on. Thus at each step, more number of location servers are queried
until the user's current location server is found or all the location servers
are queried. Since the search is done progressively, on an average, a fewer
number of location servers are queried. The latency, however, is high
because the search is carried out level by level in a sequential manner.

3. Hybrid: here also, the home location server is queried first. If the user is
not found, then the parent of the home location server (in [16] a random
location server is picked) initiates a search of all its children (except the
home location server). If the desired user is not found here as well (within
the vicinity of the home location server) then the search is initiated from
the root, resulting in searching the entire network. The hybrid scheme can
locate quickly the type of users who when not at the home location server
happen to be found far away from it.

The question of how to locate users in PCN is also addressed in [14]. Here a
hierarchical architecture based on the metropolitan area network (MAN) with
four levels of databases is considered. At the lowest level there is a LAN of
base stations. The other three levels are: access MAN, backbone MAN, and
metropolitan MAN. The root is the metropolitan area (MA) database. There
can be several metropolitan areas connected by a central office. Each subscriber
has a home access MAN and when the user is outside the home MA, the home
access MAN has a pointer to the general location of the user. To locate a callee,
a ripple search scheme is proposed. Search always proceeds in a sequence of
steps involving databases on different levels of the hierarchy. First, the search
is confined to the hierarchy of the caller's local MA, and then directed to the
caller's home MA. If this search sequence fails to locate the callee, only then is
the directory database searched. The directory database contains information
about the home access MAN for every user. Hence, this database is huge and
access to it will be expensive. Once the home access MAN is found, the user
can always be located. This scheme is based on the principle of call localization
-"callee is located close to the caller."

Location Management 145

Other strategies for locating mobile users have been proposed in [3, 14]. Auer-
bach and Peleg [3] provide a general formal model for tracking mobile users.
Their strategy is based on a hierarchy of regional directories, where each direc
tory is based on a decomposition of the network into regions. On a move, only
nearby directories are updated to point directly to the new address. In order
to provide access to users who use remote directories, a forwarding pointer is
left at the previous location, directing the search to the new location.

4 PERFORMANCE ISSUES

In this section we address performance evaluation of location management
schemes. This is a complex problem because it involves several parameters.

In general, the aim of the location management is to minimize the overhead on
the network traffic. This additional traffic is generated by location updates and
associated control messages (such as pointer redirection etc.). Search messages
also contribute to additional network traffic. To evaluate costs incurred in loca
tion management, two distinct environments that have to be treated differently
are: the wireless environment between the mobile terminal and the local MSS,
and the fixed network environment between the MSS and the final destination.
The resources of the wireless link are definitely more precious than those of
fixed network. Thus, it is important to reduce the size of the control packets
which are transmitted on the wireless uplink channels by the mobile terminals.
An additional constraint that plays an important role here is energy, since the
uplink transmissions can be energy consuming. Thus, minimizing the number
of location updates is important also from the perspective of saving energy.

The study reported in [12] analyzes the projected impact of location updates
on the network traffic for the PCN. The extensive simulations in [12] show that
the solutions based on VLR and HLR will not scale well when the number
of mobile users will increase by an order of magnitude and when voice and
data services will be provided. It is concluded that if location updates were
to occur on each cell crossing, the resulting signaling load would have a major
impact on the load of the network. This additional signaling traffic on the SS7
signaling system (capacity of 56kbps) is expected to be 4-11 times greater for
cellular than for ISDN and 3-4 times greater for PCN than for cellular[12]. The
signaling load due to updating alone contributes 70% additional load. Thus,
location update will become a major bottleneck at the switches (such as SS7)
and mechanisms to control the cost of location updates are needed.

146 CHAPTER 4

On the other hand, saving on location updates contributes to increased cost due
to network search. Whenever the location of a user is unknown, the network
has to perform a search» Host mobility may further contribute to packet loss in
the case when a foreign agent does not have an entry for the mobile destination
host. Packets may suffer from additional latency as they may be redirected to
the home agent, which then sends it to the new foreign agent. In an experiment
conducted on our wireless testbed which consisted of three MSSs"̂ running
Columbia Mobile IP, we found that the round trip delay for a packet from
a mobile host to a fixed host and back was about 15 msec when the cache
was valid and about 70 msec when a search was needed (when the cache has
expired). While the search is in progress, any packets received at a MSS are
dropped when the router does not have a valid entry to forward a packet. To
determine the number of packets lost when the search is in progress, a sequence
of packets was sent to an echo server running on the mobile, and the sequence
number of the first packet to return was determined. With a expired cache, the
first packet to return had a sequence number of 4 or 5. Thus, when the search
was in progress, 3 to 4 packets were lost. In these experiments, packets were
sent every 10 msec.

In general, the ratio of the search cost to the location update cost will influence
the choice of the location management scheme. For example, in environments
where search is very expensive, methods with frequent location updates will be
favored. If the reverse is true, then schemes that perform search often will be
prefered. Latency incurred in mobile networks is yet another important factor.
How long does it take to establish a connection or send the first packet to a
mobile host? If latency should be minimized then there should be minimal
network search. Thus, methods with frequent location updates will be favored.
The particular policy to be used will also be influenced by the relative frequency
with which a particular user is "called" or sent messages. This depends on the
usage profile and is discussed in more details in the next section.

Other performance parameters to consider include total size of the cache space
which is necessary at routers. The number of database transactions per unit
of time, necessary to update locations in location directories is also important.
The large number of location updating transactions could be a limiting factor
depending on how many concurrent transactions a database server can handle.
Location management methods which "too eagerly" lose packets by giving up
on finding a mobile host (for example, by not performing network search, in
case there is no accurate binding information) can have a very negative ef
fect on transport layer protocols [4]. Packet loss will contribute to decreasing

^All of them were 33 MHz 386 PC-ATs

Location Management 147

throughput^. Lack of exact location information may result in non-optimal
routing of packets. As the location information is updated, packets may tra
verse along a more optimal route^ Thus, mobility affects the round trip delay of
packets. This, in turn, may result in spurious retransmissions at the transport
layer. Also, applications that are designed to handle a particular loss rate may
fail if this expected loss rate is exceeded due to dropped packets for lack of
exact location information.

It is important to perform simulation studies and eventually real experiments
with various mobile IP location management schemes to measure their per
formance. In particular, the impact of location updates has to be carefully
evaluated for different MobilelP proposals.

In the next section we describe how location management schemes can benefit
from incorporating mobility profiles of users.

5 FUTURE: ADAPTIVE LOCATION
MANAGEMENT

Location management can greatly benefit from the knowledge of user mobility
patterns, namely from:

• Knowing where the receivers are

This information describes locations where a given user is most likely to be
found at a given time. Notice that the mobility patterns are very effectively
used by humans today - we usually know (have a "built in" heuristic) when
a callee is most likely to be found at home, and when s/he is expected to be
at work. This information affects the order in which we attempt to contact
a callee. We would like these functions to be performed automatically by
the network rather than by a user.

• Knowing where the usual senders are: spatial distribution of the likely
callers.

This information helps in deciding how to distribute the location informa
tion about a particular user. The general rule should be to inform the
most likely callers (senders) most often about location changes. The set of
callers to inform can be determined by the cost of traffic generated by the

^Also it may unnecessarily trigger the exponential backoff feature of the T C P

148 CHAPTER 4

need to send location updates relative to the cost of establishing a con
nection without knowing the callee's location[19]. A caller that makes a
lot of calls to a mobile user should be informed about the current location
to reduce the overall cost due to location management. If user's mobility
pattern is known, the best idea is to inform only upon exceptional moves.

Other solutions involve adaptively reducing the number of location updates
by not informing about every single change in location but rather maintaining
incomplete information about the location of the user. But when should we
inform? The answer depends on the mobility profile of the user:

Example

Figure 6 shows a hypothetical daily routine of a commuter who drives between
the work and home areas once a day and moves within each of the areas as
well. The following options can be considered:

1. The network has to page (page is the term used for broadcasting the ad
dress of the user in order to find him) the commuter across both work and
home areas every time a call (message) is made (sent) to the commuter.

The cost would be 7 paging messages per call since there are 7 base stations
in the two areas.

2. The commuter informs the network every time he moves between any two
locations.

The cost would be 8 updates for work moves (assuming a 8 hour stay in
the campus area) and 8 updates for home moves (assuming a 16 hour stay
in the home area). The cost of a call would be 1 paging message.

3. The commuter informs the network only when he moves from the campus
area to home and back.

The cost would be 2 updates, 1 for each crossing and the call cost is either
3 or 4 paging messages depending on commuter's location at the time of
the call.

It is clear that the last strategy, assuming the mobility pattern just described,
is superior to the first and second strategies^. In general, any given user could
have a partition associated with his profile to reduce the overall volume of

^Assuming that the paging cost and the update cost are the same

Location Management 149

HOME CAMPUS

1̂ ^ 1/day

1/day

£>
1 move per 2 Hrs

1 move per Hr

F i g u r e 6 User Profile

messages (including paging messages and location updates). Partitions can be
defined both at the the global and local level. At the global level, partitions
will consist of location servers. At the local level, partitions will consist of base
stations. In our example we have assumed that both home and campus areas
are located under a common location server. Therefore, the partitions described
here are local If, campus and home areas were located under different location
servers, then the partition described in the example would be considered global

In [10], we provide a more extensive discussion and experimental results demon
strating usefulness of partitions. In particular, given the mobility pattern of a
user, we show how to come up with an "optimal" partition with respect to the
overall cost of messages.

Another important characteristic of the user is what we term the call to mobility
ratio^. The call to mobility ratio is computed by dividing the average number
of calls made to the user by the average number of cell crossings, the user makes
in a given period of time. Two possible strategies can be applied to locate users:
paging (page all the base stations under a location server) or pointer forwarding
(contacting a known base station and then following pointers that are updated
by the moving user). Which among the two is better depends on the ratio
between the number of calls and the number of moves made by the user. For low
call to mobility ratios, the paging scheme is beneficial compared to the pointer
forwarding scheme. Indeed, if the user is not called often, then he unnecessarily
pays for location updates (pointer updates). The pointer forwarding scheme

^This discussion cissumes the connection oriented, cellular model but can be restated for
the connection free environment by replacing the "call" by a "message."

150 CHAPTER 4

becomes beneficial for high call to mobility ratios. In such a case, the cost
of location updates is "amortized" over the large number of calls - virtually
eliminating all search cost in this case.

This short discussion clearly demonstrates that there is no single "optimal" lo
cation strategy for all users. For example, depending on the call/mobility ratio,
either the paging or pointer forwarding method will be beneficial for a given
user. Similarly, different users will be associated with different partitions, lead
ing to different location update strategies. Since mobility is clearly a function
of time, more sophisticated schemes will involve time-dependent characteristics
of the profiles.

6 CONCLUSIONS

The objective of this paper was to offer a general, and hopefully simplifying,
view of location management in cellular telephone networks and in the Internet.
We have explained a number of different approaches to location management
using a small set of simple terms. We have shown differences and similarities be
tween different methods. Finally we have discussed informally the performance
issues with a discussion of future research directions in location management.

REFERENCES

[1] A. Aziz, "A scalable and efficient intra-domain tunneling mobile-ip
scheme," ACM SIGCOMM, Computers Communication Review, January
1994.

[2] Jan A. Audestad, "GSM general overview of network functions," In Pro
ceedings of the In'cernational conference on digital land mobile radio com
munications, Venice 1987.

[3] Baruch Awerbuch and David Peleg, "Concurrent online tracking of mobile
users", Proc. ACM SIGCOMM Symposium on Communication, Architec
tures and Protocols, October 1991.

[4] R. Caceres and L. Iftode, "The effects of mobility on reliable transport
protocols," In Proceedings of the 14th International Conference on Dis
tributed Computing Systems, June 1994, pp. 12-20.

Location Management 151

[5] Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro "A network architec
ture providing host migration transparency," In proceedings of the ACM
SIGCOMM, September 1991.

[6] Fumio Teraoka, Kim Claffy, and Mario Tokoro "Design, implementation,
and evaluation of virtual internet protocol," In proceedings of the 12
ICDCS, June 1992, pp. 170-177.

[7] Fumio Teraoka, "Mobile IP: The VIP approach," IETF presentation,
Boston, July 1992„

[8] J. loannidis and G. Maguire, "The design and implementation of a mobile
internetworking architecture," In USENIX Winter 1993 technical confer
ence January 1993.

[9] Andrew Myles and David Skellern, Comparison of Mobile Host Protocols
for IP. Internetworking: research and experience, Vol. 4, pp. 175-194,1993.

10] T. Imielinski and B. R. Badrinath, "Querying in Highly mobile distributed
environments," In the Proceedings of the 18th VLDB, August 1992, pp.
41-52.

Ill Y. Rekhter and C. Perkins, "Optimal routing for mobile hosts using IP's
loose source route option," Internet Draft, October 1992.

12] Kathleen S. Meier-Hellstern, Eduardo Alonso, and Douglas Oniel, "The
Use of SS7 and GSM to support high density personal communications,"
Third Winlab workshop on third generation wireless information networks,
April 1992, pp. 49-57.

13] William Lee "Mobile cellular Telecommunication systems," Mcgraw-Hill,
1989.

14] L J Ng, R. W. Donaldson, and A. D. Malyan, "Distributed architectures
and databases for intelligent personal communication networks," Proc of
the ICWC, June 1992.

151 David Johnson, "Wireless and mobile networking," Tutorial notes, 15th
ICDCS, May 1995.

16] David J. Goodman and Binay Sugla, "Signalling system draft," Unpub
lished manuscript.

17] Frank Quick and Kumar Balachandran, "An overview of cellular packet
data (CDPD) system, in The fourth international symposium on personal,
indoor and mobile radio communications, Yokohama, Japan, September
1993, pp. E 2.7.1 - E 2.7.

152 CHAPTER 4

[18] C. Perkins, P- Bhagwat, "A mobile networking system based on internet
protocol," IEEE personal communications, Vol. 1, No. 1, pp 32—41, Jan
uary 1994.

[19] S. Rajagopalan and B. R. Badrinath, "An adaptive location management
strategy for Mobile IP," First Intl. Conf. on Mobile Computing and Net
working, Nov. 1995.

5
DYNAMIC SOURCE ROUTING IN
AD HOC WIRELESS NETWORKS

David B . Johnson and David A. Maltz

Computer Science Department

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3891

USA

ABSTRACT

An ad hoc network is a collection of wireless mobile hosts forming a temporary network
without the aid of any established infrastructure or centralized administration. In
such an environment, it may be necessary for one mobile host to enlist the aid of
other hosts in forwarding a packet to its destination, due to the limited range of each
mobile host's wireless transmissions. This paper presents a protocol for routing in
ad hoc networks that uses dynamic source routing. The protocol adapts quickly to
routing changes when host movement is frequent, yet requires little or no overhead
during periods in which hosts move less frequently. Based on results from a packet-
level simulation of mobile hosts operating in an ad hoc network, the protocol performs
well over a variety of environmental conditions such as host density and movement
rates. For all but the highest rates of host movement simulated, the overhead of the
protocol is quite low, falling to just 1% of total data packets transmitted for moderate
movement rates in a network of 24 mobile hosts. In all cases, the difference in length
between the routes used and the optimal route lengths is negligible, and in most cases,
route lengths are on average within a factor of 1.01 of optimal.

1 I N T R O D U C T I O N

Mobile hosts and wireless networking hardware are becoming widely available,
and extensive work has been done recently in integrating these elements into
traditional networks such as the Internet. Oftentimes, however, mobile users
will want to communicate in situations in which no fixed wired infrastructure
such as this is available, either because it may not be economically practical

154 CHAPTER 5

HI B \
\

^ " !

\ t
' ^ ' ^ * - - * - ^ ' ^ ^^'^.- ..^^^'

Figure 1 A simple ad hoc network of three wireless mobile hosts

or physically possible to provide the necessary infrastructure or because the
expediency of the situation does not permit its installation. For example, a
class of students may need to interact during a lecture, friends or business
associates may run into each other in an airport terminal and wish to share
files, or a group of emergency rescue workers may need to be quickly deployed
after an earthquake or flood. In such situations, a collection of mobile hosts
with wireless network interfaces may form a temporary network without the
aid of any established infrastructure or centralized administration. This type
of wireless network is known as an ad hoc network.

If only two hosts, located closely together, are involved in the ad hoc network,
no real routing protocol or routing decisions are necessary. In many ad hoc
networks, though, two hosts that want to communicate may not be within
wireless transmission range of each other, but could communicate if other hosts
between them also participating in the ad hoc network are willing to forward
packets for them. For example, in the network illustrated in Figure 1, mobile
host C is not within the range of host ^ ' s wireless transmitter (indicated by
the circle around A) and host A is not within the range of host C's wireless
transmitter. If A and C wish to exchange packets, they may in this case
enlist the services of host B to forward packets for them, since B is within the
overlap between A's range and C's range. Indeed, the routing problem in a real
ad hoc network may be more complicated than this example suggests, due to
the inherent nonuniform propagation characteristics of wireless transmissions
and due to the possibility that any or all of the hosts involved may move at
any time.

Dynamic Source Routing in Ad Hoc Wireless Networks 155

Routing protocols in conventional wired networks generally use either distance
vector or link state routing algorithms, both of which require periodic routing
advertisements to be broadcast by each router. In distance vector routing [9,
17, 26, 27, 29], each router broadcasts to each of its neighbor routers its view
of the distance to all hosts, and each router computes the shortest path to
each host based on the information advertised by each of its neighbors. In link
state routing [10, 16, 18], each router instead broadcasts to all other routers
in the network its view of the status of each of its adjacent network links, and
each router then computes the shortest distance to each host based on the
complete picture of the network formed from the most recent link information
from all routers. In addition to its use in wired networks, the basic distance
vector algorithm has also been adapted for routing in wireless ad hoc networks,
essentially treating each mobile host as a router [11, 19, 25].

This paper describes the design and performance of a routing protocol for
ad hoc networks that instead uses dynamic source routing of packets between
hosts that want to communicate. Source routing is a routing technique in
which the sender of a packet determines the complete sequence of nodes through
which to forward the packet; the sender explicitly lists this route in the packet's
header, identifying each forwarding "hop" by the address of the next node to
which to transmit the packet on its way to the destination host. Source routing
has been used in a number of contexts for routing in wired networks, using either
statically defined or dynamically constructed source routes [4, 5, 12, 20, 22, 28],
and has been used with statically configured routes in the Tucson Amateur
Packet Radio (TAPR) work for routing in a wireless network [14]. The proto
col presented here is explicitly designed for use in the wireless environment of
an ad hoc network. There are no periodic router advertisements in the protocol.
Instead, when a host needs a route to another host, it dynamically determines
one based on cached information and on the results of a route discovery proto
col.

We believe our dynamic source routing protocol offers a number of poten
tial advantages over conventional routing protocols such as distance vector in
an ad hoc network. First, unlike conventional routing protocols, our proto
col uses no periodic routing advertisement messages, thereby reducing network
bandwidth overhead, particularly during periods when little or no significant
host movement is taking place. Battery power is also conserved on the mobile
hosts, both by not sending the advertisements and by not needing to receive
them (since a host could otherwise reduce its power usage by putting itself
into "sleep" or "standby" mode when not busy with other tasks). Distance
vector and link state routing, on the other hand, must continue to send adver
tisements even when nothing changes, so that other mobile hosts will continue

156 CHAPTER 5

to consider those routes or network links as valid. In addition, many of the
"links'' between routers seen by the routing algorithm may be redundant [11].
Wired networks are usually explicitly configured to have only one (or a small
number) of routers connecting any two networks, but there are no explicit links
in an ad hoc network, and all communication is by broadcast transmissions.
The redundant paths in a wireless environment unnecessarily increase the size
of routing updates that must be sent over the network, and increase the CPU
overhead required to process each update and to compute new routes.

In addition, conventional routing protocols based on link state or distance vec
tor algorithms may compute some routes that do not work. In a wireless en
vironment, network transmission between two hosts does not necessarily work
equally well in both directions, due to differing propagation or interference pat
terns around the two hosts [1, 15]. For example, with distance vector routing,
even though a host may receive a routing advertisement from another mobile
host, packets it might then transmit back to that host for forwarding may not
be able to reach it. Our protocol does not require transmissions between hosts
to work bidirectionally, although we do make use of it when afforded, for ex
ample, by MAC-level protocols such as MACA [13] or MACAW [2] that ensure
it.

Finally, conventional routing protocols are not designed for the type of dynamic
topology changes that may be present in ad hoc networks. In conventional net
works, links between routers occasionally go down or come up, and sometimes
the cost of a link may change due to congestion, but routers do not generally
move around dynamically. In an environment with mobile hosts as routers,
though, convergence to new, stable routes after such dynamic changes in net
work topology may be slow, particularly with distance vector algorithms [20].
Our dynamic source routing protocol is able to adapt quickly to changes such
as host movement, yet requires no routing protocol overhead during periods in
which such changes do not occur.

Section 2 of this paper details our assumptions about the network and the
mobile hosts. The basic operation of our dynamic source routing protocol is
described in Section 3, and optimizations to this basic operation are described in
Section 4. In Section 5, we present a preliminary evaluation of the performance
of our protocol, based on a packet-level simulation. In Section 6, we discuss
related protocols for wireless network routing and for source routing, and in
Section 7, we present conclusions and future work.

Dynamic Source Routing in Ad Hoc Wireless Networks 157

2 ASSUMPTIONS

We assume that all hosts wishing to communicate with other hosts within the
ad hoc network are willing to participate fully in the protocols of the network.
In particular, each host participating in the network should also be willing to
forward packets for other hosts in the network.

We refer to the number of hops necessary for a packet to reach from any host
located at one extreme edge of the network to another host located at the
opposite extreme, as the diameter of the network. For example, the diameter
of the ad hoc network depicted in Figure 1 is two. We assume that the diameter
of an ad hoc network will be small but may often be greater than one.

Hosts within the ad hoc network may move at any time without notice, but we
assume that the speed with which hosts move is moderate with respect to the
packet transmission latency and wireless transmission range of the particular
underlying network hardware in use. In particular, we assume that hosts do
not continuously move so rapidly as to make the flooding of every packet the
only possible routing protocol.

We assume that hosts can enable a promiscuous receive mode on their wire
less network interface hardware, causing the hardware to deliver every received
packet to the network driver software without filtering based on destination
address. Although we do not require this facility, it is common in current LAN
hardware for broadcast media including wireless, and some of our optimiza
tions take advantage of it. Use of promiscuous mode does increase the software
overhead on the CPU, but we believe that wireless network speeds are more
the inherent limiting factor to performance in current and future systems. We
believe that portions of the protocol are also suitable for implementation di
rectly in hardware or within a programmable network interface unit to avoid
this overhead on the CPU.

3 BASIC OPERATION

3.1 Overview

To send a packet to another host, the sender constructs a source route in the
packet's header, giving the address of each host in the network through which
the packet should be forwarded in order to reach the destination host. The

158 CHAPTER 5

sender then transmits the packet over its wireless network interface to the first
hop identified in the source route. When a host receives a packet, if this host
is not the final destination of the packet, it simply transmits the packet to
the next hop identified in the source route in the packet's header. Once the
packet reaches its final destination, the packet is delivered to the network layer
software on that host.

Each mobile host participating in the ad hoc network maintains a route cache
in which it caches source routes that it has learned. When one host sends a
packet to another host, the sender first checks its route cache for a source route
to the destination. If a route is found, the sender uses this route to transmit the
packet. If no route is found, the sender may attempt to discover one using the
route discovery protocol. While waiting for the route discovery to complete,
the host may continue normal processing and may send and receive packets
with other hosts. The host may buff'er the original packet in order to transmit
it once the route is learned from route discovery, or it may discard the packet,
relying on higher-layer protocol software to retransmit the packet if needed.
Each entry in the route cache has associated with it an expiration period, after
which the entry is deleted from the cache.

While a host is using any source route, it monitors the continued correct op
eration of that route. For example, if the sender, the destination, or any of
the other hosts named as hops along a route move out of wireless transmission
range of the next or previous hop along the route, the route can no longer be
used to reach the destination. A route will also no longer work if any of the
hosts along the route should fail or be powered off. This monitoring of the
correct operation of a route in use we call route maintenance. When route
maintenance detects a problem with a route in use, route discovery may be
used again to discover a new, correct route to the destination.

This section describes the basic operation of route discovery and route mainte
nance. Optimizations to this basic operation of the protocol are then described
in Section 4.

3.2 Route Discovery

Route discovery allows any host in the ad hoc network to dynamically discover a
route to any other host in the ad hoc network, whether directly reachable within
wireless transmission range or reachable through one or more intermediate net
work hops through other hosts. A host initiating a route discovery broadcasts

Dynamic Source Routing in Ad Hoc Wireless Networks 159

a route request packet which may be received by those hosts within wireless
transmission range of it. The route request packet identifies the host, referred
to as the target of the route discovery, for which the route is requested. If the
route discovery is successful the initiating host receives a route reply packet
listing a sequence of network hops through which it may reach the target.

In addition to the address of the original initiator of the request and the target
of the request, each route request packet contains a route record, in which is
accumulated a record of the sequence of hops taken by the route request packet
as it is propagated through the ad hoc network during this route discovery.
Each route request packet also contains a unique request id, set by the initia
tor from a locally-maintained sequence number^ In order to detect duplicate
route requests received, each host in the ad hoc network maintains a list of the
(initiator address, request id) pairs that it has recently received on any route
request.

When any host receives a route request packet, it processes the request accord
ing to the following steps:

1. If the pair (initiator address, request id) for this route request is found
in this host's list of recently seen requests, then discard the route request
packet and do not process it further.

2. Otherwise, if this host's address is already listed in the route record in
the request, then discard the route request packet and do not process it
further.

3. Otherwise, if the target of the request matches this host's own address,
then the route record in the packet contains the route by which the request
reached this host from the initiator of the route request. Return a copy of
this route in a route reply packet to the initiator.

4. Otherwise, append this host's own address to the route record in the route
request packet, and re-broadcast the request.

The route request thus propagates through the ad hoc network until it reaches
the target host, which then replies to the initiator. The original route request
packet is received only by those hosts within wireless transmission range of
the initiating host, and each of these hosts propagates the request if it is not
the target and if the request does not appear to this host to be redundant.
Discarding the request because the host's address is already listed in the route
record guarantees that no single copy of the request can propagate around a

160 CHAPTER 5

loop. Also discarding the request when the host has recently seen one with the
same (initiator address, request id) removes later copies of the request that
arrive at this host by a different route.

In order to return the route reply packet to the initiator of the route discovery,
the target host must have a route to the initiator. If the target has an entry for
this destination in its route cache, then it may send the route reply packet using
this route in the same way as is used in sending any other packet (Section 3.1).
Otherwise, the target may reverse the route in the route record from the route
request packet, and use this route to send the route reply packet. This, however,
requires the wireless network communication between each of these pairs of
hosts to work equally well in both directions, which may not be true in some
environments or with some MAC-level protocols. An alternative approach, and
the one we have currently adopted, is for this host to piggyback the route reply
packet on a route request targeted at the initiator of the route discovery to
which it is replying. This use of piggybacking is described in Section 4.2.

3.3 Route Maintenance

Conventional routing protocols integrate route discovery with route mainte
nance by continuously sending periodic routing updates. If the status of a link
or router changes, the periodic updates will eventually reflect the changes to
all other routers, presumably resulting in the computation of new routes. How
ever, using route discovery, there are no periodic messages of any kind from
any of the mobile hosts. Instead, while a route is in use, the route maintenance
procedure monitors the operation of the route and informs the sender of any
routing errors.

Since wireless networks are inherently less reliable than wired networks [1],
many wireless networks utilize a hop-by-hop acknowledgement at the data link
level in order to provide early detection and retransmission of lost or corrupted
packets. In these networks, route maintenance can be easily provided, since at
each hop, the host transmitting the packet for that hop can determine if that
hop of the route is still working. If the data link level reports a transmission
problem for which it cannot recover (for example, because the maximum num
ber of retransmissions it is willing to attempt has been exceeded), this host
sends a route error packet to the original sender of the packet encountering the
error. The route error packet contains the addresses of the hosts at both ends
of the hop in error: the host that detected the error and the host to which it
was attempting to transmit the packet on this hop. When a route error packet

Dynamic Source Routing in Ad Hoc Wireless Networks 161

is received, the hop in error is removed from this host's route cache, and all
routes which contain this hop must be truncated at that point.

If the wireless network does not support such lower-level acknowledgements,
an equivalent acknowledgement signal may be available in many environments.
After sending a packet to the next hop mobile host, the sender may be able to
hear that host transmitting the packet again, on its way further along the path,
if it can operate its wireless network interface in promiscuous mode. For exam
ple, in Figure 1, host A may be able to hear J5's transmission of the packet on to
C, This type of acknowledgement is known as a passive acknowledgement [11].
In addition, existing transport or application level replies or acknowledgements
from the original destination could also be used as an acknowledgement that
the route (or that hop of the route) is still working. As a last resort, a bit in
the packet header could be included to allow a host transmitting a packet to
request an explicit acknowledgement from the next-hop receiver. If no other
acknowledgement signal has been received in some time from the next hop on
some route, the host could use this bit to inexpensively probe the status of this
hop on the route.

As with the return of a route reply packet, a host must have a route to the
sender of the original packet in order to return a route error packet to it. If
this host has an entry for the original sender in its route cache, it may send
the route error packet using that route. Otherwise, this host may reverse the
route from the packet in error (the route by which the packet reached this host)
or may use piggybacking as in the case of a route reply packet (Section 4.2).
Another option in the case of returning a route error packet is for this host to
save the route error packet locally in a buffer, perform a route discovery for the
original sender, and then send the route error packet using that route when it
receives the route reply for this route discovery. This option cannot be used for
returning a route reply packet, however, since then neither host would ever be
able to complete a route discovery for the other, if neither initially had a route
cache entry for the other.

Route maintenance can also be performed using end-to-end acknowledgements
rather than the hop-by-hop acknowledgements described above, if the particu
lar wireless network interfaces or the environment in which they are used are
such that wireless transmissions between two hosts do not work equally well in
both directions. As long as some route exists by which the two end hosts can
communicate (perhaps different routes in each direction), route maintenance is
possible. In this case, existing transport or application level replies or acknowl
edgements from the original destination, or explicitly requested network level
acknowledgements, may be used to indicate the status of this host's route to

162 CHAPTER 5

BCD

0 HZf HZ} *IZ]

Figure 2 An example ad hoc network illustrating use of the route cache

the other host. With hop-by-hop acknowledgements, the particular hop in error
is indicated in the route error packet, but with end-to-end acknowledgements,
the sender may only assume that the last hop of the route to this destination
is in error.

4 OPTIMIZATIONS

A number of optimizations are possible to the basic operation of route discovery
and route maintenance as described in Section 3.2, that can reduce the number
of overhead packets and can improve the average efficiency of the routes used
on data packets. This section discusses some of those optimizations.

4.1 Full Use of the Route Cache

The data in a host's route cache may be stored in any format, but the active
routes in its cache in effect form a tree of routes, rooted at this host,'to other
hosts in the ad hoc network. For example, Figure 2 shows an ad hoc network
of five mobile hosts, in which mobile host A has earlier completed a route
discovery for mobile host D and has cached the route to D through B and C.
Since hosts B and C are on the route to JD, host A also learns the route to
both of these hosts from its route discovery for D. If A later performs a route
discovery and learns the route to E through B and C, it can represent this in
its route cache with the addition of the single new hop from C to E. If A then
learns it can reach C in a single hop (without needing to go through B), A

Dynamic Source Routing in Ad Hoc Wireless Networks 163

can use this new route to C to also shorten the routes to D and E in its route
cache.

A host can add entries to its route cache any time it learns a new route. In
particular, when a host forwards a data packet as an intermediate hop on the
route in that packet, the forwarding host is able to observe the entire route in
the packet« Thus, for example, when host B forwards packets from A to D, B
can add the route information from that packet to its own route cache. If a host
forwards a route reply packet, it can also add the route information from the
route record being returned in that route reply, to its own route cache. Finally,
since all wireless network transmissions are inherently broadcast, a host may
be able configure its network interface into promiscuous receive mode, and can
then add to its route cache the route information from any data or route reply
packet it can overhear.

A host may use its route cache to avoid propagating a route request packet
received from another host. In particular, suppose a host receives a route
request packet for which it is not the target and is not already listed in the
route record in the packet, and for which the pair (initiator address, request id)
is not found in its list of recently seen requests; if the host has a route cache
entry for the target of the request, it may append this cached route to the
accumulated route record in the packet, and may return this route in a route
reply packet to the initiator without propagating (re-broadcasting) the route
request. Thus, for example, if mobile host F needs to send a packet to mobile
host D, it will initiate a route discovery and broadcast a route request packet.
If this broadcast is received hy A, A can simply return a route reply packet to
F containing the complete route to D consisting of the sequence of hops A, B,
C, and D.

A particular problem can occur, however, when several mobile hosts receive the
initiator's broadcast of the route request packet, and all reply based on routes
found in their route caches. In Figure 2, for example, if both A and B receive
F's route request broadcast, they will both be able to reply from their route
caches, and will both send their replies at about the same time since they both
received the broadcast at about the same time. Particularly when more than the
two mobile hosts in this example are involved, these simultaneous replies from
the mobile hosts receiving the broadcast may create packet collisions among
some or all of these replies and may cause local congestion in the wireless
network. In addition, it will often be the case that the different replies will
indicate routes of different lengths. For example, ^ ' s reply will indicate a route
to D that is one hop longer than that in 5 's reply.

164 CHAPTER 5

We avoid the problems of many simultaneous replies and attempt to eliminate
replies indicating routes longer than the shortest reply, by causing each mobile
host to delay slightly before replying from its cache. Before replying from its
route cache, a host performs the following actions:

1. Pick a delay period d = Hx{h—1-hr), where h is the length in number
of network hops for the route to be returned in this host's reply, r is a
random number between 0 and 1, and H is a small constant delay to be
introduced per hop.

2. Delay transmitting the route reply from this host for a period of d.

3. Within this delay period, promiscuously receive all packets at this host. If
a packet is received by this host during the delay period addressed to the
target of this route discovery (the target is the final destination address for
the packet, through any sequence of intermediate hops), and if the length
of the route on this packet is less than h, then cancel the delay and do
not transmit the route reply from this host; this host may infer that the
initiator of this route discovery has already received a route reply, giving
an equal or better route.

Another problem that can occur when hosts reply to route requests from their
cache, is the formation of a loop in the route sent in the route reply packet.
The route record in the route request cannot contain a loop, and no entry in a
route cache ever is set to a route containing a loop, yet the concatenation of the
route record and the entry from the replying host's route cache for the target
may contain a loop. For example, in Figure 2, if host B does not have a route
cache entry for D, it will need to initiate a route discovery before sending a
packet to D. In this case, A could immediately reply from its route cache with
the route to D through B and C. This, however, would form the concatenated
route of A-B-C-D for B to then use in sending packets to D, creating a loop
from B to A and then back to B. In order to avoid this problem, if a host
receives a route request and is not the target of the request but could reply
from its cache, the host instead discards the request if the route in its reply
would contain a loop; this restriction also implies that a host will only reply
from its cache with a route in which the host itself is on the route, at the end
of the route recorded in the route request packet and at the beginning of the
path obtained from the host's route cache.

As a last optimization involving full use of the route cache, we have added the
ability for the initiator of a route request to specify in the request packet, the

Dynamic Source Routing in Ad Hoc Wireless Networks 165

maximum number of hops over which the packet may be propagated. If another
host near the initiator has a cache entry for the target of a route request, the
propagation of many redundant copies of the route request can be avoided if
the initiator can explicitly limit the request's propagation when it is originally
sent. Currently, we use this ability during route discovery as follows:

1. To perform a route discovery, initially send the route request with a hop
limit of one. We refer to this as a nonpropagating route request.

2. If no route reply is received from this route request after a small timeout
period, send a new route request with the hop limit set to a predefined
"maximum" value for which it is assumed that all useful routes in the
ad hoc network are less than this limit (currently 10).

This procedure uses the hop limit on the route request packet to inexpensively
check if the target is currently within wireless transmitter range of the initiator
or if another host within range has a route cache entry for this target (effectively
using the caches of this host's neighbors as an extension of its own cache). Since
the initial request is limited to one network hop, the timeout period before
sending the propagating request can be quite small. This mechanism could
also be used to implement an "expanding ring" search for the target, in which
the hop limit is gradually increased in subsequent retransmissions of the route
request for this target, but we have not yet experimented with this approach.

4.2 Piggybacking on Route Discoveries

As described in Section 3.2, when one host needs to send a packet to another,
if the sender does not have a route cached to the destination host, it must
initiate a separate route discovery, either buffering the original packet until the
route reply is returned, or discarding it and relying on a higher-layer protocol
to retransmit it if needed. The delay for route discovery and the total number
of packets transmitted can be reduced by allowing data to be piggybacked on
route request packets. Since some route requests may be propagated widely
within the ad hoc network, though, the amount of data piggybacked must be
limited. We currently use piggybacking when sending a route reply or a route
error packet, since both are naturally small in size; small data packets such
as the initial SYN packet opening a TCP connection [23] could also easily be
piggybacked, but we have not yet experimented with this option.

166 CHAPTER 5

B m:-}-

Figure 3 Mobile host D notices that the route can be shortened

One problem, however, arises when piggybacking on route request packets. If
the route request is received by some host and is replied to based on the host's
route cache without propagating the request (Section 4.1), the piggybacked
data would be lost when the host discards the route request. In this case,
before discarding the packet, the host must construct a new packet containing
the piggybacked data from the route request packet, setting the route in this
packet from the route being returned in the route reply. The route should
appear as if the new packet had been sent by the initiator of the route discovery
and had been forwarded normally to this host: the first portion of the route
is taken from the accumulated route record in the route request packet, and
the remainder of the route is taken from this host's route cache. The sender
address in the packet should also be set to the initiator of the route discovery.

4.3 Reflecting Shorter Routes

While two hosts are communicating with each other using cached routes, it is
desirable for the hosts to begin using shorter routes if the hosts move suflS-
ciently closer together. In many cases, the basic route maintenance procedure
is sufficient to accomplish this, since if one of the hosts moves enough to allow
the route to be shortened, it will likely also move out of transmission range of
the first hop on the existing route.

An improvement to this method of refiecting shorter routes is possible if hosts
operate their network interfaces in promiscuous receive mode. Suppose some
where in the forwarding of a packet, mobile host B transmits a packet to C,
with D being the next hop after C in the route in the packet, as illustrated
in Figure 3. If D receives this packet, it can examine the packet header to see
that the packet reached it from B in one hop rather than two as intended by
the route in the packet. In this case, D may infer that route may be shortened
to exclude the intermediate hop through C. D then sends an unsolicited route
reply packet to the original sender of the packet, informing it that it can now
reach D in one hop from B. As with other route reply packets, other hosts
which also receive this route reply (in particular, other hosts also operating in

Dynamic Source Routing in Ad Hoc Wireless Networks 167

promiscuous receive mode) may also incorporate this change into their route
caches. We beUeve that this method will ensure that the shortest routes will
be used, although we have not yet added this method to our simulator.

4«4 Improved Handling of Errors

One common error condition that must be handled in an ad hoc network is the
case in which the network effectively becomes partitioned. That is, two hosts
that wish to communicate are not within transmission range of each other, and
there are not enough other mobile hosts between them to form a sequence of
hops through which they can forward packets. If a new route discovery were
to be initiated for each packet sent by a host in this situation, a large number
of unproductive route request packets would be propagated throughout the
subset of the ad hoc network reachable from this host. In order to reduce the
overhead from such route discoveries, we use exponential backoff to limit the
rate at which new route discoveries may be initiated from any host for the same
target. If the host attempts to send additional data packets to this same host
more frequently than this limit, the subsequent packets may be buffered until
a route reply is received, but they do not initiate a new route discovery until
the minimum allowable interval between new route discoveries for this target
has been reached. This limitation on the maximum rate of route discoveries
for the same target is similar to the mechanism required by Internet hosts to
limit the rate at which ARP requests are sent to any single IP address [3].

An additional optimization possible to improve the handling of errors is to use
promiscuous receive mode to allow hosts to eavesdrop on route error packets
being sent to other hosts. For example. Figure 4 shows the return of a route
error packet to mobile host A from host B. If hosts (7, D, and E are operating
in promiscuous receive mode, they will be able to receive the route error packet.
Since a route error packet names both ends of the route hop causing the error,
any host receiving the error packet can update its route cache to reflect the fact
that the two hosts indicated in the packet can no longer directly communicate.
A host receiving a route error packet can simply search its route cache for any
routes using this hop, and for each such route found, the route is truncated
at this hop. All hosts on the route before this hop are still reachable on this
route, but subsequent hosts are not.

It is possible, however, that a route error packet being returned to the original
sender of a data packet may take a different route to the sender than the data
packet took to the point at which the error was encountered. For example.

168 CHAPTER 5

E "route error" VWM

-———[*j

S
Figure 4 Mobile host B is returning a route error packet to A

in a network environment in which radio transmission between two hosts does
not work equally well in both directions, a route discovery used by the host
returning the route error packet may discover a different route back to the
original sender. Thus, some hosts that may have cached the route in error may
not be able to receive the route error packet, even using promiscuous receive
mode. This situation can be improved by extending the handling of route error
packets such that, once the route error packet reaches the original sender of the
data packet, that original sender also retransmits the route error packet back
to the point of error along the path originally used for the data packet, if this
path differs from the one along which it received the route error packet.

A last optimization to improve the handling of errors is to support the caching
of "negative" information in a host's route cache. Suppose, in Figure 4, that
none of these optimizations for handling errors are in use. When A receives ^ ' s
route error packet, it may initiate a route discovery in order to find a new route
to the same target. However, if hosts C, D, or E have an entry in their route
cache for this target, they will likely reply to A from their cache with a cached
copy of the same route that A just removed from its cache. If instead, A could
enter into its cache when it receives B's route error packet, an indication that
this hop is not currently working (rather than simply removing this hop from
any routes currently in its cache), then A could ignore future replies from C,
D, and E that include this hop from their caches. A short expiration period
must be placed on this negative cached information, since while this entry is
in its cache, A will otherwise refuse to allow this hop in any route entries in its
cache, even if this hop begins working again.

We have not currently included this caching of negative information in our
simulation, due to the difficulty of picking a suitable expiration period, and

Dynamic Source Routing in Ad Hoc Wireless Networks 169

since it appears to not be necessary in most cases, if hosts also promiscuously
receive route error packets. For example, in Figure 4, if C, D, and E also receive
^ ' s route error packet, they will have removed this hop from their caches before
A^s new route discovery is initiated, thus avoiding the problem.

5 P E R F O R M A N C E EVALUATION

5.1 The Simulation

To evaluate the performance of our dynamic source routing protocol, we con
structed a packet-level simulator which allowed us to observe and measure the
protocol's performance under a variety of conditions. In addition to a number
of parameter choices in the protocol, the simulator allowed us to vary certain
environmental factors such as the number of mobile hosts, the pattern and
speed of host movement, and the distribution of the hosts in space. The sim
ulator implements the basic protocol along with all optimizations described in
Section 4 with the exceptions of reflecting shorter routes (Section 4.3) and the
caching of negative information (Section 4.4).

The basic simulation parameters were chosen to model an ad hoc network
consisting of a collection of mobile hosts moving around in a medium-sized
room. The area in which the hosts move is square, 9 meters on a side. Each
host moves with a velocity between 0.3 and 0.7 meters per second (somewhere
between a slow walk and a quick stroll), and each transceiver has a range of 3
meters. These parameters could represent, for example, a group of hosts using
diffuse infrared transceivers, or since the parameters are related and can be
scaled linearly, they could also represent a number of cars with radio-equipped
portables driving (very quickly) around an area of 1 square kilometer.

Each host is initially placed at a random position within in the simulation
area. As the simulation progresses, each host pauses at its current location
for a period, which we call the pause time, and then randomly chooses a new
location to move to and a velocity between 0.3 and 0.7 meters per second at
which to move there. Each host continues this behavior, alternately pausing and
moving to a new location, for the duration of the simulation. Using this model,
hosts appear to wander through the room with their restlessness determined
by the pause time constant.

170 CHAPTER 5

Whenever a host transmits a packet, some method must be used to determine
which of the surrounding hosts will receive a copy of the packet. While our sim
ulation's transmission model is admittedly simple, it still allows us to estimate
the basic performance of the protocol. In the simulation, each host can be the
originator of up to 3 conversations at a time, with the other participant in the
conversation chosen randomly from among the other hosts. In actual use, we
would expect hosts to communicate mostly with a small common subset of the
available hosts (such as servers), which would reduce the number of route dis
coveries required. While a host is the initiator of less than three conversations,
it initiates a new conversation with a randomly chosen partner after an average
period of 15 seconds (using an exponential distribution). Each conversation
lasts for a predetermined number of packets, the number being chosen from a
geometric distribution with an average of 1000 packets. Again, in actual use,
we would expect some (or all) of the conversations to be of longer duration
than this, depending on the mix of network application programs in use. Short
conversations, however, give a more conservative measure of the performance
of the protocol, since more route discoveries are required as each host more
frequently changes which other hosts it is communicating with.

During a conversation, packets are sent to the partner at exponentially dis
tributed sending times with a uniformly chosen average rate between 2 and 5
packets per second. Packet lengths are chosen with a distribution such that
70% of the packets are long packets (1000 bytes) and the remainder are short
packets (32 bytes). To give the appearance of a two way conversation, the part
ner sends a return packet back to the originator for every packet it receives.
These return packets have the same length distribution as the originator's pack
ets.

Packet transmission in the simulator is based on a network using link level
acknowledgements at each hop. Transmissions to a host that is out of range
always fail while transmissions to a host in range fail with a probability of 5%.
The data link layer in the simulator will make up to 2 retransmission attempts
if the first transmission fails. Each time a sender transmits a packet, the other
hosts in range of the sender each have a 95% chance of overhearing the packet.
The bandwidth for transmitting data is 100 Kbytes per second.

There are a number of parameters such as timeouts and holdofF periods which
must be configured within the protocol. The values used in the simulator are
shown in Table 1. Although we have attempted to choose reasonable values
for these parameters and believe that our results are not particularly sensitive
to these choices, we have not yet experimented with the effects of possible
alternate choices.

Dynamic Source Routing in Ad Hoc Wireless Networks 171

T a b l e 1 Parameter values used in the simulation

Parameter

Period between nonpropagating route requests
Nonpropagating route request time out
Route request time out
Route request slot length
Maximum route request period
Route reply holdoff per-hop delay

Value

5 sec.
100 msec.
500 msec.
500 msec.

10 sec.
4 msec.

The simulator does not attempt to model channel contention. Given a suitable
data link layer protocol such as MACAW [2], the chance of data being lost
to collision during periods of channel contention grows small, although at the
expense of more delay in packet sending and receipt as each host waits for its
turn to use the bandwidth. Therefore, while our model should accurately show
the numbers of packets that will be received, we cannot completely evaluate
the latency of any individual packet exchange.

The simulator also does not model possible one-way links between hosts. This
choice is necessarily implied by our desire to implement the protocol on top of a
data-link layer with link level acknowledgements. However, as described above,
the protocol will still work in the absence of link layer acknowledgements.

A final minor limitation of our simulation is that our simulated environment
is assumed to be devoid of obstacles to transmission or movement. Further,
transmission failures are assumed to be uniformly distributed and independent,
which does not take into account spatially localized failures due to sources such
as microwave ovens, in the case of radio, or windows and reflections, in the case
of infrared.

5.2 Results

We executed 20 runs of the simulator for each of a number of different movement
rates and numbers of mobile hosts in the simulated ad hoc network. Each run
simulated 4000 seconds of execution (just over one hour), with each mobile host
moving and communicating as described in Section 5.1. The movement rate of
the mobile hosts was determined by the pause time described above, with pause

172 CHAPTER 5

LO

£
C/5

2
E

Z. CM
CO

E
•-«
CL
O ^
CO

°E * -̂

c

E -
2

o
T -

T
i
1
1
1
1
1

il
i

i
1

• — 6
• 12
^ - - 18
• — 24

_.« ^

1000 2000
Pause Time

3000 4000

Figure 5 Average total number of transmissions performed relative to opti
mal (20 runs)

times ranging from 0 to 4000. With a pause time of 0, all hosts are constantly
in motion, whereas with a pause time of 4000, hosts do not move during the run
from their initial randomly chosen locations. The ad hoc network in each run
consisted of either 6, 12, 18, or 24 mobile hosts. We present here the average
over the 20 runs of the simulator for each of these cases; standard deviation for
all cases was within 7% and in general was 2% or less of the average value for
each case.

Figure 5 shows the total number of packet transmissions performed relative
to the optimal number of transmissions for the data packets sent during the
simulation. The optimal number of transmissions is the number of hops for each
data packet needed to get from the sender of a packet to the intended receiver,
if perfect routing decisions are made for each packet and if no transmission
errors occur. The total number of packets actually transmitted includes the
number of hops for each data packet based on the source route used by the
sender, plus all packet transmissions used for route request, route reply, and
route error packets. This ratio shows the work efficiency of the protocol: a

Dynamic Source Routing in Ad Hoc Wireless Networks 173

F i g u r e 6 Example of disconnected clusters with 24 hosts

value of 1.0 indicates a perfectly efficient protocol with no overhead packets
present.

For all but the shortest pause times in the simulated environment, the total
number of packets transmitted by the protocol is very close to optimal, and
falls to an overhead of about 1% (a ratio of 1.01) for pause times greater than
1000 with 24 mobile hosts, as shown in Figure 5. For very short pause times,
representing very frequent host movement, the protocol overhead is higher,
reaching a maximum ratio of 2.6 for a pause time of 0, representing all hosts
in constant motion. In such situations, source routes become invalid quickly
after they are discovered, and additional overhead is spent discovering new
routes. However, because the route maintenance procedure can quickly de
tect when a route in use is no longer working, nearly all data packets can be
successfully delivered even in periods of such extreme host movement. Dis
tance vector protocols, on the other hand, would be unable to keep up with
the rate of change in the network and would be unable to deliver most data
packets.

174 CHAPTER 5

The performance results for protocol overhead presented here are affected by
the occurrence of disconnected components of the mobile hosts within the area
of the ad hoc network. When placing a number of mobile hosts at random
locations within the simulation area, there is a chance that some groups of
hosts will be unable to communicate with other groups of hosts since all hosts
in each group are out of wireless transmission range of all hosts in other groups.
This effectively forms a partition of the ad hoc network. For example, Figure 6
illustrates a typical placement of 24 mobile hosts, which happened to form two
disconnected components. With fewer mobile hosts spread over the same area,
we have observed similar (but worse) occurrences of disconnected components.

For each data packet sent with the receiver outside the sender's disconnected
component, the basic protocol would initiate a route discovery, although we
have included an optimization to limit the rate of new discoveries using an
exponential backoff, as described in Section 4.4. The remaining extra route
discoveries still performed in such situations show in increased protocol over
head, such as in the higher overhead values for 6 and 12 hosts shown in Figure 5,
although the number of such extra route discoveries due disconnected compo
nents is greatly reduced by this optimization.

Figure 7 shows the average length of a source route used in sending a data
packet relative to the optimal route length for the packets sent during the sim
ulation. The optimal route length here is the number of hops needed to reach
the destination if perfect routing information were available. In Figure 7, a
different scale has been used on the y-axis than was used in Figure 5 in or
der to show the relevant detail in the shape of each graph. The ratio of the
length of routes used relative to optimal shows the degree to which the pro
tocol finds and maintains optimal routes as the mobile hosts move about. As
shown here, the protocol finds and uses close to optimal routes, even without
the route shortening optimization using promiscuous receive mode described in
Section 4.3. The difference in length between the routes used and the optimal
route lengths is negligible. In most cases, the route lengths used are on average
within a factor of 1.01 of optimal, and in all cases are within a factor of 1.09
of optimal.

6 RELATED W^ORK

Research on packet routing in wireless networks of mobile hosts dates back at
least to 1973 when the U.S. Defense Advanced Research Projects Agency began

Dynamic Source Routing m Ad Hoc Wireless Networks 175

2000
Pause Time

Figure 7 Average route length used relative to optimal (20 runs)

the DARPA Packet Radio Network (PRNET) project [11] and its successor the
Survivable Adaptive Networks (SURAN) project [15]. PRNET supports the
automatic set up and maintenance of packet switched communication routes in
a network of moderately mobile hosts communicating via radios. The PRNET
routing protocol uses a form of distance vector routing, with each node broad
casting a routing update packet (called a packet-radio organization packet, or
PROP, in PRNET) every 7.5 seconds. The header of each data packet contains
the source and destination node addresses, the number of hops taken so far
from the source, and the number of hops remaining to reach the destination
(based on the sender's routing table). Nodes promiscuously receive all packets
and may update their routing tables based on this header information. The
data link protocol uses hop-by-hop acknowledgements, using either explicit (ac
tive) acknowledgements or passive acknowledgements from these promiscuously
received packets.

The amateur radio community has also worked extensively with routing in
wireless networks of (sometimes) mobile hosts [14], holding an annual packet
radio computer networking conference sponsored by the American Radio Re
lay League (ARRL) since 1981. Amateur packet radio networking originally

176 CHAPTER 5

used only source routing with explicit source routes constructed by the user,
although some had considered the possibility of a more dynamic source routing
scheme [7]. A system known as NET/ROM was also developed to allow the
routing decisions to be automated, using a form of distance vector routing pro
tocol rather than source routing [6, 8]. NET/ROM also allows updating of its
routing table based on the source address information in the headers of packets
that it receives.

A particular problem with the use of distance vector routing protocols in net
works with hosts that move, is the possibility of forming routing loops. In or
der to eliminate this possibility, Perkins and Bhagwat have recently proposed
adding sequence numbers to routing updates in their Destination-Sequenced
Distance Vector (DSDV) protocol [19]. These sequence numbers are used to
compare the age of information in a routing update, and allow each node to
preferentially select routes based on the freshest information. DSDV also uses
triggered routing updates to speed route convergence. In order to damp route
fluctuation and reduce congestion from large numbers of triggered updates after
a route changes, each node in DSDV maintains information about the frequency
with which it sees route changes and may delay some routing updates.

Our dynamic source routing protocol is similar in approach to some source
routing protocols used in wired networks, such as in the IEEE 802 SRT bridge
standard [20], in FLIP [12], and in SDRP [5, 28]. Our route request packet
serves essentially the same role in route discovery as an "all paths explorer"
packet. However, in wired networks, a bridge can copy an all paths explorer
from one network interface onto each of its other interfaces and be sure that the
explorer will flood the network in an orderly and complete way. Our protocol
includes optimizations such as caching (initiator address, request id) pairs to
efficiently flood explorers through a wireless network. We also make extensive
use of caching and can eff'ectively make use of promiscuous receive mode in the
network interface to optimize route discovery.

The Internet Address Resolution Protocol (ARP) [21] is used to flnd the MAC
address of a host on the same LAN as the sender. ARP is somewhat similar
to our nonpropagating route request packets, except that a mobile host may
answer the route request from its cache whereas ARP requests are normally
only answered by the target host itself. In cases in which several LANs have
been bridged together, the bridge may run "proxy" ARP [24], which allows
the bridge to answer an ARP request on behalf of another host. In this sense,
our nonpropagating route requests are also similar to proxy ARP in that they
expand the efl'ective size of a single host's route cache by allowing it to cheaply

Dynamic Source Routing in Ad Hoc Wireless Networks 177

make use of the caches of neighboring hosts to reduce the need for propagating
request packets.

One tradeoff between source routing and distance vector routing is in the han
dling of partioned networks, as mentioned in Section 5.2. Under dynamic source
routing, if a host wishes to communicate with an unreachable host, the rate
at which route requests are made will be reduced by a back off mechanism;
the protocol, however, continues to make periodic efforts to find a route to the
unreachable host, consuming some network resources. Under distance vector
routing, with the assumption that routes have had time to converge once the
host became unreachable, no network resources are spent trying to send pack
ets to an unreachable host, as none of the hosts in the sender's partition of
the network have a routing table entry for the destination. In practice, the
problem of attempting to route packets to unreachable hosts is less significant,
as connection-oriented protocols typically give up after a certain timeout or
number of attempts, and human users will likewise give up eventually on any
attempt to reach an unreachable host. In our simulation, however, a host con
tinues to attempt sending packets to the destination host for the entire duration
of each simulated conversation.

In general, when hosts move quickly enough and frequently enough, the best
strategy that any routing protocol can use is to flood data packets throughout
the network in hopes that the moving host will run into one of the many
copies. On the other hand, when host movement is very slow or infrequent,
ideally no overhead should be required for routing, since none of the routing
information changes. Dynamic source routing moves easily between these two
regimes, driven by the rate at which route requests are initiated. If a host
with which another host wants to communicate is moving very quickly, source
routing floods the network with a route request and then sends a data packet as
soon as the destination is found and a route reply returned. Hosts uninterested
in talking to this quickly moving host may see some of the available bandwidth
consumed by the route requests but will have their own routes left unaffected.
Likewise, if host motion slows, the rate at which routes cease working will slow
and routing overhead will thus be reduced due to less frequent need for new
route discoveries.

178 CHAPTER 5

7 CONCLUSION

This paper has presented a protocol for routing packets between wireless mobile
hosts in an ad hoc network. Unlike routing protocols using distance vector or
link state algorithms, our protocol uses dynamic source routing which adapts
quickly to routing changes when host movement is frequent, yet requires little
or no overhead during periods in which hosts move less frequently. Based on
results from a packet-level simulation of mobile hosts operating in an ad hoc
network, the protocol performs well over a variety of environmental conditions
such as host density and movement rates. For all but the highest rates of host
movement simulated, the overhead of the protocol is quite low, falling to just
1% of total data packets transmitted for moderate movement rates in a network
of 24 mobile hosts. In all cases, the difference in length between the routes used
and the optimal route lengths is negligible, and in most cases, route lengths are
on average within a factor of 1.02 of optimal.

We are currently expanding our simulations to incorporate some additional
optimizations and to quantify the effects of the individual optimizations on the
behavior and performance of the protocol. We are also continuing to study
other routing protocols for use in ad hoc networks, including those based on
distance vector or link state routing, as well as the interconnection of an ad hoc
network with a wide-area network such as the Internet, reachable by some but
not all of the ad hoc network nodes. Although this paper does not address
the security concerns inherent in wireless networks or packet routing, we are
currently examining these issues with respect to attacks on privacy and denial
of service in the routing protocol. Finally, we are beginning implementation
of the protocol on notebook computers for use by students in an academic
environment.

Acknowledgements

This research was supported in part by the Wireless Initiative of the Informa
tion Networking Institute at Carnegie Mellon University, and by the National
Science Foundation under CAREER Award NCR-9502725. David Maltz was
also supported in part by an IBM Cooperative Fellowship.

Dynamic Source Routing in Ad Hoc Wireless Networks 179

REFERENCES

[1] David F. Bantz and Frederic J. Bauchot. Wireless LAN design alternatives.
IEEE Network 8(2):43-53, March/April 1994.

[2] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang.
MACAW: A media access protocol for wireless LAN's. In Proceedings
of the SIGCOMM '94 Conference on Communications Architectures, Pro
tocols and Applications, pages 212-225, August 1994.

[3] Robert T, Braden, editor. Requirements for Internet hosts. Internet Re
quest For Comments RFC 1122, October 1989.

[4] Roy C. Dixon and Daniel A. Pitt, Addressing, bridging, and source routing.
IEEE Network 2(l):25-32, January 1988.

[5] Deborah Estrin, Daniel Zappala, Tony Li, Yakov Rekhter, and Kannan
Varadhan. Source Demand Routing: Packet format and forwarding speci
fication (version 1). Internet Draft, January 1995. Work in progress.

[6] Daniel M. Frank. Transmission of IP datagrams over NET/ROM networks.
In ARRL Amateur Radio 7th Computer Networking Conference, pages 65-
70, October 1988.

[7] Bdale Garbee. Thoughts on the issues of address resolution and routing
in amateur packet radio TCP/IP networks. In ARRL Amateur Radio 6th
Computer Networking Conference, pages 56-58, August 1987.

[8] James Geier, Martin DeSimio, and Byron Welsh. Network routing tech
niques and their relevance to packet radio networks. In ARRL/CRRL Am
ateur Radio 9th Computer Networking Conference, pages 105-117, Septem
ber 1990.

[9] C. Hedrick. Routing Information Protocol. Internet Request For Com
ments RFC 1058, June 1988.

[10] International Standards Organization. Intermediate system to intermedi
ate system intra-domain routing exchange protocol for use in conjunction
with the protocol for providing the connectionless-mode network service
(ISO 8473). ISO DP 10589, February 1990.

[11] John Jubin and Janet D. Tornow. The DARPA packet radio network
protocols. Proceedings of the IEEE, 75(l):21-32, January 1987.

180 CHAPTER 5

[12] M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, and An
drew S. Tanenbaum. FLIP: An internetwork protocol for supporting dis
tributed systems. ACM Transactions on Computer Systems, 11(1):73-106,
February 1993.

[13] Phil Karn. MACA — A new channel access method for packet radio.
In ARRL/CRRL Amateur Radio 9th Computer Networking Conference^
pages 134-140, September 1990.

[14] Philip R. Karn, Harold E. Price, and Robert J. Diersing. Packet radio in
the amateur service. IEEE Journal on Selected Areas in Communications,
SAC-3(3):431-439, May 1985.

[15] Gregory S. Lauer. Packet-radio routing. In Routing in Communica
tions Networks, edited by Martha E. SteenStrup, chapter 11, pages 55-76.
Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

[16] John M. McQuillan, Ira Richer, and Eric C. Rosen. The new routing
algorithm for the ARPANET. IEEE Transactions on Communications,
COM-28(5):711-719, May 1980.

[17] John M. McQuillan and David C. Walden. The ARPA network design
decisions. Computer Networks, l(5):243-289, August 1977.

[18] J. Moy. OSPF version 2. Internet Request For Comments RFC 1247, July
1991.

[19] Charles E. Perkins and Pravin Bhagwat. Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In
Proceedings of the SIGCOMM '94 Conference on Communications Archi
tectures, Protocols and Applications, pages 234-244, August 1994.

[20] Radia Perlman. Interconnections: Bridges and Routers. Addison-Wesley,
Reading, Massachusetts, 1992.

[21] David C. Plummer. An Ethernet address resolution protocol: Or convert
ing network protocol addresses to 48.bit Ethernet addresses for transmis
sion on Ethernet hardware. Internet Request For Comments RFC 826,
November 1982.

[22] J. B. Postel, editor. Internet Protocol. Internet Request For Comments
RFC 791, September 1981.

[23] J. B. Postel, editor. Transmission Control Protocol. Internet Request For
Comments RFC 793, September 1981.

Dynamic Source Routing in Ad Hoc Wireless Networks 181

[24] J. B. Postel. Multi-LAN address resolution. Internet Request For Com
ments RFC 925, October 1984.

[25] Nachum Shacham and Jil Westcott. Future directions in packet radio
architectures and protocols. Proceedings of the IEEE, 75(l):83-99, January
1987.

[26] Gursharan S. Sidhu, Richard F, Andrews, and Alan B. Oppenheimer. In
side AppleTalk. Addison Wesley, Reading, Massachusetts, 1990.

[27] Paul Turner, NetWare communications processes. NetWare Application
Notes, Novell Research, pages 25-81, September 1990.

[28] Kannan Varadhan, Deborah Estrin, Steve Hotz, and Yakov Rekhter. SDRP
route construction. Internet Draft, July 1994. Work in progress.

[29] Xerox Corporation. Internet transport protocols. Xerox System Integra
tion Standard 028112, December 1981.

6
ROUTING OVER MULTI-HOP

WIRELESS NETWORK OF MOBILE
COMPUTERS

Charles E. Perkins and Pravin Bhagwatt

IBM Research - Yorktown Heights, NY

^ University of Maryland - College Park, MD

ABSTRACT

An ad-hoc network is t h e cooperat ive engagement of a collection of Mobile Hosts

wi thout t h e required intervent ion of any central ized Access Poin t . In this pape r we

present an innovative design for t h e opera t ion of such ad-hoc networks. T h e basic

idea of t h e design is t o opera te each Mobile Host as a specialized router , which

periodically advert ises its view of t he in terconnect ion topology wi th o ther Mobile

Hosts wi th in t he network. This amoun t s t o a new sort of rou t ing protocol . We

have invest igated modifications to t h e basic Bel lman-Ford rou t ing mechanisms , as

specified by the Rou t ing Informat ion Protocol , mak ing it su i table for a dynamic and

self-starting network mechanism as is required by users wishing to utilize ad-hoc

networks. Our modifications address some of t h e previous object ions t o t h e use of

Bel lman-Ford, related t o t h e poor looping proper t ies of such a lgor i thms in t h e face of

broken links and t h e resul t ing t ime dependen t n a t u r e of t h e in terconnect ion topology

describing t h e links be tween t h e Mobile Hosts . Finally, we describe t h e ways in which

the basic network-layer rou t ing can be modified t o provide MAC-layer suppor t for

ad-hoc networks.

Previously appeared in Proceedings of ACM SIGCOMM'94 under the title "Highly
Dynamic Destination-Sequenced Distance Vector Routing (DSDV) for Mobile Computers."
Copyright ©1994 by the Association for Computing Machinery, Inc. Reprinted by permis
sion. Permission to make digital or hard copies of part or all of this work for personal or class
room use is granted without fee provided that copies are not made or distributed for profit or
direct commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Publications Dept, ACM Inc., fax + 1 (212) 869-0481, or (permissions@acm.org).

184 CHAPTER 6

1 INTRODUCTION

Recently, there has been tremendous growth in the sales of laptop and portable
computers. These smaller computers, nevertheless, can be equipped with hun
dreds of megabytes of disk storage, high resolution color displays, pointing
devices, and wireless communications adapters. Moreover, since many of these
small (in size only) computers operate for hours with battery power, users are
free to move about at their convenience without being constrained by wires.

This is a revolutionary development in personal computing. Battery powered,
untethered computers are likely to become a pervasive part of our computing
infrastructure. As people begin to have mobile computers handy, for whatever
purposes, sharing information between the computers will become a natural
requirement. Currently, such sharing is made difficult by the need for users
to perform administrative tasks and set up static, bidirectional links between
their computers. However, if the wireless communications systems in the mobile
computers support a broadcast mechanism, much more flexible and useful ways
of sharing information can be imagined. For instance, any number of people
could conceivably enter a conference room and agree to support communica
tions links between themselves, without necessarily engaging the services of
any pre-existing equipment in the room (i.e, without requiring any pre-existing
communications infrastructure). Thus, one of our primary motivations is to
allow the construction of temporary networks with no wires and no adminis
trative intervention required. In this paper, such a interconnection between
the mobile computers will be called an ad-hoc network, in conformance with
current usage within the IEEE 802.11 subcommittee [1].

Ad-hoc networks differ significantly from existing networks. First of all, the
topology of interconnections may be quite dynamic. Secondly, most users will
not wish to perform any administrative actions to set up such a network. In
order to provide service in the most general situation, we do not assume that
every computer is within communication range of every other computer. This
lack of complete connectivity would certainly be a reasonable characteristic of,
say, a population of mobile computers in a large room which relied on infrared
transceivers to effect their data communications.

From a graph theoretic point of view, an ad-hoc network is a graph, G{N, E{t))^
which is formed by denoting each mobile host by a node and drawing an edge
between two nodes if they are in direct communication range of each other.
The set of edges, E{t), so formed, is a function of time, and it keeps changing
as nodes in the ad-hoc network move around. The topology defined by such a

Routing over Multi-hop Wireless Network 185

network can be very arbitrary since there are no constraints on where mobiles
could be located with respect to each other. Routing protocols for existing
networks [2, 3, 4] have not been designed specifically to provide the kind of
self-starting behavior needed for ad-hoc networks. Most protocols exhibit their
least desirable behavior when presented with a highly dynamic interconnec
tion topology. Although we thought that mobile computers could naturally
be modeled as routers, it was also clear that existing routing protocols would
place too heavy a computational burden on each mobile computer. Moreover,
the convergence characteristics of existing routing protocols did not seem good
enough to fit the needs of ad-hoc networks. Lastly, the wireless medium differs
in important ways from wired media, which would require that we make mod
ifications to whichever routing protocol we might choose to experiment with.
For instance, mobile computers may well have only a single network interface
adapter, whereas most existing routers have network interfaces to connect two
separate networks together. Since we had to make lots of changes anyway, we
decided to follow our ad-hoc network model as far as we could and ended up
with a substantially new approach to the classic distance-vector routing.

2 OVERVIEW^ OF ROUTING METHODS

In our environment, the problem of routing is essentially the distributed version
of the shortest path problem [2]. Each node in the network maintains for each
destination a preferred neighbor. Each data packet contains a destination node
identifier in its header. When a node receives a data packet, it forwards the
packet to the preferred neighbor for its destination. The forwarding process
continues until the packet reaches its destination. The manner in which routing
tables are constructed, maintained and updated differs from one routing method
to another. Popular routing methods, however, attempt to achieve the common
objective of routing packets along the optimal path. The next-hop routing
methods can be categorized into two primary classes: link-state and distance-
vector.

2.1 Link-state

The Hnk-state approach is closer to the centralized version of the shortest path
computation method. Each node maintains a view of the network topology
with a cost for each link. To keep these views consistent, each node periodically
broadcasts the link costs of its outgoing links to all other nodes using a protocol

186 CHAPTER 6

such as flooding. As a node receives this information, it updates its view of the
network topology and applies a shortest-path algorithm to choose its next hop
for each destination. Some of the link costs in a node's view can be incorrect
because of long propagation delays, partitioned network, etc. Such inconsistent
views of network topologies might lead to formation of routing loops. These
loops, however, are short-lived, because they disappear in the time it takes a
message to traverse the diameter of the network [3].

2.2 Distance-Vector

In distance-vector algorithms, every node i maintains, for each destination x,
a set of distances {d^j} where j ranges over the neighbors of i. Node i treats
neighbor A: as a next-hop for a packet destined for x if d^j^ equals minj{d^j}. The
succession of next hops chosen in this manner lead to x along the shorest path.
In order to keep the distance estimates up-to-date, each node monitors the cost
of its outgoing links and periodically broadcasts, to each one its neighbors, its
current estimate of the shortest distance to every other node in the network.

The above distance-vector algorithm is the classical Distributed Bellman-Ford
(DBF) algorithm [5]. Compared to link-state method, it is computationally
more efficient, easier to implement and requires much less storage space. How
ever, it is well known that this algorithm can cause the formation of both short
lived and long-lived loops [6]. The primary cause for formation of routing loops
is that nodes choose their next-hops in a completely distributed fashion based
on information which can possibly be stale and, therefore, incorrect. Almost
all proposed modifications to DBF algorithm [7, 8, 9] eliminate the looping
problem by forcing all nodes in the network to participate in some form of
internodal coordination protocol. Such internodal coordination mechanisms
might be effective when topological changes are rare. However, within an ad-
hoc mobile environment, enforcing any such internodal coordination mechanism
will be difficult due to the rapidly changing topology of the underlying routing
network.

Simplicity is one of the primary attributes which makes any routing protocol
preferred over others for implementation within operational networks. RIP [4]
is a classical example. Despite the counting-to-infinity problem it has proven to
be very successful within small size internetworks. The usefulness of RIP within
ad-hoc environment, however, is limited as it was not designed to handle rapid
topological changes. Furthermore, the techniques of split-horizon and poisoned-
reverse [4] are not useful within the wireless environment due to the broadcast

Routing over Multi-hop Wireless Network 187

nature of the transmission medium. Our design goal therefore has been to
design a routing method for ad-hoc networks which preserves the simplicity
of RIP, yet at the same time avoids the looping problem. Our approach is to
tag each route table entry with a sequence number so that nodes can quickly
distinguish stale routes from the new ones and thus avoid formation of routing
loops.

3 DESTINATION-SEQUENCED
DISTANCE VECTOR (DSDV)
PROTOCOL

Our proposed routing method allows a collection of mobile computers, which
may not be close to any base station and can exchange data along changing
and arbitrary paths of interconnection, to afford all computers among their
number a (possibly multi-hop) path along which data can be exchanged. In
addition, our solution must remain compatible with operation in cases where a
base station is available. By the methods outlined in this paper, not only will
routing be seen to solve the problems associated with ad-hoc networks, but in
addition we will describe ways to perform such routing functions at Layer 2,
which traditionally has not been utilized as a protocol level for routing.

Protocol Overview

Packets are transmitted between the stations of the network by using routing
tables which are stored at each station of the network. Each routing table, at
each of the stations, lists all available destinations, and the number of hops
to each. Each route table entry is tagged with a sequence number which is
originated by the destination station. To maintain the consistency of routing
tables in a dynamically varying topology, each station periodically transmits
updates, and transmits updates immediately when significant new information
is available. Since we do not assume that the mobile hosts are maintaining
any sort of time synchronization, we also make no assumption about the phase
relationship of the update periods between the mobile hosts. These packets
indicate which stations are accessible from each station and the number of hops
necessary to reach these accessible stations, as is often done in distance-vector
routing algorithms. It is not the purpose of this paper to propose any new
metrics for route selection other than the freshness of the sequence numbers

188 CHAPTER 6

associated with the route; cost or other metrics might easily replace the number
of hops in other implementations. The packets may be transmitted containing
either layer 2 (MAC) addresses or layer 3 (network) addresses.

Routing information is advertised by broadcasting or multicasting the packets
which are transmitted periodically and incrementally as topological changes are
detected - for instance, when stations move within the network. Data is also
kept about the length of time between arrival of the first and the arrival of the
best route for each particular destination. Based on this data, a decision may be
made to delay advertising routes which are about to change soon, thus damping
fluctuations of the route tables. The advertisement of possibly unstable routes
is delayed in order to reduce the number of rebroadcasts of possible route entries
that normally arrive with the same sequence number.

Route Advertisements

The DSDV protocol requires each mobile station to advertise, to each of its cur
rent neighbors, its own routing table (for instance, by broadcasting its entries).
The entries in this list may change fairly dynamically over time, so the ad
vertisement must be made often enough to ensure that every mobile computer
can almost always locate every other mobile computer of the collection. In ad
dition, each mobile computer agrees to relay data packets to other computers
upon request. This agreement places a premium on the ability to determine
the shortest number of hops for a route to a destination; we would like to avoid
unnecessarily disturbing mobile hosts if they are in sleep mode. In this way a
mobile computer may exchange data with any other mobile computer in the
group even if the target of the data is not within range for direct communica
tion. If the notification of which other mobile computers are accessible from
any particular computer in the collection is done at layer 2, then DSDV will
work with whatever higher layer (e.g.. Network Layer) protocol might be in
use.

All the computers interoperating to create data paths between themselves
broadcast the necessary data periodically, say once every few seconds. In a
wireless medium, it is important to keep in mind that broadcasts are limited in
range by the physical characteristics of the medium. This is different than the
situation with wired media, which usually have a much more clearly defined
range of reception.

Routing over Multi-hop Wireless Network 189

Routing Table Entry Structure

The data broadcast by each mobile computer will contain its new sequence
number and the following information for each new route:

• The destination's address;

• The number of hops required to reach the destination; and

• The sequence number of the information received regarding that destina
tion, as originally stamped by the destination;

The transmitted routing tables will also contain the hardware address, and (if
appropriate) the network address, of the mobile computer transmitting them,
within the headers of the packet. The routing table will also include a sequence
number created by the transmitter. Routes with more recent sequence numbers
are always preferred as the basis for making forwarding decisions, but not
necessarily advertised. Of the paths with the same sequence number, those
with the smallest metric will be used. By the natural way in which the routing
tables are propagated, the sequence number is sent to all mobile computers
which may each decide to maintain a routing entry for that originating mobile
computer.

Routes received in broadcasts are also advertised by the receiver when it sub
sequently broadcasts its routing information; the receiver adds an increment
to the metric before advertising the route, since incoming packets will require
one more hop to reach the destination (namely, the hop from the transmitter
to the receiver). Again, we do not explicitly consider here the changes required
to use metrics which do not use the hop count to the destination.

Wireless media differ from traditional wired networks because asymmetries
produced by one-way "links" are more prevalent. Receiving a packet from a
neighbor, therefore, does not indicate the existence of a single-hop data path
back to that neighbor across the wireless medium. In order to avoid problems
caused by such one-way links, each mobile node may not insert routing infor
mation received from a neighbor unless that neighbor shows that it can receive
packets from the mobile node. Thus, effectively, our routing algorithms only
uses links which are bidirectional.

One of the most important parameters to be chosen is the time between broad
casting the routing information packets. However, when any new or substan-

190 CHAPTER 6

tially modified route information is received by a Mobile Host, the new infor
mation will be retransmitted soon (subject to constraints imposed for damping
route fluctuations), effecting the most rapid possible dissemination of routing
information among all the cooperating Mobile Hosts. This quick re-broadcast
introduces a new requirement for our protocols to converge as soon as possible.
It would be calamitous if the movement of a Mobile Host caused a storm of
broadcasts, degrading the availability of the wireless medium.

Responding to Topology Changes

Mobile Hosts cause broken links as they move from place to place. The broken
link may be detected by the layer-2 protocol, or it may instead be inferred if no
broadcasts have been received for a while from a former neighbor. A broken link
is described by a metric of oo (i.e., any value greater than the maximum allowed
metric). When a link to a next hop has broken, any route through that next
hop is immediately assigned an oo metric and assigned an updated sequence
number. Since this qualifies as a substantial route change, such modified routes
are immediately disclosed in a broadcast routing information packet. Building
information to describe broken links is the only situation when the sequence
number is generated by any Mobile Host other than the destination Mobile
Host. Sequence numbers generated to indicate oo will be one greater than
the last finite sequence number received from the destination. When a node
receives an oo metric, and it has an equal or later sequence number with a
finite metric, it triggers a route update broadcast to disseminate the important
news about that destination. In this way routes containing any finite sequence
numbers will supersede routes generated with the oo metric.

In a very large population of Mobile Hosts, adjustments will likely be made
in the time between broadcasts of the routing information packets. In order
to reduce the amount of information carried in these packets, two types will
be defined. One will carry all the available routing information, called a "full
dump". The other type will carry only information changed since the last
full dump, called an "incremental". By design, an incremental routing update
should fit in one network protocol data unit (NPDU). The full dump will most
likely require multiple NPDUs, even for relatively small populations of Mobile
Hosts. Full dumps can be transmitted relatively infrequently when no move
ment of Mobile Hosts is occurring. When movement becomes frequent, and the
size of an incremental approaches the size of a NPDU, then a full dump can
be scheduled (so that the next incremental will be smaller). It is expected that
mobile nodes will implement some means for determining which route changes

Routing over Multi-hop Wireless Network 191

are significant enough to be sent out with each incremental advertisement. For
instance, when a stabilized route shows a different metric for some destination,
that would likely constitute a significant change that needed to be advertised
after stabilization. If a new sequence number for a route is received, but the
metric stays the same, that would be unlikely to be considered as a significant
change.

Route Selection Criteria
When a Mobile Host receives new routing information (usually in an incremen
tal packet as just described), that information is compared to the information
already available from previous routing information packets. Any route with
a more recent sequence number is used. Routes with older sequence numbers
are discarded. A route with a sequence number equal to an existing route is
chosen if it has a "better" metric, and the existing route discarded, or stored as
less preferable. The metrics for routes chosen from the newly received broad
cast information are each incremented by one hop. Newly recorded routes are
scheduled for immediate advertisement to the current Mobile Host's neighbors.
Routes which show a more recent sequence number may be scheduled for ad
vertisement at a time which depends on the average settling time for routes to
the particular destination under consideration.

Timing skews between the various Mobile Hosts are expected. The broadcasts
of routing information by the Mobile Hosts are to be regarded as somewhat
asynchronous events, even though some regularity is expected. In such a pop
ulation of independently transmitting agents, some fluctuation could develop
using the above procedures for updating routes. It could turn out that a par
ticular Mobile Host would receive new routing information in a pattern which
causes it to consistently change routes from one next hop to another, even
when the destination Mobile Host has not moved. This happens because there
are two ways for new routes to be chosen; they might have a later sequence
number, or they might have a better metric. A Mobile Host could conceivably
always receive two routes to the same destination, with a newer sequence num
ber, one after another (via different neighbors), but always get the route with
the worse metric first. Unless care is taken, this will lead to a continuing burst
of new route transmittals upon every new sequence number from that destina
tion. Each new metric is propagated to every Mobile Host in the neighborhood,
which propagates to their neighbors and so on.

192 CHAPTER 6

One solution is to delay the advertisement of such routes, when a Mobile Host
can determine that a route with a better metric is likely to show up soon. The
route with the later sequence number must be available for use, but it does
not have to be advertised immediately unless it is a route to a destination
which was previously unreachable. Thus, there will be two routing tables kept
at each Mobile Host; one for use with forwarding packets, and another to
be advertised via incremental routing information packets. To determine the
probability of imminent arrival of routing information showing a better metric,
the Mobile Host has to keep a history of the weighted average time that routes
to a particular destination fluctuate until the route with the best metric is
received. Received route updates with infinite metrics are not included in
this computation of the settling time for route updates. We hope that such
a procedure will allow us to predict how long to wait before advertising new
routes.

Operating D S D V at Layer 2

The addresses stored in the routing tables will correspond to the layer at which
this ad-hoc networking protocol is operated. That is, operation at Layer 3 will
use network layer addresses for the next hop and destination addresses, and
operation at Layer 2 will use Layer 2 Media Access Control (MAC) addresses.

Using MAC addresses for the forwarding table does introduce a new require
ment, however. The difficulty is that Layer 3 network protocols provide com
munication based on network addresses, and a way must be provided to re
solve these Layer 3 addresses into MAC addresses. Otherwise, a multiplicity of
diff^erent address resolution mechanisms would be put into place, and a corre
sponding loss of bandwidth in the wireless medium would be observed whenever
the resolution mechanisms were utilized. This could be substantial since such
mechanisms would require broadcasts and retransmitted broadcasts by every
Mobile Host in the ad-hoc network. Thus, unless special care is taken, ev
ery address resolution might look like a glitch in the normal operation of the
network, which may well be noticeable to any active users.

The solution proposed here, for operation at Layer 2, is to include Layer 3
protocol information along with the Layer 2 information. Each destination
host would advertise which Layer 3 protocols it supports, and each Mobile
Host advertising reachability to that destination would include along, with
the advertisement, the information about the Layer 3 protocols supported at
that destination. This information would only have to be transmitted when

Routing over Multi-hop Wireless Network 193

it changes, which occurs rarely. Changes would be transmitted as part of
each incremental dump. Since each Mobile Host could support several Layer 3
protocols (and many will), this list would have to be variable in length.

Extending Base Station Coverage

Mobile computers will frequently be used in conjunction with base stations,
which allow them to exchange data with other computers connected to the wired
network. By participating in the DSDV protocol, base stations can extend
their coverage beyond the range imposed by their wireless transmitters. When
a base station participates in DSDV, it is shown as a default route in the tables
transmitted by a mobile station. In this way, mobile stations within range of a
base station can cooperate to effectively extend the range of the base station to
serve other stations outside the range of the base station, as long as those other
mobile stations are close to some other mobile station that is within range.

4 EXAMPLES OF DSDV IN OPERATION

Figure 1 Movement in an ad-hoc network

Consider MH^ in Figure 1. Table 1 shows a possible structure of the forwarding
table which is maintained at MH4. Suppose the address^, of each Mobile Host
is represented as MHi Suppose further that all sequence numbers are denoted

^If DSDV is operated at level 2 then MHi denotes the MAC address, otherwise it denotes
a level 3 address

194 CHAPTER 6

Destination
MHi
MH2
MH3
MHA

MHs
MH6
MH7
MHs

NextHop
MH2
MH2
MH2
MHA

MHG

MHe
MHG

MHG

Metric
2
1
2
0
2
1
2
3

Sequence number
S406.MH,
S128_M//2
S564_Mi73
S7IO.MH4
S392.MH5
S076_Mi/6
S128-Mi/7
S050.MHs

Install
TOOI.MH4
T001_Mi/4
TOOl-Mi/4
T001_Mi/4
T002_Mi/4
TOOI-M//4
T002_M/f4
T002_M//4

Stable-data
Ptrl_Mi7i
Ptrl_Mi/2
Ptrl_Mif3
Ptr l_MF4
Ptrl_M/f5
PtrLMHe
Ptrl_Mi77
Ptrl_Mi78

T a b l e 1 Structure of the MH4 forwarding table

SNNN_Mi/i, where MHi specifies the computer that created the sequence
number and SNNN is a sequence number value. Also suppose that there are
entries for all other Mobile Hosts, with sequence numbers SNNN_Miifi, before
MHi moves away from MH2. The install time field helps determine when to
delete stale routes. With our protocol, the deletion of stale routes should rarely
occur, since the detection of link breakages should propagate through the ad-
hoc network immediately. Nevertheless, we expect to continue to monitor for
the existence of stale routes and take appropriate action.

From table 1, one could surmise, for instance, that all the computers became
available to MH4 at about the same time, since its instalLtime for most of
them is about the same. Ftrl.MHi would all be pointers to null structures,
because there are not any routes in Figure 1 which are likely to be superseded
or compete with other possible routes to any particular destination.

Table 2 shows the structure of the advertised route table of MH4.

Now suppose that MHi moves into the general vicinity of MHg and MHj, and
away from the others (especially MH2). The new internal forwarding tables at
MH4 might then appear as shown in table 3.

Only the entry for MHi shows a new metric, but in the intervening time,
many new sequence number entries have been received. The first entry thus
must be advertised in subsequent incremental routing information updates un
til the next full dump occurs. When MHi moved into the vicinity of MHs
and MHr, it triggered an immediate incremental routing information update
which was then broadcast to MHQ. MHQ, having, determined that significant
new routing information had been received, also triggered an immediate update

Routing over Multi-hop Wireless Network 195

1 Destination
MHi

MH2
MHs
MH4
MHs

\\ MHQ

MH7
MHs

Metric
2
1
2
0
2
1
2
3

Sequence number |
S406_MHi

S128_MiJ2
S564.MH3
S7IO.MH4
S392.MH5
S076.MHe
SI28MH7

S050_MiJ8 1

Table 2 Advertised route table by MH4

Destination
M H i

I MH2
MH3
MH^
MH5
MHQ

MHr
MHs

NextHop
MHg
MH2
MH2
MHA

MHQ

MHQ

MHG

MHQ

Metric
3
1
2
0
2
1
2
3

Sequence number
S516_MFi
S238_Mi/2
S674_M^3
S820_MiJ4
S502_M/f5
S186_Mi/6
S238_Mi/7
S160_Mi78

Install
T810_Mif4
T001_Mi74
TOOl.Mi/4
T001_MF4
T002_Mi:f4
T001_Mi74
T002.Mif4
T002_Mif4

Stable_data
P t r l . M / f i
Ptr l_Mi/2
Ptrl_Mif3
Ptrl_Mif4
Ptrl_Mif5
Ptrl_M/f6
Ptrl_Mi77
P t r l - M F s

Table 3 MH4, forwarding table (updated)

which carried along the new routing information for MHi. MiJ4, upon receiv
ing this information, would then broadcast it at every interval until the next
full routing information dump. At MH4, the incremental advertised routing
update would have the form as shown in table 4.

In this advertisement, the information for MH4 comes first, since it is doing
the advertisement. The information for MHi comes next, not because it has a
lower address, but because MHi is the only one which has any significant route
changes affecting it. As a general rule, routes with changed metrics are first
included in each incremental packet. The remaining space is used to include
those routes whose sequence numbers have changed.

In this example, one node has changed its routing information, since it is in
a new location. All nodes have transmitted new sequence numbers recently.

196 CHAPTER 6

If there were too many updated sequence numbers to fit in a single packet,
only the ones which fit would be transmitted. These would be selected with a
view to fairly transmitting them in their turn over several incremental update
intervals. There is no such required format for the transmission of full routing
information packets. As many packets are used as are needed, and all available
information is transmitted. The frequency of transmitting full updates would
be reduced if the volume of data began to consume a significant fraction of the
available capacity of the medium.

1 Destination
MH4
MHi
MH2
MH3
MHs
MHQ

MH7
1 MHs

Metric
0
3
1
2
2
1
2
3

Sequence number |

S820-Mif4
S516.Mi7i

S238JWi/2
S674.Mif3
S502-Mif5
S186.Mif6
S238.MH7
SieOMHs \

T a b l e 4 MH4 advertised table (updated)

Damping Fluctuations

The following describes how the settling time table is used to prevent fluctua
tions of routing table entry advertisements. The general problem arises because
route updates are selected according to the following criteria:

Routes are always preferred if the sequence numbers are newer;

Otherwise, routes are preferred if the sequence numbers are the same and
yet the metric is better (lower).

To see the problem, suppose that two routes with identical sequence numbers
are received by a Mobile Host, but in the wrong order. In other words, suppose
that MH4 receives the higher metric next hop first, and soon after gets another
next hop with a lower metric but the same sequence number. This could
happen when there are a lot of Mobile Hosts, transmitting their updates not
quite regularly. Alternatively, if the Mobile Hosts are acting independently and

Routing over Multi-hop Wireless Network 197

Mobile Host f Mobile Host

CoUection I) c;^ Collection 11

F i g u r e 2 Receiving fluctuating routes

with markedly different transmission intervals, the situation could occur with
correspondingly fewer hosts. Suppose, in any event, in Figure 2 that there
are enough Mobile Hosts to cause the problem, in two separate collections
of Mobile Hosts both connected to a common destination MHQ^ but with no
other Mobile Hosts in common. Suppose further that all Mobile Hosts are
transmitting updates approximately every 15 seconds, that Mobile Host MH2
has a route to MHg with 12 hops, and Mobile Host MHQ has a route to MHQ
with 11 hops. Moreover, suppose that the routing information update from
MH2 arrives at MH4 approximately 10 seconds before the routing information
update from MHQ. This might occur every time that a new sequence number
is issued from Mobile Host MHQ. In fact, the time differential can be drastic
if any Mobile Host in collection II begins to issue its sequence number updates
in multiple incremental update intervals, as would happen, for instance, when
there are too many hosts with new sequence number updates for them all to fit
within a single incremental packet update. In general, the larger the number
of hops, the more drastic differentials between delivery of the updates can be
expected in Figure 2.

The settling time data is stored in a table with the following fields, keyed by
the first field:

198 CHAPTER 6

• Destination address

• Last settling time

• Average settling time

The settling time is calculated by maintaining a running, weighted average over
the most recent updates of the routes, for each destination.

Suppose a new routing information update arrives at MH4, and the sequence
number in the new entry is newer than the sequence number in the currently
used entry but has a worse (i.e., higher) metric. Then MH4 must use the new
entry in making subsequent forwarding decisions. However, MH4 does not have
to advertise the new route immediately and can consult its route settling time
table to decide how long to wait before advertising it. The average settling
time is used for this determination. For instance, MH4 may decide to delay
(average.settling_time x 2) before advertising a route.

This can be quite beneficial, because if the possibly unstable route were adver
tised immediately, the effects would ripple through the network, and this bad
effect would probably be repeated every time Mobile Host Mifg's sequence
number updates rippled through the ad-hoc network. On the other hand, if a
link via Mobile Host MHQ truly does break, the advertisement of a route via
MH2 should proceed immediately. To achieve this when there is a history of
fluctuations at Mobile Host MH4, the link breakage should be detected fast
enough so that an intermediate host in Collection H finds out the problem and
begins a triggered incremental update showing an 00 metric for the path along
the way to Mobile Host MHg. Routes with an 00 metric are required by this
protocol to be advertised immediately, without delay.

In order to bias the damping mechanism in favor of recent events, the most
recent measurement of the settling time of a particular route must be counted
with a higher weighting factor than are less recent measurements. And, impor
tantly, a parameter must be selected which indicates how long a route has to
remain stable before it is counted as truly stable. This amounts to specifying
a maximum value for the settling time for the destination in the settling time
table. Any route more stable than this maximum value will cause a triggered
update if it is ever replaced by another route with a different next hop or metric.

When a new routing update is received from a neighbor, during the same time
that the updates are applied to the table, processing also occurs to delete
stale entries. Stale entries are defined to be those for which no update has

Routing over Multi-hop Wireless Network 199

been applied within the last few update periods. Each neighbor is expected to
send regular updates; when no updates are received for a while, the receiver
may make the determination that the corresponding computer is no longer a
neighbor. When that occurs, any route using that computer as a next hop
should be deleted, including the route indicating that computer as the actual
(formerly neighboring) destination. Increasing the number of update periods
that may transpire before entries are determined would result in more stale
routing entries, but would also allow for more transmission errors. Transmission
errors are likely to occur when a CSMA-type broadcast medium is used, as may
well be the case for many wireless implementations. When the link breaks, an
cx) metric route should be advertised for it, as well as for the routes that depend
on it.

The new routing algorithm was particularly developed for enabling the creation
of ad-hoc networks, which are most specifically targeted for the operation of
mobile computers. However, the routing algorithm itself, and the operation of
an ad-hoc network, can be beneficially used in situations which do not include
mobile computers. For instance, the routing algorithm could be applied in
any situation where reduced memory requirements are desired (compared to
link-state routing algorithms). The operation of an ad-hoc network could be
applied to wired as well as wireless mobile computers. In general, then, we
provide a new destination-sequenced routing algorithm, and this algorithm is
supplemented by a technique for damping fluctuations.

5 PROPERTIES OF THE DSDV
PROTOCOL

At all instants, the DSDV protocol guarantees loop-free paths to each destina
tion. To see why this property holds, consider a collection of N mobile hosts
forming an instance of an ad-hoc style network. Further assume that the sys
tem is in steady-state, i.e. routing tables of all nodes have already converged
to the actual shortest paths. At this instant, the next node indicators to each
destination induce a tree rooted at that destination. Thus, routing tables of
all nodes in the network can be collectively visualized as forming N trees, one
rooted at each destination. In the following discussion, we'll focus our attention
on one specific destination x and follow the changes occurring on the directed
graph G{x) defined by nodes i and arcs (i,pf) where p"- denotes the next-hop
for destination x at node i. Operation of DSDV algorithm ensures that at every
instant G{x) is loop-free, or rather, it is a set of disjoint directed trees. Each

200 CHAPTER 6

such tree is rooted either at x or at a node whose next-hop is nil. Since this
property holds with respect to each destination x, all paths induced by routing
tables of DSDV algorithm are indeed loop free at all instants.

Potentially a loop may form each time node i changes its next-hop. There are
two cases which should be considered. First, when node i detects that the link
to its next-hop is broken, the node resets p^ to nil. Clearly, this action cannot
form a loop involving i. The second scenario occurs when node i receives, from
one of its neighbors k, a route to x, with sequence number $1 and metric m,
which is selected to replace the current route it has through pf. Let s^ denote
the value of the sequence number stored at node i and df denote the distance
estimate from i to x just prior to receiving route from k. i will change its
next-hop from pf to k only if either of the following two happens.

1. the new route contains a newer sequence number, i.e., s^ > s^

2. the sequence number s^ is same as 5f, but the new route offers a shorter
path to X, i.e, m < dix

In the first case, by choosing k as its new next-hop node i cannot close a loop.
This can be easily deduced from the following observation. A node i propagates
sequence number s^ to its neighbors only after receiving it from its current next-
hop. Therefore, at all times the sequence number value stored at the next-hop
is always greater or equal to the value stored at i. Starting from node i, if
we follow the chain of next-hop pointers, the sequence number values stored at
visited nodes would form a nondecreasing sequence. Now suppose node i forms
a loop by choosing k as its next-hop. This would imply that s^ < s^. But this
contradicts our initial assumption that s^ > s^. Hence, loop-formation cannot
occur if nodes use newer sequence numbers to pick routes.

The loop-free property holds in the second scenario due to a theorem proved
by Jaffe and Moss [7], which states that in presence of static or decreasing link
weights distance-vector algorithms always maintain loop-free paths.

6 COMPARISON W^ITH OTHER
METHODS

The table 5 presents a quick summary of some of the main features of a few
chosen routing protocols. The chosen set, although small, is representative of

Routing over MulU-hop Wireless Network 201

Routing Method

Bellman Ford [5]
Link State [3]
Loop-free BF [6]
RIP [4]
Merlin Segall [9]
JafFe Moss [7]
DSDV

Looping

s/l
s
s
s/l
loop free
loop free
loop free

Internodal
Coordination
-
-
-
-
Required
Required
-

Space
Complexity
0{nd)
0{n + e)
0{nd)
0{n)
0{nd)

olnd)
0{n) \

s - short term loop, / - long term loop
number of nodes, d - maximum degree of a node

T a b l e 5 Comparison of various routing methods

a variety of routing techniques most commonly employed in operational data
networks. Except for the link-state approach, all routing methods shown in the
table are a variant of the basic distance-vector approach. The comparison crite
ria reflects some of the most desirable features that a routing algorithm should
possess for it be useful in a dynamic ad-hoc style environment. In wireless me
dia, communication bandwidth is the most precious and scarce resource. The
formation of any kind of routing loops, therefore, is highly undesirable. In the
case of infrared LANS which employ a pure CSMA protocol, looping packets not
only consume the communication bandwidth but they can further degrade the
performance by causing more collisions in the medium. A common technique
employed for loop prevention is what we call internodal-coordination whereby
strong constraints on the ordering of the updates among nodes is imposed. The
resulting internode protocols tend to be complex. Furthermore, their update
coordination may restrict a node's ability to obtain alternate paths quickly in
an environment where topology changes are relatively frequent. The last crite
ria used for comparison is the space requirement of the routing method. Nodes
in an ad-hoc network may be battery powered lap-tops, or even hand-held note
books, which do not have the kind of memory that NSFNET dedicated routers
are expected to have. Therefore, economy of space is of importance.

The primary concern with using a Distributed Bellman Ford algorithm in
ad-hoc environment is its susceptibility towards forming routing loops and
counting-to-infinity problem. RIP [4], which is very similar to DBF algorithm,
also suffers from the same problem. Unlike DBF, RIP only keeps track of the
best route to each destination, which results in some space saving at no ex-

202 CHAPTER 6

tra performance hit. RIP also employs techniques known as split-horizon and
poisoned-reverse to avoid a ping-pong style of looping, but these techniques
are not powerful enough to avoid loops involving more than two hops. The
primary cause of loop formation in BF style algorithms is that nodes make
uncoordinated modifications to their routing tables based on some information
which could be incorrect. This problem is alleviated by employing an intern-
odal coordination mechanism as proposed by Merlin and Segall in [9]. A similar
technique, but with better convergence results, is developed by Jaffe and Moss
in [7]o However, we do not know of any operational routing protocols which
employ these complex coordination methods to achieve loop-freedom, which
leads us to the conclusion that from a practical point of view the usefulness of
such complex methods is diminished.

Link-state [3] algorithms are also free of the counting-to-infinity problem. How
ever, they need to maintain the up-to-date version of the entire network topol
ogy at every node, which may constitute excessive storage and communication
overhead in a highly dynamic network. Besides, link-state algorithms proposed
or implemented to date do not eliminate the creation of temporary routing-
loops.

It is evident that within ad-hoc environment design tradeoffs and the con
straints under which a routing method has to operate are quite different. The
proposed DSDV approach offers a very attractive combination of desirable fea
tures. Its memory requirement is very moderate 0(n). It guarantees loop-free
paths at all instants, and it does so without requiring nodes to participate in
any complex update coordination protocol. The worst case convergence behav
ior of the DSDV protocol is certainly non-optimal but, in the average case, it
is expected that convergence will be quite rapid.

7 FUTURE WORK

There are many parameters of interest which control the behavior of DSDV, for
instance the frequency of broadcast, the frequency of full routing table dumps
versus incremental notifications, and the percentage change in the routing met
ric which triggers an immediate broadcast of new routing information. We hope
to discover optimal values for many of these parameters for large populations
of mobile computers by performing simulations.

Routing over Multi-hop Wireless Network 203

Our original goals did not include making any changes to the existing idea of
using the number of hops as the sole metric for making route table selections.
We ended up designing a method to combat fluctuations in route tables at
the mobile nodes which can be caused by information arriving faster over a
path which has more hops. However, it may well be the case that such paths
are preferable just because they are faster, even if more mobile computers are
involved in the creation of the path. We would like to consider how to improve
the routing metric by taking into account a more sophisticated cost function
which includes the effects of time and cost as well as merely the number of
hops.

DSDV approach relies on periodic exchange of routing information among all
participating stations. An alternative is to design a system that performs route
discovery on a need-to-know basis. For devices operating on limited battery
power this could be an important design consideration.

A pure on-demand system operates in two phases: route-discovery and route-
maintenance. A source starts the first phase by broadcasting a route discovery
(RD) packet in the network. These packets are relayed by all participating
nodes to their respective neighbors. As an RD packet travels from a source to
various destinations, it automatically causes formation of reverse paths from
visited nodes to the source. In order to setup a reverse path, a node is only
required to record the address of the neighbor from which it receives the first
copy of the RD packet. Any duplicates received thereafter are discarded. When
the RD packet arrives at the destination, a reply is generated and forwarded
along the reverse path. By a mechanism similar to reverse-path set-up, forward
route entries get initialized as the reply packet travels towards the source. Nodes
not lying on the path between source/destination pairs eventually timeout their
"reverse path" routing entries. Once the path set up is complete, the route
maintenance phase takes over. The second phase is responsible for maintaining
paths between active source/destination pairs in face of topological changes.

8 SUMMARY

Providing convenient connectivity for mobile computers in ad-hoc networks is
a challenge that is only now being met. DSDV models the mobile computers as
routers cooperating to forward packets as needed to each other. We believe this
innovative approach makes good use of the properties of the wireless broadcast
medium. Our approach can be utilized at either the network layer (layer 3), or

204 CHAPTER 6

below the network layer but still above the MAC layer software in layer 2. In
the latter case certain additional information should be included along with the
routing tables for the most convenient and efficient operation. The information
in the routing tables is similar to what is found in routing tables with today's
distance vector (Bellman-Ford) algorithms, but includes a sequence number,
as well as settling-time data useful for damping out fluctuations in route table
updates.

All sequence numbers are generated by the destination computer in each route
table entry, except for the cases when a link has been broken; the latter case is
described by an oo metric. This case is easily distinguishable, since no infinite
metric will ever be generated along the tree of intermediate nodes receiving
updates originating from the destination. By the natural operation of the pro
tocol, the metric chosen to represent broken links will be superseded by real
routes propagated from the newly located destination as soon as possible. Any
newly propagated routes will necessarily use a metric less than what was used
to indicate the broken link. This allows real route data to quickly supersede
temporary link outages when a mobile computer moves from one place td an
other.

We have borrowed the existing mechanism of triggered updates to make sure
that pertinent route table changes can be propagated throughout the popula
tion of mobile hosts as quickly as possible whenever any topology changes are
noticed. This includes movement from place to place, as well as the disappear
ance of a mobile host from the interconnect topology (perhaps as a result of
turning off" its power).

In order to combat problems arising with large populations of mobile hosts,
which can cause route updates to be received in an order delaying the best
metrics until after poorer metric routes are received, we have separated the
route tables into two distinct structures. The actual routing is done according
to information kept in the internal route table, but this information is not
always advertised immediately upon receipt. We have defined a mechanism
whereby routes are not advertised until it is likely, based upon past history,
that they are stable. This measurement of the settling time for each route is be
biased towards the most recent measurements for the purposes of computing
an average.

We have found that mobile computers, modeled as routers, can effectively co
operate to build ad-hoc networks. We hope to explore further the necessary
application-level support needed to automatically enable use of the network-

Routing over Multi-hop Wireless Network 205

layer route capabilities to provide simple access to conferencing and workplace
tools for collaboration and information sharing.

REFERENCES

[1] W, Diepstraten, G. Ennis, and P. Belanger, "Dfwmac - distributed foun
dation wireless medium access control." IEEE Document P802.11-93/190,
Nov 1993.

[2] M. Schwartz and T. Stern, "Routing techniques used in computer commu
nication networks," IEEE Transactions on Communications, vol. COM-28,
pp. 539-552, Apr, 1980.

[3] J. M. McQuillan, I. Richer, and E. C. Rosen, "The new routing algorithm
for the ARPANET," IEEE Transactions on Communications, vol. COM-
28, pp. 711-719, May 1980.

[4] C. Hedrick, "Routing Information Protocol." RFC 1058, June 1988.

[5] D. Bertsekas and R. Gallager, Data Networks, pp. 297-333. Prentice-Hall,
Inc., 1987.

[6] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves, "A
loop-free Bellman-Ford routing protocol without bouncing effect," in ACM
SIGCOMM '89, pp. 224-237, Sept. 1989.

[7] J. M. Jaffe and F. Moss, "A responsive distributed routing algorithm for
computer networks," IEEE Transactions on Communications, vol. COM-
30, pp. 1758-1762, July 1982.

[8] J. J. G. Luna-Aceves, "A unified approach to loop-free routing using dis
tance vectors or link states," in ACM SIGCOMM, pp. 212-223, 1989.

[9] P. M. Merlin and A. Segall, "A failsafe distributed routing protocol,"
IEEE Transactions on Communications, vol. COM-27, pp. 1280-1287,
Sept. 1979.

7
IMPROVING THE PERFORMANCE

OF RELIABLE TRANSPORT
PROTOCOLS IN MOBILE

COMPUTING ENVIRONMENTS
Ramon Caceres* and Liviu Iftode**

* AT&T Bell Laboratories
101 Crawfords Corner Road

Holmdel, NJ 07733, USA

** Princeton University
Department of Computer Science

Princeton, NJ 08544, USA

ABSTRACT

We explore the performance of reliable data communication in mobile computing en
vironments. Motion across wireless cell boundaries causes increased delays and packet
losses while the network learns how to route data to a host's new location. Reliable
transport protocols like TCP interpret these delays and losses as signs of network
congestion. They consequently throttle their transmissions, further degrading perfor
mance. We quantify this degradation through measurements of protocol behavior in
a wireless networking test bed. We show how current TCP implementations introduce
unacceptably long pauses in communication during cellular handoffs (800 milliseconds
and longer), and propose an end-to-end fast retransmission scheme that can reduce
these pauses to levels more suitable for human interaction (200 milliseconds). Our
work makes clear the need for reliable transport protocols to differentiate between
motion-related and congestion-related packet losses, and suggests how to adapt these
protocols to perform better in mobile computing environments.

Copyright ©1995 IEEE. Reprinted, with permission, from IEEE Transactions on Selected
Areas in Communications, pages 850-857, June 1995

208 CHAPTER 7

1 INTRODUCTION

Reliable transport protocols have been tuned for networks composed of wired
links and stationary hosts. They adapt to prevailing end-to-end delay condi
tions throughout the life of a connection, and interpret unexpected increases
in delay as packet losses caused by congestion. In response to perceived losses,
protocols like the Transmission Control Protocol (TCP) [9] aggressively slow
their transmissions to allow the network to recover. These congestion control
policies have proven beneficial in improving the overall performance of networks
like the Internet. The premise underlying these policies, that packet losses are
largely due to congestion, is correct for existing networks.

Future networks, however, will include wireless links and mobile hosts. In par
ticular, there will be local-area networks composed of wireless cells of a few
meters in diameter. Such microcellular networks are desirable for three impor
tant reasons: they offer high aggregate bandwidth, they require low power from
mobile transceivers, and they provide accurate location information. Users in
microcellular environments will often carry hosts across cell boundaries without
warning and in the midst of data transfers.

Transport-level connections will thus encounter types of delay and loss that are
unrelated to congestion. First, communication may pause while the handoff
between cells completes and packets can again be routed to and from the mobile
host. Second, packets may be lost due to futile transmissions over the wireless
network when a mobile host moves out of reach of other transceivers, especially
in networks with Uttle or no overlap between cells. Third, packets may be
lost due to the relatively frequent transmission errors suffered by wireless links.
Some performance degradation due to these delays and losses is unavoidable.

These events also trigger congestion control procedures that further degrade
performance. In particular, TCP implementations continually measure how
long acknowledgements take to return. They maintain a running average of
this delay and an estimate of the expected deviation in delay from the average.
If the current delay is longer than the average by more than twice the expected
deviation, TCP assumes that the packet was lost. In response, TCP retransmits
the lost packet and initiates congestion control procedures to give the network
a chance to recover [7]. First, TCP drops the transmission window size to
reduce the amount of data in transit through the network. Second, it activates
the slow-start algorithm to restrict the rate at which the window grows to
previous levels. Third, it resets the retransmission timer to a backoff interval
that doubles with each consecutive timeout.

Transport Protocol Perform.ance in Mobile Environments 209

When motion is mistaken for congestion, these procedures result in significant
reductions in throughput and unacceptable interactive delays for active connec
tions. The degradation is readily apparent, for example, to users of emerging
ubiquitous computing environments [3].

This paper quantifies the eff'ects of motion on throughput and delay, identifies
the factors that contribute to the loss of performance, and suggests an end-
to-end approach for alleviating the problem. It shows how waits for TCP's
retransmission timeouts cause pauses in communication that last 0.8 seconds
and longer after each cell crossing. Other researchers have called attention
to the long pauses caused by TCP's exponential backoff policy [2][6][8], but
to our knowledge this is the first systematic treatment of this problem. This
paper also describes how using TCP's fast retransmission procedure can reduce
these pauses to 0.2 seconds. We focus on TCP because it is the most widely
used reliable transport protocol and will be used in at least the first generation
of mobile computing environments. Furthermore, lessons learned from TCP
apply to other reliable transport protocols that must deal with both mobility
and congestion.

The remainder of this paper is organized as follows. Section 2 describes the
wireless networking testbed used to obtain our results. Section 3 presents the
measured eff'ects of host motion on the performance of reliable transport pro
tocols. Section 4 proposes and evaluates an end-to-end approach to alleviating
the negative effects of motion. Section 5 discusses wireless transmission errors
as an area for future work, and Section 6 concludes the paper.

2 WIRELESS NETW^ORKING TESTBED

We explore the effects of mobility through measurements of transport protocol
behavior in a wireless networking testbed. The testbed consists of mobile hosts
(MH), mobility support stations (MSS), and stationary hosts (SH) deployed in
an ordinary office environment. Mobile hosts connect to a 2-Mbit/second Wave-
LAN local-area wireless network. WaveLAN is a direct-sequence spread spec
trum radio product from AT&T. Stationary hosts connect to a 10-Mbit/second
Ethernet local-area wired network. Mobility support stations connect to both
networks. Figure 1 shows the minimum testbed configuration.

All hosts and support stations are equipped with 50-MHz i486 processors, 330-
Mbyte hard disks, 16 Mbytes of memory, and the necessary network interface

210 CHAPTER 7

MSSl

SH

MSS2

MH n
cell 1 cell 2

F i g u r e 1 Wireless networking testbed

hardware. They run the 4.3BSD-Tahoe version of TCP from the University of
California at Berkeley, Mobile IP software from Columbia University [6], and
the Mach 3.0 microkernel and Unix server (MK77/UX37) from Carnegie Mellon
University [1]. 4.3BSD-Tahoe TCP is widely used throughout the Internet and
implements exponential retransmission backoffs and the slow-start algorithm.

2.1 Cellular HandofF Procedures

Each MSS defines one cell and is responsible for the MHs in its cell. It acts
as the default gateway for those MHs, routing packets that originate in an
MH from the wireless to the wired part of the network. Similarly, it forwards
packets destined to an MH from the wired to the wireless part of the network.

MHs and MSSs collaborate to perform handoffs between cells. MSSs make their
presence known by broadcasting periodic beacons over the wireless network. An
MH decides to switch cells when it receives a beacon from a new MSS with a
stronger wireless signal than the beacon from the old MSS, or when it receives
the first beacon from a new MSS after failing to receive beacons from the old
MSS.

To switch cells the MH sends a greeting packet to the new MSS, and changes
its own routing tables to make the new MSS its default gateway. It also notifies
the new MSS of the identity of the old MSS. The new MSS acknowledges the
greeting to the MH, adds the MH to the list of MHs for which the new MSS is
responsible, and begins to route the MH's packets accordingly. The new MSS
also informs the old MSS that the host has moved and can be reached through
the new MSS. The old MSS then adjusts its routing tables in order to forward
to the new MSS any packets that arrive for the MH, and acknowledges the

Transport Protocol Perform>ance in Mobile Environments 211

handofF to the new MSS. Finally, the new MSS acknowledges the completion
of the handofF to the MH. Further details of this protocol are found in [6].

2«2 Methodology

In our experiments, we initiate a reliable data transfer over a TCP connection
between an MH and an SH, we cause the MH to cross cell boundaries while the
connection is active, and we measure the performance of the connection.

We simulate motion across cell boundaries in software. The MH in our testbed
is always in range of both MSSs, but we modified the Mobile IP software on the
MH to ignore beacons from all but one MSS. After the MH spends a specified
number of beaconing periods in that MSS's cell, the modified software listens
for a beacon from the other MSS in order to initiate handofF procedures with
the new MSS.

An important benefit of simulating motion in software is that it lets us study
networks with overlapping cells as well as networks with non-overlapping cells.
When adjacent cells overlap and an MH is in the region of overlap, packets can
continue to flow between the MH and the old MSS while the handofF to the
new MSS is in progress. When cells do not overlap, there is an unavoidable
pause in network-level communication while the MH is out of reach from the
old MSS and the handofF to the new MSS has not yet completed. The testbed
allows us to explore the full range of handofF scenarios, from the case when the
MH is in contact with both MSSs throughout the handofF, to the case when
the MH cannot communicate with any MSS for an arbitrary interval of time
after it leaves the old cell.

Another benefit of simulating motion in software is that it gives us precise
control over the instant when handoffs begin. Under normal circumstances,
handofFs begin at indeterminate times based on the time remaining in a cell's
beaconing period when a host enters the cell, or on the relative strengths of
two wireless signals. Our testbed makes this process deterministic and there
fore allows us to reliably reproduce test conditions. Finally, simulating motion
in software eliminates the need to physically move test equipment during ex
periments.

212 CHAPTER 7

3 T H E EFFECTS OF MOTION

We ran a number of experiments in the manner described above. We found that
throughput dropped significantly in the presence of motion. We then analyzed
the problem in more detail to determine the causes of the performance loss.
We tracked the TCP sequence number and window size over the lifetime of a
connection to determine how TCP behaved during handoffs. We also traced
TCP and Mobile IP packets during the course of each handoff to determine if
any packets were lost and why. This section presents our results.

Due to space limitations, we only present results for the case where data packets
flow from the MH to the SH and acknowledgement packets flow from the SH
to the MH. However, we also ran our experiments for the opposite case, with
very similar results. We summarize our results for both cases in Section 4.4.

Average
throughput I
(Kbit/sec)

1600
100% 1510

94% 1400
88%

No
handoffs

Overlapping
cells

0 second
rendezvous delay

1 - second
rendezvous delay

Non- overlapping cells

Figure 2 Loss of throughput due to host motion

3.1 Loss of Throughput

Figure 2 shows the average application-level throughput achieved when trans
ferring 4 Mbytes of data between an MH and an SH. From left to right, the
vertical bars represent the throughput obtained under four scenarios:

Transport Protocol Performance in Mobile Environments 213

• The MH does not move.

• The MH moves between overlapping cells.

• The MH moves between non-overlapping cells and receives a beacon from
the new MSS at the instant it leaves the old cell (0-second rendezvous
delay).

• The MH moves between non-overlapping cells and receives a beacon from
the new MSS one second after leaving the old cell (1-second rendezvous
delay).

In the scenarios that involve motion, the beaconing period is 1 second and the
MH switches cells every 8 beaconing periods. These parameters were chosen to
allow TCP connections to attain maximum throughput between handofFs while
also allowing us to observe multiple handofFs during a single data transfer.

We believe these four scenarios show a complete and fair picture of the prob
lems introduced by host motion. We use the no-motion scenario as a base for
comparison. The motion scenario with overlapping cells represents the best
handoff performance possible with our hardware and software. It is realizable
in a real network only if overlap regions are large enough, and hosts move slowly
enough, for handoff operations to complete while a moving host is still in the
overlap region. The scenario with zero rendezvous delay represents the min
imum network-level interruption introduced by non-overlapping cell handofFs.
It is realizable only if the MH does not have to wait for a beacon before it
can communicate with the new MSS, for example in a network where MSSs
announce their presence by means of a continuous signal. Finally, the scenario
with a 1-second rendezvous delay shows what happens as the length of network-
level interruptions increases. It is a realistic scenario when a periodic beaconing
scheme is used, since an MH may have to wait up to a full beaconing period
before it receives a beacon from the new MSS.

As shown in Figure 2, throughput degrades substantially in the presence of mo
tion across non-overlapping cells. In the overlapping cell scenario, throughput
degrades only slightly, by 6%. In the non-overlapping cell scenario with zero
rendezvous delay, throughput drops by 12% even though only 3 handofFs occur
in the roughly 24-second lifetime of the connection. Throughput drops much
further with a 1-second rendezvous delay, by 31% with 3 handofFs in roughly
29 seconds.

In the rest of this section we study the causes of this performance degradation
in increasing detail. We concentrate on single handofFs to eliminate from our

214 CHAPTER 7

results any dependencies on the parameters of the throughput test discussed
above (4 Mbytes of data with handoffs every 8 seconds). Our results will thus
apply to all cell handoffs in each motion scenario.

3.2 Pauses in Communication

Figure 3 shows how the TCP sequence number behaves over the life of a con
nection. In this example, the MH moves between non-overlapping cells with
a 1-second rendezvous delay. As shown, the sequence number ceases to ad
vance for roughly 3 seconds after the first two cell crossings, and for roughly 1
second after the last crossing. A 3-second pause is typical of a 1-second ren
dezvous delay, while a 1-second pause is more typical of a 0-second rendezvous
delay. During these pauses, TCP transmits no new data and transport-level
communication comes to a halt.

Cell crossing

Time (seconds)

Figure 3
crossings

Behavior of T C P sequence number in response to cell boundary

The effect is also visible in Figure 4, which graphs the TCP congestion window
over the life of the same connection. The congestion window is an upper bound
on the transmission window, which in turn controls how much unacknowledged
data a TCP connection can have in transit over the network. As shown, the
congestion window stops growing with every cell crossing. Some time after the
crossing, the window shrinks to its minimum value and eventually begins to
grow again. The intervals between when the window stops growing and when

Transport Protocol Performance in Mobile Environments 215

it begins to grow again correspond to the 3-second and 1-second pauses in
communication noted above.

Cell crossing

Time (seconds)

Figure 4 Behavior of TCP congestion window in response to cell boundary
crossings

3.3 Packet Losses

The long pauses in communication are caused by TCP's response to packet
losses. Losses occur due to routing inconsistencies during non-overlapping cell
handofFs. Consider the route from the MH to the SH. When the MH leaves
a cell without warning, its routing tables continue to point to the old MSS as
the default gateway. The MH does not know it has moved and therefore does
not change its routing tables until a beacon arrives from the new MSS. Until
then, the MH continues to send packets destined for the SH directly to the old
MSS. These packets are lost because the MH can no longer reach the old MSS
through the wireless interface.

Inconsistencies persist longer with the route from the SH to the MH. The old
MSS does not know that the MH has left the cell until an explicit notification
arrives from the new MSS, which cannot send the notification before it receives a
greeting from the MH. Until the old MSS learns of the MH's motion, it continues
to route packets directly to the MH. These packets are also lost because the
old MSS can no longer reach the MH. Any other parts of the network involved
in the handoff must also wait for explicit notification that the MH has moved
before they can change their routing tables to point away from the old MSS to
the new MSS.

216 CHAPTER 7

Figure 5 shows what happens during one handoff in the case of zero rendezvous
delay. Although the beacon from the new MSS arrives concurrently with the
cell crossing, the MH's routing tables do not point to the new MSS until 0.05
seconds after the cell crossing. Similarly, the old MSS's routing tables do not
point to the new MSS until 0.15 seconds after the cell crossing. Although
the system overhead implicit in these figures can be reduced through careful
implementation, handoff latency cannot be altogether eliminated because at
least two packet exchanges are needed to notify both the new MSS and the old
MSS that the MH has changed cells. Because these packets incur unavoidable
propagation delays, there will always be a window of opportunity during which
both data and acknowledgement packets can be routed to unreachable wireless
transceivers.

Cell
crossing
Beacon

MH
changes

Old MSS
changes

Last timed
transmission

Retransmission
timeout

0 0.05 Time (seconds)

Packet losses

Figure 5 Handoff latency and related packet losses with a 0-second ren
dezvous delay

An active TCP connection thus loses up to a full transmission window's worth of
packets and related acknowledgements during each handoff. Once the transmis
sion window fills, communication stops until the retransmission timer expires.
When a timeout occurs, TCP retransmits the earliest unacknowledged packet,
doubles the retransmission interval, and resets the timer. If the handoff is not
yet complete when the timeout occurs, the retransmitted packet is also lost
and TCP waits for yet another timeout before retransmitting. A single time
out is typical of zero rendezvous delay, as shown on Figure 5. Two consecutive
timeouts are typical of a 1-second rendezvous delay, as shown on Figure 6.

Transport Protocol Performance in Mobile Environments 217

Retransmission
^gll timeout 1

crossing ''"^^

1.0

Beacon
arrives

Last timed
transmission

. Handoff
completes Retransmission

timeout 2

2.0

0 0.8 l.O 1.15

h H
Packet losses

2.8 Time (seconds)

Figure 6 Handoff latency and related packet losses with a 1-second ren
dezvous delay

It is evident how waits for retransmission timeouts freeze transport-level com
munication for 0.8 seconds or more with each cell crossing across non-overlap
ping cells, and are responsible for a large part of the throughput losses reported
earlier. In contrast, handofFs between overlapping cells do not cause the same
long pauses in communication because the implementation of overlapping cells
in our testbed insures that no packets are lost during those handofFs. The slight
throughput losses reported earlier for the overlapping cell scenario are due to
encapsulation and forwarding delays during handofFs.

3.4 Slow Recovery

As shown in Figure 4, the congestion window drops abruptly after a cell cross
ing when the retransmission timer goes off, but returns only gradually to its
previous level once transport-level communication resumes. TCP's slow-start
algorithm [7] is responsible for this behavior. As acknowledgements reach the
TCP transmitter, slow-start first grows the congestion window exponentially
until it reaches a threshold, then grows it linearly. The threshold is set to
one half of the window size at the time of the retransmission timeout. The
slow-start threshold thus decays exponentially with consecutive timeouts.

The slow recovery after each handoff contributes to the loss of throughput
discussed earlier, but only moderately. Our measurements show that the algo-

218 CHAPTER 7

rithm throttles transmissions for approximately 1 second after communication
resumes. At that point the connection again reaches its maximum throughput
(1.6 Mbit/second), and the congestion window ceases to affect performance.

3.5 Unacceptable Interactive Response

Interactive delays are a concern in addition to throughput. Studies of human
factors indicate that people perceive interactive response to be "bad" if it takes
longer than 100 to 200 milliseconds [11]. As discussed above and shown in
Figures 3, 4, 5, and 6, transport-level communication comes to a halt for 800
milliseconds or longer after non-overlapping cell crossings. Furthermore, these
pauses grow exponentially with growing rendezvous delays due to TCP's expo
nential retransmission backoff policy. In interactive applications that use TCP
for reliable data transport, user inputs and their responses will be unable to
travel between mobile hosts and remote servers during these pauses.

Although users may not always interact with their computers while moving,
there will certainly be times when they will do so soon after stopping. Our
results show that pauses will persist from 650 milliseconds to several seconds
after a host enters a new cell and the handoff completes. Motion will thus lead
to unacceptable interactive response unless we solve the problems presented in
this section.

4 I M P R O V I N G P E R F O R M A N C E

Our results demonstrate that we must improve the performance of reliable
transport communication in mobile computing environments. Two approaches
are possible: hiding motion from the transport level, and adapting the transport
level to react better to motion.

4.1 Smooth Handoffs

Cellular networks should strive to provide smooth handoffs in order to eliminate
packet losses during cell crossings and thus hide motion from the transport
level. As we have shown with our testbed, one way to achieve this goal is to
implement "make then break" handoffs and to engineer enough overlap between
cells to insure that handoffs complete before an MH loses contact with the old

Transport Protocol Performance in Mobile Environments 219

MSS. However, there are compelling reasons to build networks with little or no
overlap between small cells:

• They offer high aggregate bandwidth because they can use the same por
tion of the electromagnetic spectrum in nearby cells. Bandwidth is scarce
in wireless networks.

• They support low-powered mobile transceivers because signals need only
reach short distances. Mobile computers have stringent power consump
tion requirements.

• They provide accurate location information because cells are small and
sharply defined. Location information adds important functionality to
distributed systems.

It is possible to provide smooth handoffs in spite of packet losses due to motion
between non-overlapping cells. For example, MSSs could buffer packets they
have recently sent to MHs. When an MSS is notified that an MH has moved
out of the MSS's cell, the MSS can send the buffered packets for that MH to
the MSS now responsible for the MH. The new MSS can in turn forward the
packets to the MH. This technique increases the memory requirements of the
MSSs, but may prove feasible because the amount of data that an MSS needs
to buffer is bounded by the maximum handoff latency between adjacent cells.

However, it is unlikely that all cellular networks will provide perfectly smooth
handoffs in the near future. It is therefore worthwhile to investigate transport-
level techniques for alleviating the effects of packet losses during handoffs.

4.2 More Accurate Retransmission Timers

The long pauses in communication presented in Section 3 are due partly to
inaccurate retransmission timers. TCP implementations historically have used
coarse timers with a 300- to 500-millisecond resolution. For example, the
4.3BSD-Tahoe implementation in our testbed uses a 500-millisecond resolu
tion timer. The resulting minimum timeout value is twice the timer resolu
tion, or 1 second (this 1-second value is evident in Figures 5 and 6). The
retransmission timer is intended to track the round-trip delay experienced by
a TCP connection, but actual round-trip delays are much smaller than 500
milliseconds. For example, connections in our testbed experience well under 1

220 CHAPTER 7

millisecond of round-trip delay. It may appear that changing TCP implemen
tations to use higher-resolution timers would result in more accurate round-trip
time estimates and would thus reduce pauses in communication during cellular
handofFs.

However, more accurate timers will not solve the problems introduced by mo
tion across wireless cell boundaries. A timer that successfully tracks the round-
trip delay will lead to timeout values on the order of 1 millisecond or less. These
small timeout values will result in multiple timeouts while a handoff completes,
which in turn will lead to the following three problems:

• Multiple reductions of the slow-start threshold. The threshold decays ex
ponentially with consecutive timeouts and can quickly reach the minimum
window size of one packet. When communication resumes after a hand-
off, connections will find themselves in the linear region of window growth
dictated by the slow-start algorithm, and will take many round-trip times
before they reach maximum throughput. Our test bed avoided this problem
because of its coarse timers.

• Multiple backoffs of the retransmission timer. Backoffs grow exponentially
with consecutive timeouts and can quickly lead to the long pauses in com
munication we are trying to avoid.

• Multiple retransmissions before the routes become consistent. These futile
retransmissions waste bandwidth in the slow wireless medium.

In general, it is difficult for a timer-based scheme to adapt to the abrupt changes
in round-trip delay introduced by cellular handoffs.

4.3 Fast Retransmissions

An attractive end-to-end solution [10] to the problems presented in Section 3 is
for the transport protocol to resume communication immediately after hand
offs complete, without waiting for a retransmission timeout. Modern TCP
implementations, including the 4.3BSD-Tahoe implementation in our testbed,
already perform similar fast retransmissions when a transmitter receives trip
licate acknowledgements from a remote receiver. When activated, the fast
retransmission procedure immediately retransmits the earliest unacknowledged
packet, drops the transmission window, and initiates the slow-start algorithm.

Transport Protocol Perform.ance in Mobile Environments 221

The rationale behind current fast retransmissions is that triplicate acknowl
edgements clearly indicate that packet loss has occurred, and thus there is no
need to wait for a timeout before retransmitting.

We made modest changes to the TCP and Mobile IP software in our testbed
to invoke the existing fast retransmission procedure as soon as routes become
consistent following a cell crossing. First, the Mobile IP software on the MH
signals the TCP software on the MH when a greeting acknowledgement arrives
from the new MSS. Second, the TCP transmitter on the MH invokes the fast
retransmission procedure when it receives such a signal. The signal is delivered
through shared memory between TCP and IP software in the same host.

Cell
crossing

+
Beacon Handoff
arrives completes

Retransmission
timeout

Last timed
transmission

Time (seconds)

Figure 7 Fast retransmission after a handoff with a 0-second rendezvous
delay

Figure 7 shows the measured effect of fast retransmissions after a non-overlap
ping cell handoff with a 0-second rendezvous delay. As shown, fast retransmis
sions cause a TCP connection to resume communication 50 milliseconds after
the handoff completes. In contrast, the retransmission timeout would not have
occurred until 650 milliseconds after the handoff completed.

An additional communication step is necessary to inform the TCP software
on the SH of the events occurring at the other end of the connection. First,
the Mobile IP software on the MH signals the TCP software on the MH of
the completion of the handoff, as described above. Second, the TCP software
on the MH forwards the signal over the network to the SH. Third, the TCP
software on the SH invokes the fast retransmission procedure when it receives

222 CHAPTER 7

such a signal. The signal travels from the MH to the SH through normal
IP routes and can take either of two forms: It can be a specially marked TCP
acknowledgement packet containing the sequence number of the last data packet
successfully received by the MH, or it can be three identical but ordinary TCP
acknowledgement packets. The triplicate acknowledgement approach consumes
more resources but does not require modifications to TCP implementations on
stationary hosts.

Cell
crossing

Retransmission
timeout 1

Beacon

Last timed
transmission

1.00

Handoff
completes

Fast
retransmission

Retransmission
timeout 2

2.00

0.8 1.0 1.2 2.8 Time (seconds)

Figure 8 Fast retransmission after a handoff with a 1-second rendezvous
delay

Figure 8 shows the measured effect of fast retransmissions after a non-overlap
ping cell handoff with a 1-second rendezvous delay. As shown, fast retransmis
sions again causes a TCP connection to resume communication 50 milliseconds
seconds after the handoff completes. In contrast, the retransmission timeout
would not have occurred until 1,650 milliseconds after the handoff completed.

The fast retransmission approach has three desirable features:

It requires minimal changes to software on the end hosts. It changes Mobile
IP only to propagate an end-of-handoff signal one layer up in the protocol
stack. It changes TCP only to invoke the existing fast retransmission
procedure when the end-of-handoff signal arrives. It need not change TCP
on stationary hosts if triplicate acknowledgements are used.

It does not depend on special support from the network, including mobil
ity support stations or other intermediate routers. It therefore does not

Transport Protocol Perform,ance in Mobile Environments 223

depend on any one mobile networking environment and will work over an
internetwork.

• It follows established congestion avoidance policies by closing the trans
mission window and using the slow-start algorithm after the initial retrans
mission. It thus avoids congesting the cell the MH has just entered. Gently
probing the congestion state of a new route, such as the route to a new
cell, is one of the principal motivations behind the slow-start algorithm.

• It preserves end-to-end. reliability semantics.

It is important to note that there is no need to initiate fast retransmissions in
networks that guarantee smooth handoffs, that is, in networks that never lose
packets during handoffs. In that case, the MH software involved in the handoff
need not signal the transport level when handoffs complete. The fast retrans
mission scheme therefore coexists with any handoff scheme. The software that
implements the scheme resides in the transport level and is exercised only when
needed.

Pauses in
communication
(seconds)

I

100%

25%

0.8

0.2

100%

43%

2.8

1.2

0 - second 1 - second
rendezvous delay rendezvous delay

Figure 9 Improvements in latency due to fast retransmissions with the trans
mitter on the MH

224 CHAPTER 7

4.4 Improvements in Latency

Figure 9 shows the pauses in transport-level communication caused by motion
across non-overlapping cell boundaries, together with the improvements gained
by applying the fast retransmission procedure. As shown, when the transmitter
resides on the MH, fast retransmissions reduce these pauses from 0.8 to 0.2
seconds for a 0-second rendezvous delay, and from 2.8 to 1.2 seconds for a
1-second rendezvous delay.

Pauses in '
communication
(seconds)

,

100%

50%

0.6

0.3

100%

50%

2.6

1.3

fc

0 - second 1 - second
rendezvous delay rendezvous delay

Figure 10 Improvements in latency due to fcist retransmissions with the
transmitter on the SH

Figure 10 shows our results for the case when the TCP transmitter resides on
the SH, where pauses drop from 0.6 to 0.3 seconds for 0-second rendezvous de
lays, and from 2.6 to 1.3 seconds for 1-second rendezvous delays. Pauses before
the improvements are shorter when the transmitter is on the SH (e.g., 0.6 vs.
0.8 seconds for 0-second rendezvous delays) because data packets incur added
propagation delay before they are lost. Effectively, lost packets are sent earlier
before the cell crossing, and thus retransmission timeouts occur earlier after the
crossing. Pauses after the improvements are longer when the transmitter is on
the SH (e.g., 0.3 vs. 0.2 seconds for 0-second rendezvous delays) because the
fast retransmission must wait for an acknowledgement packet to travel between
the MH and the SH after the handoff completes.

Transport Protocol Performance in Mobile Environments 225

The fast retransmission scheme thus succeeds in reducing interactive delays to
200-300 milliseconds beyond the rendezvous. Reducing handofF latency through
careful implementation would further reduce this remaining delay. The Mobile
IP software in our testbed is an early example of support for mobile networking
and was not written with fast handofFs in mind. For example, it incurs sub
stantial system overhead by employing application-level processes to process
beacons, change routes, and perform other handoff-related functions. A more
efficient implementation of handofFs combined with fast retransmissions should
in all cases bring pauses in communication to 100 milliseconds or less after the
rendezvous. If users do not attempt to interact with their mobile computers
until they stop moving across cell boundaries, interactive delays will then drop
to acceptable levels.

4.5 Improvements in Throughput

We also measured significant improvements in throughput due to the fast re
transmission scheme. As shown in Figure 11 for the test described in Sec
tion 3.1, throughput improves from 1400 to 1490 Kbit/second for 0-second
rendezvous delays, and from 1100 to 1380 Kbit/second for 1-second rendezvous
delays. Some throughput losses remain because a transport-level scheme like
fast retransmissions does not reduce network-level delays and packet losses,
and because the slow-start algorithm throttles connections for some time after
transport-level communication resumes.

5 WIRELESS TRANSMISSION E R R O R S

Even in the absence of motion, the WaveLAN network in our testbed suffers
from relatively frequent packet losses due to physical transmission errors. A
separate measurement study found that WaveLAN exhibited excellent packet
capture rates (over 99%) in an indoor environment [5]. However, in our envi
ronment, packet loss frequency varies widely even across short distances and
depends on such factors as the positions of antennas in a room. Such problems
are common in wireless communication because wireless media are vulnerable
to ambient noise and multipath interference. Commonly cited bit error rates
for radio and infrared links are 10"^ or worse, compared to 10~^^ or better for
fiber optic links.

226 CHAPTER 7

Average
throughput t
(Kbit / sec)

i

1 100%
1600

94%
1510

9
8S

j

1490

No
handoffs

Overlapping 0 - second 1 - second
cells rendezvous delay rendezvous delay

Non-overlapping cells

Figure 11 Improvements in throughput due to fast retransmissions

Wireless transmission errors will also trigger the transport-level problems de
scribed in Section 3. One possible solution is for the link-layer protocol that
controls wireless links to retransmit packets lost on those links and thus hide
the losses from higher layers. However, recent research shows that, under cer
tain packet loss conditions, competing retransmission strategies in the link and
transport layers can interact to reduce end-to-end throughput while increasing
link utilization [4]. Alternative techniques such as selective retransmissions at
the transport layer may prove more effective than link-layer retransmissions.

We wanted to isolate the effects of motion across cell boundaries from the effects
of wireless transmission errors. We solved the problem by positioning the Wave-
LAN antennas physically close together in an area relatively free from ambient
radiation and multipath problems. Packet losses in the absence of cell crossings
then dropped to negligible levels. We also repeated all our handoff experiments
using a wired network to emulate a wireless network; we substituted a second
Ethernet for the WaveLAN in our testbed and found no fundamental differ
ences in our results. We did not treat transmission errors any further in order
to concentrate on handoffs. Nevertheless, the impact of wireless transmission
errors on reliable transport protocols warrants further study.

Transport Protocol Perforw.ance in Mobile Environments 227

6 CONCLUSIONS

Mobility changes important assumptions on which existing systems operate. In
particular, networks that include wireless links and mobile hosts suffer from de
lays and packet losses that are unrelated to congestion. Current reliable trans
port protocols react to these delays and losses by abruptly slowing their trans
missions, a response that further degrades the performance of active connec
tions. We have identified the factors that contribute to this performance degra
dation and have quantified their eft'ects in detail. We have shown how waits for
retransmission timeouts cause pauses in communication at least 650 millisec
onds longer than the underlying network-level interruption. These pauses are
readily noticed by interactive users and significantly reduce throughput.

We have also described a fast retransmission scheme that can reduce the pauses
in communication to 50 milliseconds past the moment when transport-level
communication resumes. Fast retransmissions thus reduce interactive delays
to acceptable levels and regain much of the lost throughput. The fast retrans
mission approach is attractive because it calls for only minimal changes to end
systems, relies on no special support from the underlying network or intermedi
ate routers, follows established congestion avoidance procedures, and preserves
end-to-end reliability semantics. The approach is thus applicable to a large and
varied internetwork like the Internet.

Our work makes clear the need for reliable transport protocols to differentiate
between motion-related and congestion-related packet losses. Our results can
be used to adapt TCP to mobile computing environments. They also apply
to other reliable transport protocols that must cope with both mobility and
congestion.

Acknowledgements

This work was performed at Matsushita Information Technology Laboratory.
Dan Duchamp and John loannidis provided the Mach 2.5 version of the Mobile
IP software. Chuck Lewis helped to set up and maintain the testbed. Greg
Minshall provided useful comments on an earlier draft of this paper.

228 CHAPTER 7

REFERENCES

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M, Young. Mach: A new kernel foundation for UNIX development. Proc.
of the USENIX 1986 Summer Conference, July 1986.

[2] B. R. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mobile
clients: A case for indirect interaction. Proc. of IEEE WWOS-IV, October
1993.

[3] S. Deering and M. Weiser. Private communication. Xerox PARC, October
1993.

[4] A. DeSimone, M. C. Chuah, and O. C. Yue. Throughput performance of
transport-layer protocols over wireless LANs. In Proc. of Globecom '93,
December 1993.

[5] D. Duchamp and N. F. Reynolds. Measured performance of a wireless
LAN. In Proc. of the 17th IEEE Conf. on Local Computer Networks,
September 1992.

[6] J. loannidis and G. Q. Maquire Jr. The design and implementation of a
mobile internetworking architecture. Proc. of the USENIX 1993 Winter
Conference, January 1993.

[7] V. Jacobson. Congestion avoidance and control. Proc. of ACM SIGCOMM
'88, August 1988.

[8] A. Myles and D. Skellern. Comparison of mobile host protocols for IP.
Journal of Internetworking B,esearch and Experience, 4(4), December 1993.

[9] J. Postel. Transmission Control Protocol. Request for Comments 793^
1981.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. Proc. of the 2nd International Conference on Distributed
Computing Systems, April 1981.

[11] B. Shneiderman. Designing the User Interface. Addison-Wesley, 1987.

8
INDIRECT TRANSPORT LAYER

PROTOCOLS
FOR MOBILE WIRELESS

ENVIRONMENT
Ajay V, Bakre and B.R. Badrinath

Department of Computer Science

Rutgers University, New Brunswick, NJ 08903

USA

ABSTRACT

Internetworking protocols for mobile hosts have hitherto treated host mobility as
a routing problem to be handled entirely within the network (IP) layer. Such an
approach however, ignores the distinctive features of wireless mobile computing. IP-
based transport protocols thus suffer from poor performance when used for commu
nication between a mobile host and hosts on the wired network. This is caused by
frequent disruptions in network layer connectivity due to mobility and wireless losses.
We describe indirect transport layer protocols for mobile hosts which can tackle mo
bility and wireless related performance problems without compromising backward
compatibility with the transport protocols used over the wired network. Indirect pro
tocols utilize the resources of Mobility Support Routers (MSRs) to provide transport
layer communication between mobile hosts and those on the fixed network. We also
present performance figures for I-TCP, an indirect transport protocol for mobile com
puters that is compatible with TCP, showing substantial improvement in throughput
over regular TCP.

1 INTRODUCTION
Integration of mobile hosts into the existing internetwork consisting mostly of
stationary hosts gives rise to some peculiar problems because of the special
requirements of low power mobile hosts and also because of the special char
acteristics of the wireless link. Several Mobile-IP proposals [11, 21, 23] have
addressed the problem of delivering IP packets to mobile hosts regardless of
their location. In theory one can use existing fixed network transport protocols

230 CHAPTER 8

such as UDP [19] and TCP [20] with one of the Mobile-IP proposals for com
munication between mobile hosts and the fixed network. This naive approach
however, gives rise to performance problems, especially when a mobile host
switches cells or is temporarily disconnected [7]. More seriously, all Mobile-IP
proposals attempt to hide mobility, disconnection and other features of mobile
wireless computing from transport and higher layers thus ruling out any spe
cialized handling of such features. On the other hand, use of a new protocol
stack for mobile hosts causes interoperability problems with the fixed network
protocols. An indirect model for mobile hosts [3] allows the development and
use of specialized transport protocols that address the performance issues on
the comparatively low bandwidth and unreliable wireless link. Protocols devel
oped using this model can also mitigate the effects of disconnections and moves
while maintaining interoperability with fixed network protocols.

This paper describes indirect transport layer protocols that we have developed
for a mobile wireless networking environment. Indirect protocols can inter-
operate with existing IP-based transport protocols used by a large number of
stationary hosts over the Internet and yet allow the tuning of the transport
layer for the special requirements of mobile wireless computing. The interop
erability is achieved via mediation from one or more mobility support routers
(MSRs). We present performance figures for one such protocol implementation
known as I-TCP, under simulated conditions of mobility and loss over wireless
link. Experiments with I-TCP on our testbed show substantial throughput
improvement over regular TCP.

The remaining of the paper is organized as follows. We first describe the system
model for mobile internetworking which includes a description of our wireless
testbed. Next, we outline the advantages of an indirect transport layer for
mobile computers. Performance analysis of I-TCP, in comparison to regular
TCP is presented. Some of the alternatives to indirect protocols including
related work is described next which is followed by concluding remarks.

2 SYSTEM MODEL

Our system model for mobile internetworking consists of two separate network
components:

1. The wired or fixed network which consists of local area networks intercon
nected by high speed links.

Indirect Transport Layer Protocols 231

2. Wireless network which consists of separate wireless cells each of which
is supported by a wireless base station and may be populated by a few
mobile wireless hosts (MHs). We assume that each base station is directly
attached to the fixed network and can route IP datagrams to and from
MHs in cooperation with other base stations and thus we call it a mobility
support router or MSR.

In our model, an MH communicates with hosts on the wired network via the
MSR serving its current wireless cell. Although direct MH to MH communi
cation is possible when they are in the same cell, we assume that in general
such communication involves (at least) two MSRs currently serving the two
MHs (in different cells). The MHs can freely move into other wireless cells
and it is the responsibility of the MSRs to correctly route data packets to the
MHs regardless of where they are located. Each MSR may maintain some state
information about the MHs that are currently in its cell. Such information is
handed over to the next MSR in case the MH switches cells.

2.1 Columbia Mobile IP

We use Columbia Mobile IP [11] for routing and location management of mobile
hosts within a group of cells known as a campus. Any other mobile IP scheme
that supports explicit intimation of a move from the new MSR to the old MSR
can potentially be used as well. In the Columbia scheme, all the MHs in a
campus and the wireless interfaces of all the MSRs are assigned IP addresses
from a single subnet and the MHs can move from one cell to another in the
same campus without changing their IP addresses.

In the Columbia scheme, user level processes mhmicp and msrmicp running at
an MH and its MSR respectively participate in a registration protocol when
an MH enters a wireless cell. The MSR periodically broadcasts a beacon in
its wireless cell that is used by the mobile hosts to discover the MSR. When a
mobile host moves into a cell, it responds to the MSR beacon with a greeting
message that also contains the address of its previous MSR. This enables the
new MSR to register the mobile host and to send a forwarding pointer to the
old MSR for the MH which switched cells. All the MSRs in a campus cooperate
to maintain location information about the registered MHs in their respective
cells.

232 CHAPTER 8

Cell-2

MSR-2

Existing transport
protocols over IP

Wireless protocols / Mobile-IP

F i g u r e 1 Indirect transport layer

2.2 Experimental wireless testbed

Our experimental wireless testbed consists of three MSRs, all of them 33 MHz
386 PC-ATs with 16 MB memory and 400 MB disk drives. These three MSRs
support three wireless cells which overlap with each other. The mobile hosts
used in our experiments are 66 MHz 486 PC-ATs. All the mobile hosts and
MSRs are equipped with 2Mbps NCR WaveLan cards for wireless communi
cation. The MSRs are also connected to 10 Mbps ethernet segments which
are part of a single administrative domain. The MSRs run Mach 3.0 micro
kernel from CMU with Unix server (MK84/UX40) [1] modified for Columbia
Mobile-IP and indirect transport. Special purpose daemon processes running
on the MSRs provided support for indirect transport layer connections. The
MHs have similar configurations but run a slightly diflFerent version of the Unix
server in addition to user level programs and libraries which together form the
MH side of the indirect transport protocols.

Indirect Transport Layer Protocols 233

3 INDIRECT TRANSPORT LAYER

This section gives an overview of indirect protocols [3] and describes the benefits
of using indirection at the transport layer. We begin with a brief description
of how mobility and the wireless medium affect transport layer performance.

3.1 Effects of wireless links and mobility

The characteristics of wireless links are very different from the wired or fixed
links. The wired links (ethernet or long-haul links and ATM in the future)
are becoming faster and more reliable every day whereas the wireless links
(especially the outdoor links) are still much slower in comparison. The wireless
links are also vulnerable to noise and loss of signal due to fading which result
in much higher bit error rates than the wired links. Host mobility causes
temporary disconnections and loss of packets if an MH moves to an area where
signal strength is low or if it crosses cell boundaries.

For the transport layer protocols the above properties translate into longer
and often unpredictable round trip delays and increased loss of data packets.
The throughput of reliable transport protocols such as TCP typically depends
upon accurate estimation of round trip time between the two end points. The
throughput of such protocols is thus adversely affected if one of the links be
tween the end points is a wireless link. The increased packet loss over wireless
also triggers congestion control at the transmitting host which further degrades
the throughput [7]. This problem is made worse by the assumption of reliable
links underlying the congestion control policies [12, 18] which have evolved for
the wired network.

Unreliable protocols such as UDP are mainly used by two kinds of applications
- i) unreliable stream applications such as audio or video streams and ii) ap
plications which build their own reliability mechanisms on top of the unreliable
(and simpler) service provided by the transport protocol. The second class of
applications includes request-response style of communication as in Sun's Net
work File System built on top of SunRPC which uses UDP for transport. The
mobility and wireless related problems mentioned above cause degraded stream
quality in the first kind of applications. The second kind of applications can
fail in unexpected ways if an MH experiences excessive loss of data packets
or disconnections because such applications are typically built for local area
networks where losses and disconnections are rare.

234 CHAPTER 8

3.2 Indirect model for mobile hosts

The indirect protocol model for mobile hosts suggests that any interaction
from a mobile host (MH) to a machine on the fixed network should be split
into two separate interactions - one between the MH and its mobility support
router (MSR) over the wireless medium and another between the MSR and
the fixed host (FH) over the wired network. This provides an elegant method
for accommodating the special requirements of mobile hosts in a way that
is backward compatible with the existing fixed network. All the specialized
support that is needed for mobile applications as well as for the low speed and
unreliable wireless medium can be built into the wireless side of the interaction
while the wired side is left unchanged.

At the transport layer, use of indirection results in the following benefits:

1. Indirection separates the flow control and congestion control functionality
on the wireless link from that on the fixed network.

2. A separate transport protocol for the wireless link can support notification
of events such as disconnections, moves and other features of the wireless
link such as the available bandwidth etc. to the higher layers which can
be used by link aware and location aware mobile applications.

3. An indirect transport protocol can provide some measure of reliabiUty only
where it is needed i.e. over the wireless link for those applications which
prefer to use unreliable transport over the fixed network.

4. Indirect transport protocols provide backward compatibility with the ex
isting wired network protocols. Thus no modifications at unrelated fixed
hosts are needed for accommodating mobile hosts.

5. Indirection allows the base station (mobile support router or MSR) to
manage much of the communication overhead for a mobile host. Thus, a
mobile host (e.g. a small palmtop) which only runs a very simple wire
less protocol to communicate with the MSR can still access fixed network
services such as WWW which may otherwise require a full TCP/IP stack
running on the mobile.

6. Indirection at the MSR allows faster reaction to mobility and wireless
related events compared to a scheme where the remote communicating
host tries to react to such events. This is because the MSR is the router
closest to the wireless link.

Indirect Transport Layer Protocols 235

MH socket
<mhaddr, mhport, msriaddr, msr1port>

Move

z
MH socket

<mhaddr, mhport, msriaddr, msr1port>

\ Wireless
\ TCP

Wireless
TCP

MSR1-mhsocket \
<msr1addr. msriport,

mhaddr, mhport>

MSR1-fhsocket
<mhaddr, mhport,

fhaddr, fhport>

I-TCP Handoff

MSR2-mhsocket
^<msr1addr, msriport,

y mhaddr, mhport>

MSR2-fhsocket
<mhaddr, mhport,

fhaddr, fhport>

FH socket

<fhaddr, fhport,
mhaddr, mhport>

F i g u r e 2 I-TCP connection setup

3.3 I-TCP: A Reliable Stream Protocol

I-TCP is a reliable transport layer protocol for mobile hosts which is based on
the Indirect Protocol model. I-TCP is fully compatible with TCP/ IP on the
fixed network and is built around the following simple concepts:

1. A transport layer connection between a mobile host (MH) and a fixed host
(FH) is established as two separate connections - one over the wireless

236 CHAPTER 8

medium and another over the fixed network with the current MSR being
the center point.

2. If the MH switches cells during the lifetime of an I-TCP connection, the
center point of the connection moves to the new MSR.

3. The FH is completely unaware of the indirection and is not affected even
when the MH switches cells i.e. when the center point of the I-TCP con
nection moves from one MSR to another.

When an MH wishes to communicate with some FH using I-TCP, a request is
sent to the current MSR (which is also attached to the fixed network) to open
a TCP connection with the FH on behalf of the MH. The MH communicates
with its MSR on a separate connection using a variation of TCP that is tuned
for wireless links and is also aware of mobility. The FH only sees an image of
its peer MH that in fact resides on the MSR. It is this image which is handed
over to the new MSR in case the MH moves to another cell.

As an example, figure 2 shows the setup for an I-TCP connection. The mobile
host (MH) first estabhshes a connection with a fixed host (FH) through MSR-1
and then moves to another cell under MSR-2. When the MH requests an I-TCP
connection with the FH while located in the cell of MSR-1, MSR-1 establishes
a socket with the MH address and MH port number to handle the connection
with the fixed host. It also opens another socket with its own address and
some suitable port number for the wireless side of the I-TCP connection to
communicate with the MH.

When the MH switches cells, the state associated with the two sockets for the
I-TCP connection at MSR-1 is handed over to the new MSR (MSR-2). MSR-
2 then creates the two sockets corresponding to the I-TCP connection with
the same endpoint parameters that the sockets at MSR-1 had associated with
them. Since the connection endpoints for both wireless and the fixed parts of
the I-TCP connection do not change after a move, there is no need to reestab
lish the connection at the new MSR. This also ensures that the indirection in
the transport layer connection is completely hidden from the FH. We currently
use a modified version of TCP itself for the wireless part of the I-TCP connec
tion, although in a future version we plan to use a transport protocol that is
optimized for the one hop wireless link.

Indirect Transport Layer Protocols 237

3.4 I-TCP semantics

Since I-TCP uses separate transport layer (TCP) connections for the wired
and the wireless links, applications using 1-TCP cannot rely on end-to-end
transport layer acknowledgments. Many TCP-based applications such as ftp
however, use application layer acknowledgments in addition to the end-to-end
acknowledgments provided by TCP, This is at least partly because TCP does
not provide a mechanism to notify a sending application when data is actually
removed by the receiving application from its socket buffers. Thus, if we assume
that there are no MSR failures and that an MH does not stay disconnected
from the fixed network indefinitely, using I- TCP instead of regular TCP does
not compromise end-to-end reliability. An MSR failure and subsequent reboot
however, results in the loss of I-TCP connections established via that MSR
whereas an end-to-end TCP connection can typically survive temporary failures
of intermediate routers. I-TCP is therefore well suited for applications such as
ftp and Mosaic, in which a higher layer protocol (or the user) can retry failed
connections in case of (hopefully rare) MSR failures. On the other hand, those
applications which depend on the end-to-end transport layer acknowledgments,
e.g. telnet are better off using regular TCP. We expect the former kind of
applications to predominate in a mobile computing environment where mobile
hosts will need to access information services from the fixed network. Such
applications are also typically throughput intensive which we believe will benefit
the most from the use of I-TCP as opposed to interactive applications.

3.5 R D P / U D P : A Datagram Protocol

RDP/UDP is a semi-reliable datagram protocol suitable for request-response
style of communication that is characteristic of RPC-based applications. This
indirect protocol provides a UDP interface to the fixed hosts while using a reli
able data protocol (RDP) [22] on the wireless link. The translation from RDP
to UDP is performed by a daemon process running at the MSR. Client applica
tions on mobile hosts, such as NFS clients, that wish to access UDP services on
the fixed network can utilize RDP/UDP to protect themselves against exces
sive wireless losses. One particular example of a higher layer protocol that uses
RDP/UDP can be found in M-RPC [6], which is an RPC service for mobile
clients. If an MH switches cells during some interaction with a server on the
fixed network, the state information related to the MH which was resident at
the old MSR's RDP/UDP daemon is handed over to a similar daemon process
at the new MSR which takes over all the active interactions on behalf of the

238 CHAPTER 8

MH. As with I-TCP, the correspondent host (server) on the fixed network sees
an image of the MH as its peer, communicating over plain UDP in this case.

4 IMPLEMENTATION AND HANDOFFS

We give a brief outline of various software components that are needed to
support indirect transport protocols. Such support consists of the following
three parts:

1. Library support at the MHs which forms the Application Programmer's
Interface (API) for indirect transport layer.

2. Kernel support at the MSRs needed to perform transport layer handoffs.

3. User level daemons at the MSRs to handle the indirect connections on
behalf of the MHs.

4.1 MH transport library

The transport layer library provides an API for the MH applications that is
similar to the socket interface in BSD Unix [16]. Library calls are provided
which emulate the functionality of connect, listen, accept and close system
calls. A library call only serves as a wrapper around the corresponding system
call to hide the communication with the MSR needed to establish (or close) an
indirect transport connection. Once such a connection is estabhshed, regular
socket calls can be used to send or receive data on the connection. The transport
library also notifies the local mhmicp process about the endpoint parameters
of indirect connections - this information is needed at the time of handoffs as
described later. Currently, our scheme provides different linkable libraries for
I-TCP and RDP/UDP connections.

4.2 MSR kernel support

We modified the networking module of the Unix server, which runs on top of
Mach 3.0, to allow binding of the address of the mobile host requesting an
indirect connection to the socket that is used by the MSR to communicate
with the correspondent (fixed) host. Our scheme thus keeps indirection hidden

Indirect Transport Layer Protocols 239

from hosts on the wired network. If an MH moves from one cell (say, under
MSR-1) to another (under MSR-2), the state information related to all the
indirect transport connections active at MSR-1 on behalf of the MH must be
moved to MSR-2. The indirect transport connections must then be restarted
at MSR-2. In addition, this migration of connections needs to be accomplished
without any help from the fixed host at the other end of the connection. We
implemented kernel calls in the form of socket ioctls to support transport layer
handoffs. These calls are used by MSR daemons to transfer state information
from one machine to another when a mobile host switches cells. Details of
the implementation describing specialized mechanisms developed for transport
layer handoff can be found in [5].

4.3 MSR t ranspor t layer daemons

Transport layer daemons running on every MSR in our mobile internetworking
environment perform the translation between wireless and wired parts of an
indirect connection between an MH and its correspondent (fixed) host. Cur
rently we use separate daemons for I-TCP and RDP/UDP but it is possible
to integrate them into one transport layer agent that can provide all reason
able combinations of wireless and wired side protocols for use by MHs. It is
also possible to link the daemon code with a higher layer agent process such
as in the M-RPC system [6]. A transport layer daemon employs the kernel
based mechanisms described above to pose as the MH process to the hosts on
the fixed network by using the address and port number identifying the MH
process which requested an indirect connection. The socket ioctls mentioned
above are used by such a daemon to exchange state information about an MH
socket with a similar daemon at another MSR.

4.4 Handoff considerations

We have thus far described the various components at the MH and MSRs that
support indirect transport layer connections. These components must follow a
transport layer handoff protocol if an MH switches cells while it has open indi
rect connections with other hosts on the Internet. To minimize retransmission
of lost packets, the handoff protocol must be closely tied with the mobile IP
scheme used by the MSRs for routing IP datagrams to the mobile hosts within
a domain. In addition, the handoff protocol must also be well integrated with
similar protocols at higher layers. The handoff algorithm for I-TCP is described
in [4]. We will only give a general outline of a transport layer handoff here.

240 CHAPTER 8

1. When an MH moves to a new cell, it sends a greeting to the new MSR with
any authentication information, the end point parameters for all active
indirect connections and the address of its previous MSR.

2. The new MSR creates skeleton sockets for the indirect connections and
requests the previous MSR to transfer state information related to those
connections.

3. The previous MSR freezes the indirect connections for the MH which
moved out of its cell and sends the related state information to the new
MSR.

4. The new MSR restarts the indirect connections for the MH from the state
information sent by the previous MSR.

The transport layer segments belonging to the indirect connections that are in
transit during the handoff period are buffered (without processing) at the new
MSR and are acknowledged as soon as complete state information is available
for those connections at the new MSR. Measurements of handoff delay for I-
TCP connections using different socket buffer sizes can be found in [5].

5 PERFORMANCE RESULTS

We present performance figures for experiments conducted using the t t cp
benchmark which measures TCP throughput between two hosts. The through
put experiments were conducted on our wireless testbed which was described
earlier.

We experimented with two distinct cases to study the performance of I-TCP for
connections spanning over local area and wide area networks i.e. - i) when the
FH to MH communication involved only a few hops within the Rutgers LCSR
administrative domain and ii) when the FH to MH communication involved a
long-haul link over the Internet.

5.1 Mobility experiments

Our experiments were inspired by similar experiments reported by Caceres
and Iftode [7] to study the effect of mobility on reliable transport protocols.
Figures 3 and 4 compare the end-to-end throughput of an I-TCP connection

Indirect Transport Layer Protocols 241

between an MH and a fixed host (FH) with that of a direct TCP connection
for local area and wide area connections respectively. In all our experiments,
the FH sent a few megabytes of data (4 MB in case of local area and 2 MB in
case of wide area) to the MH using a window size of 16 KB. We chose to make
the MH to be the receiving host, since we expect it to be a typical situation
with most mobile applications that will download more data from the fixed
network rather than sending data over the uplink. The end-to-end throughput
was measured at the MH under four diff'erent mobility patterns:

i) No Moves - The MH stayed in one wireless cell during the lifetime of a
connection.

ii) Moves between overlapped cells - MH kept switching between two
overlapped cells every 8 seconds such that it stayed in contact with the
previous MSR during handoff. For a brief period after switching cells,
the MH continued to receive packets from the previous MSR before the
Mobile-IP routing adjustments took eff'ect.

Hi) Moves between non-overlapped cells with 0 second between cells
- In case of non-overlapped cells, the cell boundaries were sharply defined
and therefore no communication was possible with the previous MSR after
a move to another MSR. The MH started looking for a beacon from the new
MSR immediately after a move and thus in the worst case the link layer
connectivity was lost for one full interval between successive MSR beacons
which was 1 second in our test bed. The cell switching again occurred every
8 seconds.

iv) Moves between non-overlapped cells with 1 second between cells
- Same as in in) above but in this case the MH started looking for a beacon
1 second after moving out of the previous cell. As in the previous case,
an additional 1 second could elapse before a beacon is received by the MH
and the link layer connectivity is reestablished.

In terms of coverage area, the two wireless cells used in our experiments com
pletely overlapped. Non-overlapped cells were simulated with the two MSRs
controlling the two cells transmitting using diff'erent Wavelan (MAC layer) net
work IDs. Cell switching was implemented in software to allow better control
on the timing of cell crossovers.

242 CHAPTER 8

80 ,

Ovcrl ppcdtcll Non-overlapped cells
wilh 0 sec b/w cells

I Regular TCP

I I-TCP

Non-overlapped cells
with I sec h/w cells

F igure 3 Local area performance comparison with mobility

I Regular TCP
\ I-TCP

wilh 0 set b/w cells wiih I sec h/w cells

Figure 4 Wide area performance comparison with mobility

Performance over local area

With local-area experiments, we observed that I-TCP performed slightly bet
ter compared to regular TCP when the MH stayed within one cell. In the

Indirect Transport Layer Protocols 243

second case when the MH switches between two completely overlapped cells,
the link-layer connectivity is maintained at all times since the MH is in con
tact with both the new MSR and its previous MSR during handofF. There is
still some degradation in TCP throughput since the TCP segments that are in
transit during handofF are delayed because of IP layer routing adjustments by
the MSRs. I-TCP performance suffers only marginally in this case despite the
additional overhead of I-TCP state handoff between the two MSRs on every
move. We believe that the main reason for the slight improvement in perfor
mance with I-TCP in the first two test cases is that the sending host (FH) sees
more uniform round-trip delays for TCP segments as compared to the regular
TCP. Loss of TCP segments over the wireless link, although infrequent, was
also responsible for the difference in performance since I-TCP seemed to recover
faster from a lost packet than regular TCP.

The two cases of non-overlapped cells where the MH temporarily lost contact
with the fixed network (for 0 and 1 second respectively) before such contact
was reestablished at the new MSR, affected the end-to-end throughput more
severely. With regular TCP, congestion control kicked in at the FH on every
handofF because of packet loss and it took some time after a cell crossover before
the FH was able to send data again at full speed. In addition, the exponential
back off policy of TCP resulted in the FH going into long pauses that continued
even after the MH was ready to communicate in its new cell. In case of I-TCP
however, a cell crossover by the MH manifested itself in the form of shrinking
receive window size at the MSR which forced the FH to stop sending data when
the MSR buffers were full. After a handofF, the new MSR could accept more
data from the FH and the data rate on the connection quickly came back to
normal. Congestion control did kick-in on the wireless link between the MSR
and the MH however and so did exponential back off. We found that a simple
reset of the TCP retransmission timer at the new MSR immediately after an
I-TCP handofF forced the MSR to initiate a slow-start on the wireless link, and
was enough to quickly get the wireless part of I-TCP out of the congestion
recovery phase. In the worst case when the MH lost connectivity with the fixed
network for 1 second, I-TCP showed an improvement by a factor of about 1.5
over regular TCP.

Performance over wide area

Our wide area experiments highlight the benefits of I-TCP even more clearly.
Because of relatively long round-trip delays with wide area connections, any
packet loss over the wireless link severely limits the end-to-end throughput of
regular TCP. This is because the time needed to recover from falsely triggered

244 CHAPTER 8

congestion control increases with the round-trip delay. Similarly any perturba
tions (such as cell crossovers or transient changes in the observed round-trip
delay) have a more drastic effect over wide area connections than over local area
connections. For the first two test cases i.e. when the MH stayed within once
cell and when it switched between overlapped cells, the observed performance
of I-TCP was about 2 times better than that of regular TCP. Since there was no
packet loss because of mobility in these two cases, the performance improve
ment with I-TCP comes entirely from separating the TCP connections over
wired and wireless links. This separation is beneficial in two respects. First,
since the retransmissions due to lost segments over wireless (even though such
losses are infrequent) are restricted to the wireless link, the recovery from such
losses is much faster compared to the end-to-end retransmission and recovery
done by regular TCP. Second factor for improvement in the throughput was
the aggregating effect at the MSR which received TCP segments of size 512
bytes^ from the FH and sent segments of 1440 bytes^ over the wireless link to
the MH. This points to another parameter namely the segment size, which can
be tuned to suit a particular wireless link independently of the segment size
chosen by the TCP implementations on the wired network. We did not observe
any significant degradation in performance with the MH switching between
overlapped cells either with I-TCP or with regular TCP which suggests that
the effect of variation in round trip delay because of IP level routing changes
was negligible for wide area connections.

In case of moves between non-overlapped cells, the throughput with regular
TCP dropped to almost a third (61% degradation) of the no-moves throughput
in the worst case when the MH lost contact with the fixed network for 1 second.
With I-TCP, the corresponding degradation in throughput was only 40%. The
net effect was that I-TCP throughput in the worst case was 3 times better than
that of regular TCP. The main reason for this improved performance with I-
TCP is that the retransmissions due to packets lost on the wireless Unk (due to
moves and due to wireless errors) were confined only to the wireless part of I-
TCP which can recover much faster from the congestion control phase because
of the following two factors - i) much shorter round-trip delay between the MH
and the MSR as compared to the delay between the MH and the FH and ii)
we reset the retransmission timer at the MSR immediately after a handoff.

^512 bytes is the default maximum segment size for wide area T C P connections.
^^1460 bytes is the default maximum segment size for local area TCP connections, but we

use a size of 1440 bytes in our wireless environment to avoid IP layer fragmentation in the
presence of IPIP encapsulation used by Columbia Mobile IP.

Indirect Transport Layer Protocols 245

CD

1e-07 2e-07 5e-07 1e-06 2e-06 5e-06 1e-05
Bit error rate

F i g u r e 5 Local area performance comparison with wireless losses

5.2 Loss experiments

We compared the throughput of I-TCP with that of regular TCP for different
bit error rates over the wireless link. The bit errors were simulated by intro
ducing a packet dropping routine in the input processing code of the ethernet
(IF) layer in Unix both at the MH and at the MSR. The packet dropping rou
tine was based on a pseudo random number generator that produced uniformly
distributed numbers in a specified range. The probability of finding a packet in
error was determined from the length of the packet and the configured bit error
rate. Such a simple model provides reasonable error characteristics for low error
rates but becomes inaccurate as the reciprocal of the bit error rate approaches
the length of the packet. Since the error simulation was used both at the MH
and at the MSR, it affected the data traffic (traveling in one direction) as well
as the acknowledgments (traveling in the other).

Local area experiments

Figure 5 shows the comparison of I-TCP throughput with that of regular TCP
for data transfer between a fixed host (FH) and a mobile host (MH) for various

246 CHAPTER 8

"a
CD

O

C

o

1e-07 2e-07 5e-07 1e-06 2e-06
Bit error rate

5e-06 1e-05

F i g u r e 6 Wide area performance comparison with wireless losses

bit error rates (BER) when the FH is only a couple of ethernet hops away from
the wireless subnet. The comparison shows that I-TCP performs better than
regular TCP for error rates of up to 2 x 10~^. For excessive wireless losses that
characterize even higher error rates, the throughput of I-TCP and regular TCP
is about the same. The TCP implementations used by the FH, as well as those
used by the MSR and the MH in our experiments did not have the fast retrans
mit and fast recovery mechanisms recently proposed [14]. Also, the minimum
TCP retransmission timeout was 500 msec, even for the wireless link, which
does not allow early detection of lost segments. In such circumstances, there is
not much difference between retransmitting lost segments from the MSR and
doing the same from the FH if the FH is only a couple of ethernet hops away.
Employing a TCP implementation (or a different transport protocol) for the
wireless part of I-TCP that uses smaller timeouts and selective acknowledg
ments, should further improve I-TCP performance over regular TCP.

Wide area experiments

Figure 6 shows the comparison of I-TCP throughput with that of regular TCP
when the communication between the FH and MH involved a long haul link. It

Indirect Transport Layer Protocols 247

can be seen that I-TCP throughput is about twice as much as that of regular
TCP for error rates of up to 5 x 10~^. Even for a BER as high as 10"^,
I-TCP performance is significantly better than regular TCP. The reasons for
this improvement are the same as we mentioned earlier in the context of wide
area mobility experiments viz. - i) faster recovery from wireless losses and ii)
aggregating effect at the MSR. The wide area experiments clearly show the
potential of performance improvement with I-TCP, Just like in the local area
experiments, further improvement in throughput should be possible if a better
version of TCP (or a separate protocol) is used for the wireless part of the
I-TCP connection.

6 ALTERNATIVES TO INDIRECT
PROTOCOLS

We first list some of the approaches that other researchers have taken to solve
mobility and wireless related problems that affect transport layer performance
in a mobile environment. We also describe some of the desirable features that
a transport protocol developed specially for mobile hosts should have.

6.1 Related Work

Thinwire protocols [10] and TCP header compression [13] can help in improving
the response time of interactive applications such as te lne t on low speed links.
However, these solutions do not deal with host mobility. Link layer retransmis
sion (LLR) can be used on error-prone wireless links to bring their error rate
on par with that on the wired networks but such an approach interferes with
the end-to-end retransmissions of TCP and does not always result in improved
performance [8]. Fast retransmission [14] coupled with modification of the TCP
software on the mobile hosts [7] solves only part of the problem because the
transmitting host still performs a slow start if more than one segment is lost per
window, thus limiting the effective throughput. A somewhat better approach
that uses retransmissions on the (last) wireless link was suggested in [2] which
falls somewhere between LLR and I-TCP. This approach has the advantage
that end-to-end semantics of TCP are unchanged. Such an approach however,
can help very little if the transmitting host on the fixed network times out while
the retransmission mechanism on the last link is trying to get a data packet to
the mobile host. This approach is also not very useful if the data is being sent
in the other direction i.e. from the mobile to a fixed host.

248 CHAPTER 8

Experiments with split TCP [24] have shown performance improvement over
regular TCP where smaller MTU is used over the wireless part of the split con
nection. A similar scheme to connect mobile hosts to the Internet using digital
cellular network has been described in [15]. This scheme has the advantage
that a transport layer handofF is not required every time a mobile switches cells
since the intermediate point of the split TCP connection is on a host within the
cellular telephone network that is connected to multiple cellular base stations.
Finally, modifications to TCP have been suggested [17], which act on mobility
information from the network layer to quickly recover from TCP congestion
recovery phase in case the congestion control was triggered by a move. This
approach has the drawback that the proposed modifications must be applied
to fixed hosts as well.

6.2 New Transport Protocols

One element that is almost universal in all the above approaches as well as
in the indirect protocols is backward compatibility with the existing transport
protocols such as TCP and UDP. Although desirable in an environment where
mobile hosts need to communicate with hosts on the wired network, backward
compatibility imposes restrictions on the extent to which a transport protocol
can be modified to take mobility and wireless effects into account. In this
subsection we explore how a transport protocol designed for internetworking
between mobile and fixed hosts would look like if backward compatibility was
not needed.

From our experience with transport protocols in a mobile wireless environment,
we believe that such protocols should support the following features:

1. Selective acknowledgments to deal with losses on the wireless link and to
minimize unnecessary retransmissions resulting from such losses. Reliable
data protocol (RDP) supports such ACKs and there is a proposal to include
selective ACKs in TCP as well.

2. Means to distinguish between losses on the wireless link and those on the
wired network or better still, to distinguish between losses due to errors
and those due to network congestion. This may be impossible to do if the
protocol relies entirely on the communicating endpoints for such notifica
tions; but can be accomplished easily by sending appropriate indications
from an intermediate router (e.g. MSR) to the transmitting host.

Indirect Transport Layer Protocols 249

3. Fast reaction to wireless losses and moves which may necessitate separate
retransmission timers for the wireless link. Applications should be allowed
to provide their own handlers for events such as loss of signal or moves.

4« Separate flow control on wired and wireless links since the loss character
istics of the two kinds of links are very different. It has been shown that
such a separation is desirable for high packet error probabilities [9].

5. Ability to adapt to wireless links with different characteristics that may be
found in different cells or by switching from an indoor wireless LAN (e.g.
WaveLan) to an outdoor cellular environment (e.g. CDPD).

6. For unreliable protocols that rely on the wired links being largely error
free, some kind of configurable reliability can be provided on the wireless
link.

The above list indicates that even a new transport protocol without the re
strictions of backward compatibility will need more support from the underly
ing networks (and intermediate routers) than is available from a network layer
based on IP. It is also clear that accurate indications of events such as wireless
errors and moves can only be provided by one or more routers in the part of
the internetwork that supports mobility, i.e. by the MSRs. Thus we can safely
predict that transport layer protocols built in future for mobile wireless com
puters will be indirect in some sense rather than end-to-end. This still leaves
us with many different choices for the point of indirection or the intermediate
point, which can either participate in the protocol as a fully empowered agent
of a mobile host as in I-TCP or simply as an advisory entity that provides
hints for improved performance. On one extreme, such an intermediary could
reside on every wireless base station (MSR); on the other, it could reside on a
designated router that is connected to the wired network as well as to multiple
base stations in a geographic region (e.g. an MDIS in CDPD network). In
the former case, a transport layer handoff or a transfer of state is potentially
needed on every move whereas in the latter a handoff may be needed only if the
mobile host crosses the boundary of a region. On the contrary, each MSR can
make the transport connections in its cell adapt to the prevailing conditions in
that cell in the former scheme which is more difficult to do in the latter.

7 CONCLUSION AND FUTURE WORK

We have described indirection or mediation by mobility support routers (MSRs),
as a robust approach to improve transport layer performance in a mobile wire-

250 CHAPTER 8

less environment. Our approach first confines the mobility related performance
problems to the wireless link and then attempts to alleviate such problems by
adapting transport layer protocols for the wireless link in a way that requires
no modifications to the hosts on the fixed network.

I-TCP [4], which is a TCP compatible indirect protocol, is particularly suited
for applications which are throughput intensive. Experiments with I-TCP on
our testbed showed greatly improved throughput in comparison to regular TCP
under simulated mobility conditions and wireless losses. The performance im
provement for wide-area connections was higher than for local-area connec
tions. We have ported some throughput intensive applications namely ftp and
chimera WWW browser to use I-TCP for data transfer and observed per
formance improvements similar to those reported in section 5 for the ttcp
benchmark. We have also employed RDP/UDP indirect protocol which is suit
able for request-response style of communication, for our M-RPC system [6].
This protocol uses RDP for increased reliability on error-prone wireless link.
We believe that indirection will provide the bridge between the very different
worlds of mobile wireless computing and wired networks.

We are planning to build a flexible and lightweight transport protocol for the
wireless side of I-TCP which can adapt to changes in the wireless environment
and can support voluntary disconnections. I-TCP library at the MH can also
be used to place transport layer filters [25] for indirect connections at the MSR.
I-TCP handoffs allow such filters to move to the new MSR if the MH switches
cells thus obviating the need for the MH to reestablish the filters in the new
cell. Presentation layer services can be built on top of indirect transport layer
which will allow mobile applications to dynamically choose a format for data
transmitted over the wireless medium.

Acknow^ledgments

We are thankful to Darrell Long (UC, Santa Cruz) for allowing us to use one of
the UCSC machines for our experiments with wide area connections. We would
also like to thank Dan Duchamp and John loannidis of Columbia University for
providing us with the source code of Columbia's Mobile-IP implementation and
Craig Partridge of BBN Inc. for providing us with RDP sources. The Wave-
Lan driver for Mach used in our experiments was originally written by Anders
Klemets and was adapted for our network configuration by Girish Welling.

Indirect Transport Layer Protocols 251

REFERENCES

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian and
M. Young, "Mach: a new kernel foundation for UNIX development", Proc.
of the USENIX 1986 Summer Conference, July 1986.

[2] E. Amir, H. Balakrishnan, S. Seshan and R. Katz, "Efficient TCP over
networks with wireless links", Proc. of Fifth Workshop on Hot Topics in
Operating Systems (HoTOS-V), May 1995.

[3] B.R. Badrinath, A. Bakre, T. Imielinski and R. Marantz, "Handling Mobile
Clients: A Case for Indirect Interaction", 4th Workshop on Workstation
Operating Systems (WWOS-IV), Oct. 1993.

[4] A. Bakre and B.R. Badrinath, "I-TCP: Indirect TCP for mobile hosts",
Proc. of the 15th Intl. Conf. on Distributed Computing Systems, May 1995.

[5] A. Bakre and B.R. Badrinath, "Handoff and system support for indirect
TCP/IP" , Proc. of the 2nd USENIX Symposium on Mobile and Location-
Independent Computing, April 1995.

[6] A. Bakre and B.R. Badrinath, "M-RPC: A remote procedure call service
for mobile clients" To appear in Proc. of the 1st ACM Conf. on Mobile
Computing and Networking, Nov. 1995.

[7] R. Caceres and L. Iftode, "The Effects of Mobility on Reliable Transport
Protocols", Proc. of the 14th Intl. Conf. on Distributed Computing Sys
tems, pp. 12-20, June 1994.

[8] A. DeSimone, M.C. Chuah and O.C. Yue, "Throughput performance of
transport-layer protocols over wireless LANs", Proc. of Globecom ^93, Dec.
1993.

[9] S.W. Edge, "Comparison of the hop-by-hop and endpoint approaches to
network interconnection". In Flow Control in Computer Networks, J.-L.
Grange and M. Gien eds., pp. 359-377, North Holland, 1979.

[10] D.J. Farber, G.S. Delp and T.M. Conte, "A Thinwire protocol for con
necting personal computers to the Internet", RFC 914, Sept. 1984.

[11] J. loannidis, D. Duchamp and G.Q. Maguire, "IP-based protocols for
mobile internetworking", Proc. of ACM SIGCOMM, pp. 235-245, Sept.
1991.

[12] V. Jacobson, "Congestion avoidance and control", Proc. of ACM SIG
COMM, pp. 314-329, August 1988.

252 CHAPTER 8

[13] V, Jacobson, "Compressing TCP/IP headers for low-speed serial links",
RFC 1144, Feb. 1990.

[14] V. Jacobson, R. Braden and D. Borman, "TCP extensions for high per
formance", RFC 1323, May 1992.

[15] M. Kojo, K. Raatikainen and T. Alanko, "Connecting mobile worksta
tions to the Internet over a digital cellular telephone network", Mobidata
Workshop on Mobile and Wireless Information Systems, Nov. 1994.

[16] S.J. Leffler, M.K. McKusick, M.J. Karels and J.S. Quarterman, "The de
sign and implementation of the 4.3BSD UNIX Operating System", Addi
son Wesley, 1989.

[17] P. Manzoni, D. Ghosal and G. Serazzi, "Impact of mobility on TCP/IP: an
integrated performance study", To appear in the IEEE Journal on Selected
Areas in Communications, 1995.

[18] J. Nagle, "Congestion control in IP/TCP Internetworks", RFC 896, Jan.
1984.

[19] J. Postel, "User datagram protocol", RFC 768, August 1980.

[20] J. Postel, "Transmission control protocol", RFC 793, Sept. 1981.

[21] Y. Rekhter and C. Perkins, "Optimal routing for mobile hosts using IP's
loose source route option", Internet Draft, Oct. 1992.

[22] D. Velten, R. Hinden and J. Sax, "Reliable data protocol", RFC 908, July
1984.

[23] H. Wada, T. Yozawa, T. Ohnishi and Y. Tanaka, "Mobile computing en
vironment based on internet packet forwarding", Proc. of the USENIX
Winter Technical Conference, Jan. 1993.

[24] R. Yavatkar and N. Bhagwat, "Improving end-to-end performance of TCP
over mobile internetworks", IEEE Workshop on Mobile Computing, Dec.
1994.

[25] B. Zenel and D. Duchamp, "Intelligent communication filtering for lim
ited bandwidth environments", Proc. of Fifth Workshop on Hot Topics in
Operating Systems (HoTOS-V), May 1995.

9
CONNECTING MOBILE

WORKSTATIONS TO THE
INTERNET OVER A DIGITAL

CELLULAR TELEPHONE
NETWORK

Markku Kojo, Kimmo Raatikainen
and Timo Alanko

Department of Computer Science, University of Helsinki

P. O. Box 26 (Teollisuuskatu 23)

FIN-OOOI4. University of Helsinki, Finland

ABSTRACT

Modern portable computers and wireless connections over a cellular telephone network
have created a new platform for distributed information processing. We present a
communication architecture framework which makes it possible to exploit the existing
TCP/ IP communication architecture but which also takes into account the specific
features of wireless links. Our communication architecture is based on the principle
of indirect interaction. The mediating interceptor, Mobile-Connection Host, is the
bridge between the worlds of wireless and wireline communication. The interceptor
also provides enhanced functionality that improves fault-tolerance and performance
for applications aware of mobility. Prototypes of the architecture are implemented
both for the Unix (Linux) and for the Windows (3.11) platform.

1 INTRODUCTION

Recent developments in mobile communication and personal computer tech
nology have created a new platform for information processing. A modern
portable computer gives remarkable processing power always at hand for a no
madic user. A wireless connection gives access to information stores for the
user — independent of his or her present location.

254 CHAPTER 9

The computing environment we are interested in consists of a fixed data com
munication network, of portable laptop computers, and of a wireless access to
that network through a cellular telephone network. Examples of such cellu
lar networks include the Global System for Mobile Communications (GSM) [1]
and the Nordic Mobile Telephone (NMT) — a digital system and an analogue
system, respectively. Even in this new kind of environment it is still expected
that old applications are available. From the software engineering point of
view it would be desirable if all software which is sensitive to mobility could
be embedded in the data communication subsystem; in other words within the
physical, data link, and network layers. Such expectations are not completely
unjustified. Under favorable conditions a wireless telephone link behaves like a
link in a traditional Public Switched Telecommunications Network (PSTN). In
addition, the cellular telephone network can — if the user so wishes — hide the
user mobility. However, there are situations in which the differences between
wireline and wireless links should be taken into account. It is quite possible or
even probable that the existing software will work in this environment. How
ever, the existing software may behave in a way that the user finds disrupting
or even in a way that creates sheer catastrophes.

The realization of a mobile computing environment requires a communication
architecture which is not only compatible with the current architectures but
which also takes into account the specific features of mobility and wirelessness.
Current communication architectures, such as the TCP/IP Internet protocols,
are suitable for fast and reliable networks like the megabits per second LAN's.
In contrast, the wireless telephone links have a low throughput, only kilobits
per second, and a highly variable quality of transmission.

The cellular GSM telephone system offers a communication medium which
is rather reliable when used in the so called non-transparent mode: the bit
error rate is required to be less than 10~^ [2]. The price paid for the low
bit error rate is the occurrence of highly variable transmission delays. Our
performance results indicate that in favorable conditions the round-trip time is
about one second and bandwidth about 900 bytes per second but in unfavorable
conditions the delays can extend even to tens of seconds [3]. It should also be
remembered that the conditions may become so unfavorable that a mobile
telephone transmission path will be temporarily broken.

The main goals in the Mowgli^ project are 1) to examine the behavior of data
communication over cellular telephone links and 2) to develop architectural
solutions to overcome difficulties typical for this kind of mobile wireless envi-

^ Mobile Office Workstations using GSM Links.

Connecting Mobile Workstations to the Internet Using GSM 255

ronment. In this paper we introduce a communication architecture framework
which builds a bridge between the wireline and wireless worlds. The main
design goals in our approach are the following:

1. to retain the TCP/IP-based communication architecture unmodified at
existing hosts of the fixed network so that neither the existing network
applications nor the protocol software on fixed hosts need to be modified,

2. to provide an application programming interface which allows an easy de
velopment of new mobile client applications in a way that they are able to
cooperate with existing services on fixed hosts,

3. to minimize the traffic over the wireless link and to improve fault tolerance
and performance, and

4. to be able to conform with the work in progress on the Mobile IP standard
[4].

These goals cannot be achieved at any single architectural level. Instead, we
must consider several design issues at all architectural levels — from the data
link layer up to the application layer. The most vital point of interest is the
fixed-network node to which the mobile node is connected during a (GSM-)
session. This mediating node has a "Janus-like" functionality. On one side it
is vis-a-vis with a fragile and low-performing wireless network. On the other
side it is part of a reliable and high-performance world-wide network which is
robust and well-established in its functionality.

In a distributed application it would be reasonable to implement the communi
cation between the mobile part and the fixed part using two distinct subsystems.
The mediating node is a natural place for splitting the end-to-end communi
cation into two halves. For example, this node can act as a gateway which
connects two different communication protocols, each of which is suited for the
underlying communication medium. Similar ideas of splitting the end-to-end
TCP connection are recently presented in [5, 6, 7]. In addition, the mediating
node can be used to offer more sophisticated services to the higher layers of the
communication system.

As an application programming interface (API) we provide two socket interfaces
depending on the platform used on the mobile node. The interfaces are down
wards compatible with the Berkeley sockets [8, pp. 335-363] and the Windows
Sockets [9], respectively. Hence, our API provides the functionality of reliable
stream connections and of connectionless datagram delivery. In addition, our

256 CHAPTER 9

approach provides to application programmers a possibility to implement en
hanced functionality needed by users who are aware of the impacts of mobility
and wireless communication on their computation.

The rest of the paper is organized as follows. In Section 2 we discuss the work
in progress on mobility support for TCP/IP networking. We also relate the
TCP/IP protocols to some problems of wireless links. In Section 3 we outline a
socket-level solution based on the use of a mediating node between the wireline
world and the wireless world. We also summarize the current (July 1995)
status of implementation. In Section 4 we describe enhanced functionality in
our architecture.

2 MOBILE NODES AND TCP/IP
PROTOCOLS

The general structure of a distributed system with Mobile Nodes using GSM
links is the basis for Figure 1. When a Mobile Node (MN) wants to be attached
to a fixed TCP/IP network, it makes a GSM call to a fixed node which is able
to provide that connection. In our model the mediating dial-in server is called
the Mobile-Connection Host (MCH). The task of the MCH is to deliver packets
to and from the Mobile Node.

2.1 Mobile IP Routing

The cellular telephone network is a straightforward way to solve the mobility
problem. Using a mobile telephone an end user can always make a direct call
to an MCH at the home network. This MCH acts as a dial-up IP router. IP
datagrams are transmitted over the wireless link by encapsulating them within
the Serial Line Internet Protocol (SLIP) [10] or the Point-to-Point Protocol
(ppp) [11].

However, if the user happens to be far away from the home network, it may
be economically more attractive to use an alternative solution. In this case
the user chooses the closest available MCH in the fixed data communication
network and dials in to this MCH. Through the MCH the Mobile Node then has
a connection to any desired node within the internet. This variant has to make
use of the Mobile IP techniques to manage the routing of the IP datagrams to
the Mobile Node.

Connecting Mobile Workstations to the Internet Using GSM 257

MNACIPaddr: 193.8.48.2)

[AppllcatiorT)

(Socket)
• Port 21

W
MN B (IP addr: 194.2.10.4)

[Application)

C Socket 1
1 Port 21

[3

Mobile-Connection Host (router; includes FA function)
Rniifing lahlp. / Visitor Ikt

net / host jroute to addr
193.8.48.2 I ...
194.2.10.4 ! ...

default GW! 128.214.5.2

Mobile IIP

SLIP/PPP SLIP/PPP LAN!
Interface

[AppllcatlonJ

C Socket)

ITCP/UPP 1

{Network
Interface

X
Rduter

n I 128.214.48.1 I •<- f f c F "kl I., .-.ddr l9^8.4H.2.p..ft 21 I «* •;

128.214.5.21 •

Home Network V
of MNA
193.8.48.0

193.8.48.10
HA

A 1 L .

r*"
Router!

- — h - - ' .

F i g u r e 1 Routing IP datagrams to a Mobile Node

The proposed Mobile IP standard [4] specifies protocol enhancements which al
low transparent routing of IP datagrams to Mobile Nodes in the Internet. The
key components in the proposed standard are the Home Agent (HA) located
at the home network of the Mobile Node and the Foreign Agent (FA) located
at the network to which the Mobile Node is connected. When a Mobile Node
attaches to a foreign network, it first finds a locally reachable Foreign Agent.
Then the Mobile Node registers its current location with the Home Agent. The
registration occurs through the Foreign Agent, which forwards the registration
to the Home Agent. After a successful registration the Home Agent intercepts
all packets addressed to the Mobile Node, encapsulates them, and tunnels them
to the Foreign Agent. The Foreign Agent decapsulates the packets and delivers
them to the Mobile Node. Outbound IP datagrams from the Mobile Node are
delivered to their destination by using the standard IP routing. Thus, applica
tions on the Mobile Node can communicate with the rest of the Internet as if
the Mobile Node were connected to its home network. In our architecture the
Foreign Agent function is provided by the MCH to which the Mobile Node dials
in. After the dial-up connection to the MCH is set up, the cellular telephone
system hides all further mobility of the Mobile Node.

258 CHAPTER 9

As described above, the Mobile IP routing and the cellular telephone system
can be used to solve the mobility problem. However, neither of them is able
to solve the problems related to the behavior of the wireless data link: high
variability in the transmission delays, which can sometimes be very long, and
occasional temporary disruptions of the transmission service.

2.2 Problems in Using TCP/IP over Wireless
Links

Due to the different nature of the wireline and wireless behavior, there are
several drawbacks to a straightforward adoption of a cellular telephone system
and the Mobile IP routing support. Firstly, there is network traffic which is
unnecessary for the Mobile Node but which will be delivered over the slow
wireless link if not explicitly filtered by the MCH. There is also unnecessary
TCP/IP protocol header information exchanged over this link. Of course, the
header information of TCP connections can be reduced by using the technique
proposed by Van Jacobson [12]. This technique can be used with the SLIP
framing protocol called CSLIP. The PPP protocol also supports compression
of TCP and IP headers. However, reducing the header information of UDP
datagrams is not supported.

Secondly, most of the traditional network applications such as FTP and mail
exchange (e.g., SMTP [13]) use TCP, which is an end-to-end protocol. There
fore, all retransmissions, also those due to packets lost on the path between
the MCH and the peer host in the fixed net, will cross the slow wireless link.
Furthermore, link-level recovery from bursty errors may cause delays that are
long enough for the TCP timers to trigger a packet retransmission. This can
result in two kinds of undesirable behavior: 1) The slow wireless link has to
transmit all the resent packets even though no packets were actually lost but
only delayed. 2) The fixed network has the extra burden of transporting all
the packets from the fixed host via the Home Agent to the MCH. It should
also be noted that the reasonable packet sizes on wireline and wireless links are
different.

In addition to excess data delivery, there are performance problems due to
the congestion control policy of TCP [14]. If the retransmission timer goes off
indicating a packet loss, the TCP sender reacts as if the reason were congestion
somewhere on the route. Hence, after each timeout the TCP sender slows down
its transmission rate through doubling the retransmission timeout value and
through decreasing the transmission window. Thus, a temporary disruption on

Connecting Mobile Workstations to the Internet Using GSM 259

the wireless link rapidly leads to long response times. Furthermore, the slow-
start algorithm used by TCP is rather conservative in restoring the efficient
operational transmission rate [15]. However, after the disappearance of the
distortion, the wireless link is immediately capable of working at full speed.

Finally, the wireless link can cause serious problems for existing applications
which depend on TCP. These problems arise when the behavior of the wireless
link causes a TCP connection to break down: few applications are sophisticated
enough to continue the interrupted activity. For example, a file transfer may
have to be restarted from the beginning. An unnecessary break-down of the
TCP connection can occur in a couple of cases. When the wireless link between
the Mobile Node and the MCH breaks, many TCP/IP implementations react
by terminating the end-to-end TCP connection once and for all. Even if the
break-down of the wireless link would not directly cause termination of the TCP
connection, the re-establishment of the dial-up connection can take a very long
time causing the TCP sender to terminate the TCP connection after several
retries. Exceptionally long delays on wireless links can have the same effect:
after several retransmissions the TCP sender believes that a data link is broken
and terminates the TCP connection. In principle, it is possible to reconfigure or
dynamically adjust the TCP timeout or counter that is used to decide how long
to retransmit an unacknowledged packet before terminating the connection.
However, hardly any implementation of TCP allows a reconfiguration of the
TCP timeout for maximum retransmits, not to mention a dynamic adjustment.

Even if it were possible to readjust the retransmission timeout, it is well known
that finding a suitable timeout value is difficult. If the wireless link is broken
and the timeout period is long, all pending packets from the fixed host to the
Mobile Node will be retransmitted for a long time. This will inevitably cause
excess load in the fixed network and in the MCH. However, the most serious
aspect is that timeouts should be adjusted at both ends of the connection.
This implies that the fixed node would need to know that it is dealing with a
Mobile Node. Hence, the TCP protocol software on any fixed node willing to
communicate with Mobile Nodes would have to be modified.

3 THE MOWGLI COMMUNICATION
ARCHITECTURE

The Mowgli communication architecture is designed to increase the usability,
reliability, and efficiency of client-server communication between a Mobile Node

260 CHAPTER 9

and a fixed host. In the Mowgli architecture the basic idea is to split the chan
nel with an end-to-end control into two parts with a store-and-forward -type
interceptor. This interceptor, the Mobile-Connection Host, allows us to imple
ment two separate but flexibly cooperating data communication subsystems:
one wireline oriented, the other wireless oriented. Therefore, we can retain the
existing TCP/IP-based communication infrastructure of the fixed network but
we can also implement special purpose protocols for the wireless link. The in
terceptor also makes it possible to implement enhanced functionality on higher
levels.

3.1 The Socket Abstraction and TCP/IP
Protocols

A socket interface is widely used as the interface between application programs
and communication protocols. Nowadays, most of the traditional TCP/IP
Internet applications use TCP/IP protocols through some version of socket
API.

When a socket abstraction is used for interprocess communication, data is
exchanged between a pair of sockets bound to the underlying protocol. A
socket interface defines functions needed to address a peer socket, create and
close connections, as well as to send and receive data according the scheme
defined by the underlying protocol. TCP/IP protocols define a communication
endpoint, a half association, to consist of a 3-tuple: 1) an IP address, 2) a port
number, and 3) a protocol (TCP or UDP). In order to accept incoming TCP
connection requests or to receive UDP datagrams from a socket the application
program must bind a local communication endpoint to the socket. In order
to create a TCP connection or to send a UDP datagram from the socket to a
foreign destination the program has to supply the communication endpoint of
the desired destination so that a full association can be assigned to the socket.
The full association is defined as a 5-tuple which consists of the half associations
of the involved ends (see Figure 2).

3.2 Mowgli Sockets

The application programming interface off'ered in our communication architec
ture is based on the socket abstraction. The socket interface called Mowgli
sockets enables application programs on a Mobile Node to use TCP/IP-based

Connecting Mobile Workstations to the Internet Using GSM 261

r ApplicationV

(socket J

, TOQrt 1Q5Q,
I TCPI ' U D P I
I ^ P - ' I

IP address;
193.8.48.2

Network
llnterface

T

_As_spcLatlpn
I Protocol: TCP
I Local addr: 193.8.48.2
I Local port: 1050
I Foreign addr:128.5.4.2
! Foreign port: 21

f Application!

(socket)
4 port 21

I TCPA UDP I

I :ip I
Network
Interface

'•5>l source: p 93.8.48.2,1050; dest: 128.5.4.2, 2lJTC^ '
IP address:
128.5.4.2

\'

Mobile Node

[Application J

f Mowgli 1

Figure 2 An association assigned to a T C P socket

Fixed Net

Mobile-Connection Host

TCP/UDP

Fixed Host

f Application

J 1 (Socket

• 1 TCP/UDP 1

1 î 1
1 r^

Figure 3 General view of the Mowgli socket approach

services which are available on fixed hosts although the TCP/IP protocols are
not used on the wireless link between the Mobile Node and the MCH. The
Mowgli socket interface is implemented in such a way that it provides the same
functionality as the original stream sockets and datagram sockets, i.e. sockets
for TCP and UDP protocols, respectively. Thus, applications on a Mobile Node
can use TCP/IP sockets for communication but the TCP/ IP stack is actually
running on the MCH as exemplified in Figure 3. This is achieved by using the
MCH as a socket-level gateway.

262 CHAPTER 9

As a result, an application program on a Mobile Node can communicate through
the Mowgli socket interface with the rest of the TCP/IP Internet by sending
and receiving data exactly in the same way as it would do when connected
directly to the Internet. The application program at the other end is unaware
of the modifications that have been made to transfer data over the wireless link.
This approach works well when all traffic to and from a Mobile Node traverses
through an MCH as it does when wireless point-to-point link is used to connect
the Mobile Node to the Internet.

When TCP is used as the transport level service, a reliable byte stream be
tween the fixed host and the MCH is achieved as a result of standard TCP
functionality. The implementation of Mowgli sockets preserves the reliabiUty
between the MCH and the Mobile Node.

3.3 Implementation Overview

An implementation outline of the MowgU sockets is given in Figure 4. When
a Mobile Node dials in to an MCH, the MCH creates a new virtual network
interface and assigns the IP address of the Mobile Node to that interface. Then
it creates a proxy that will act as the mediating agent for the Mobile Node. If
the Mobile IP routing is used, the MCH registers with the Home Agent of the
Mobile Node. The Home Agent tunnels IP datagrams destined for the Mobile
Node to the Foreign Agent on the MCH as proposed in the Mobile IP draft.
In this way a mobile user can dial in to an MCH which is not located at the
user's home network.

For each Mowgli socket, created by an application program on the Mobile Node,
the proxy creates a corresponding socket that will be bound to the virtual
network interface having the IP address of the Mobile Node. When an IP
datagram addressed to the Mobile Node arrives at the MCH, the Foreign Agent
does not deliver it directly to the Mobile Node as it does in a straightforward
Mobile IP implementation (see Figure 1). Instead, all IP datagrams addressed
to the Mobile Node which arrive at the MCH are passed all the way up through
the TCP/IP protocol stack to the corresponding socket in our approach.

The proxy is responsible for receiving data from the socket and transmitting the
data over the wireless link to the Mowgli socket on the Mobile Node. Special
purpose protocols are used to transmit the data over the wireless medium.
The application on the Mobile Node receives the data from the Mowgli socket.
Similarly, data sent from the Mobile Node through the Mowgli socket is first

Connecting Mobile Workstations to the Internet Using GSM 263

Mobile Node(193.8.48.2)

r Application]

fMowgli Socket] ^
Mowgll Socket
Protocol (MSP)
, MowgliData
K^hannel Service

(MDCS)

Fixed Net

Mobile-Connection Host

F i g u r e 4 Implementation outline of the Mowgli sockets

transferred to the proxy on the MCH. The proxy then sends the data through
the "traditional" socket on behalf of the application program on the Mobile
Node. The outbound packets which carry user data originating from the Mobile
Node will contain the IP address of the Mobile Node as their source address, i.e.
the address assigned to the corresponding virtual network interface. Thus, the
peer somewhere on the fixed network receives the data as if it were directly sent
by the application program on the Mobile Node. Although the data traverses
through the higher layers at the MCH, there is no significant performance
degradation because the slow wireless link still remains the bottleneck.

The proxy has two basic responsibilities. The first one is to redirect data
between the sockets used by applications on a Mobile Node and on a fixed
host. The second one is to perform the necessary socket operations on behalf
of the application on the Mobile Node. The Mowgli Socket Protocol (MSP)
is designed to take care of these responsibilities. The MSP carries the control
information between the Mobile Node and the MCH so that socket operations
requested by the application on the Mobile Node can be invoked in the MCH.
The MSP also carries the user data associated with the Mowgli sockets.

In order to support concurrent TCP connections several logical connections
must be multiplexed over the wireless link. The Mowgli Data Channel Ser
vice (MDCS) provides logically independent communication channels over the
wireless link. Each of these channels has its own flow control and priority.
Furthermore, the MDCS provides two types of data channels: stream channels
and message channels. Thus, the functionality of the TCP and UDP protocols
is easy to implement.

264 CHAPTER 9

The Mowgli Data Channel Protocol (MDCP) controls the delivery of data over
the channels. The MDCP protocol is specially designed for data transmission
over a slow wireless point-to-point link. It is a light-weight protocol: only
minimal amount of protocol overhead is involved and special attention is paid
to take into account the long latency of the cellular telephone links.

As the wireless medium itself is rather unreliable, a reliable link-level protocol
is typically needed. The high reliability of the GSM data transmission in the
non-transparent mode is achieved by running the Radio Link Protocol over the
wireless link. Thus, the primary objective of the MDCP protocol in GSM envi
ronment is to take care of the recovery from link level disconnections. Although
the MDCP protocol is designed for a GSM link in the first place, any existing
link level protocol or a protocol specially designed for a wireless link can be
used. More details about Mowgli protocols and their implementation can be
found in [16].

We have implemented a prototype of our architecture on a Unix^ (Linux) plat
form. The software for Mobile Nodes is also implemented on a Windows^ (3.11)
platform. The basic functionality of the architecture was relatively straightfor
ward to implement. In many Unix versions no kernel-level modifications should
be needed on implementing the MCH software. Yet, a more convenient solution
can be implemented with minor kernel-level modifications in conjunction with
a Mobile IP implementation. However, the Mobile IP routing need not to be
supported if the Mobile Nodes always dial in to MCHs located at their home
networks.

Since we have not integrated the Mobile IP routing in our prototype, all the
functions needed on the MCH are implemented as user-level software. The
only exception is the virtual network interface which is based on an existing
extension of the loopback network driver for Linux. The MSP protocol is
embedded in the code of the proxy. The MDCP protocol is implemented as
a user-level process. Similarly, on the Linux platform most software for the
Mobile Node is implemented as user-level software. The operations of the
MSP protocol are implemented in a user-level agent, which cooperates with
the socket layer. About 500 lines of C were inserted into the Linux kernel so
that the existing socket layer can interact with the MSP agent. On the Windows
platform software for the Mobile Node is implemented as a dynamic-link library
(DLL).

'^UNIX is a registered trademark in the U.S. and other countries Hcensed exclusively
through X/Open Company, Ltd.

^Windows is trademark of Microsoft Corporation.

Connecting Mobile Workstations to the Internet Using GSM 265

4 E N H A N C E D F U N C T I O N A L I T Y F O R
MOBILITY

In addition to the implementation of basic functionality in the Mowgli sock
ets, the proxy (and the agent on the Mobile Node) can perform enhanced
operations for the Mobile Node. The enhanced functionality provided by the
proxy and the agent can be used to reduce the amount of traffic and to control
the operations crossing the slow and vulnerable wireless link. Typical exam
ples include fault-tolerant transfer of long files, remote control of complicated
data-base operations, and processing of replicated information. However, any
action taken by the proxy must be either explicitly or implicitly agreed with the
Mobile Node. The control over the enhanced functionality is achieved by using
application-level parameters for quality of service and by adding new opera
tions to the Mowgli socket interface. A more detailed description of enhanced
functionality in the Mowgli communication architecture can be found in [16].

4.1 Improving Quality of Service

In a mobile environment the most important quality-of-service attributes at the
application level are those related to reliability and performance. The functions
intended for improving the quality of service can be roughly classified into
two groups. The first group belongs to the general infrastructure of platforms
aware of mobility. They exist to hide the eff'ects of mobility. In terms of
the ODP Reference Model [17] these functions implement essential distribution
transparencies such as the location transparency and the failure transparency.
The second group is a collection of functions for supporting mobility. They can
be used to design enhanced application-level functionality, to help the user,
either explicitly or implicitly, and to cope with problems of mobility. Using the
basic functions the application programmer can create compound functions
needed for the specific application.

The first group includes basic functions needed especially when old client-server
applications are used in a mobile environment without any modifications. En
hanced functions which are general enough to help any type of communication
are needed. For example, the wireless dial-up connection can be automatically
established when needed or can be re-established after an unexpected discon
nection. Similarly, the dial-up connection can on an idle wireless link can be
automatically torn down after a predefined timeout and re-established when
new data arrives to be delivered across the link. Furthermore, if the wire-

266 CHAPTER 9

less connection is temporarily broken, the pro^y can receive and store data for
delayed transmission to the Mobile Node.

The second group provides functions which are more application oriented. Typ
ical operations may include name-service functions modified to take mobility
into account, fault-tolerant transfer of data, and control functions for remote
and group operations. These operations can have attributes related to the
application-level quality of service. For example, the generic MSP agent and
the proxy can be replaced with a customized agent-proxy pair to improve the
performance of some application-level protocols over the wireless link. The
agent and the proxy can use a more sophisticated version of the application
protocol to reduce the amount of data exchanged between the Mobile Node
and the MCH. As an example case, we have implemented an application spe
cific agent-proxy pair for the World-Wide Web (HTTP) [18].

4.2 Implementation of the Enhanced
Functionality in the Mowgli Sockets

The Mowgli communication architecture in Mobile Nodes is shown in Figure 5.
One of the basic ideas is to use a virtual layer to select between different socket
implementations. Our virtual layer is called the Mowgli Socket Layer (MSL).

The objective of the Mowgli Socket Layer is to bind a socket to the appropriate
protocol stack according to the communication media in use and to hide the
slight differences between socket interfaces. The Mowgli sockets are used when
the Mobile Node is operating in a "mobile" mode. A "traditional" socket in
terface is used when the Mobile Node is operating in a "wired" mode. The user
data sent and received through Mowgli sockets is delivered either by a generic
agent or by a customized agent depending on the values of the attributes.

Mobile users can use a graphical user interface to set the values of quality-of-
service parameters. By setting suitable parameter values end users can adapt
proxies for existing applications which use the traditional BSD or Windows
sockets. Particularly, parameter values can be prespecified for the well-known
ports used by common applications. In this way the user can, for example,
choose an appropriate agent-proxy pair for the application, and can request a
service that establishes the dial-up connection without user involvement.

Sometimes new (client) application programs specially designed for Mobile
Nodes are needed to improve the usability of applications in a mobile com-

Connecting Mobile Workstations to the Internet Using GSM 267

BSDSocket [^^) I lo^^ (^D (2 ^

TCP/UDP

IP

LAN
interface
(802....)

(C)SUP PPP

Mowgli Data Channel Protocol (MDCP)

Mowgli Wireless Link Protocol (MWLP),
modified PPP. or other suitable protocol

(Wireless) Serial Line Link Interface

The Scope of Mowgli
Communication Architecture

Figure 5 An overview of the implementation on a Mobile Node

munication environment. When new client programs for Mobile Nodes are
implemented, the functionality of customized agent can be integrated into the
client software. These applications can directly use the channels provided by
the Mowgli Data Channel Service. Application programmers have a new type
of socket called Mowgli DC-socket as an application programming interface to
the MDCS. The same interface is also used when customized agents and proxies
for existing applications are implemented.

Enhanced operations specified in the MDCS are especially intended for accom
modating the indirect interaction model of communication. The operations
can be used when new kinds of "compound" client programs are implemented.
In such a "compound" program the client on the Mobile Node and the spe
cialized proxy on the MCH are closely combined together. Together the client
and proxy act as a client of an existing fixed server. Therefore, most of the
communication with the server can be done by the proxy. Furthermore, the
application on the Mobile Node can directly control the operations over the
wireless link.

As an example we can take distributed transaction processing with the client
on a Mobile Node. The mobile-node resident part of the application specifies a
particular transaction. This specification is then sent to the application-specific

268 CHAPTER 9

proxy in the MCH. The proxy takes over the responsibility for the transaction,
and the connection between the Mobile Node and the MCH can be terminated.
The client on the Mobile Node may later ask the proxy to give the results of
the transaction, or the proxy can call back to inform the client.

5 DISCUSSION

We have presented a communication architecture which builds a bridge be
tween the worlds of wireless and wireline communication. Our architecture
retains the TCP/IP-based communication architecture unmodified at existing
hosts of the fixed network so that neither the existing network applications nor
the protocol software on fixed hosts need to be modified. In addition, our ap
proach makes it possible to accommodate existing application protocols to the
mobile environment with help of application specific mediators. The applica
tion programming interface provides not only the functionality of the standard
TCP/IP socket interface but it also allows an easy development of new mobile
(client) applications which cooperate with existing services on fixed hosts.

We have paid particular attention to fault-tolerance and performance. Our im
plementation of the architecture removes the unnecessary traffic due to TCP/IP
from the wireless link. It also improves the quality of service at application level.
The bottom line in our architecture is to split the channel with an end-to-end
control into two parts with a store-and-forward -type interceptor. Communi
cation between a mobile client and a fixed server is based on a higher level
communication model of indirect client-server interaction. The model of indi
rect client-server interaction involves two separate interactions, which can be
handled in different ways, and a mediator between these two hops.

Acknowledgements

The authors are grateful for the fruitful discussions with Heimo Laamanen,
Marko Moilanen, and Henry Tirri. The Mowgli research project is supervised
by professor Martti Tienari and funded by Digital Equipment Corporation,
Nokia Mobile Phones, Nokia Telecommunications, Telecom Finland, and the
Finnish Ministry of Education.

Connecting Mobile Workstations to the Internet Using GSM 269

REFERENCES

[1

[2:

Rahnema, M., "Overview of the GSM System and Protocol Architecture,"
IEEE Communication Magazine 31(4), April 1993, pp. 92-100.

"Quality of Service," GSM specification 02.08, version 3.0.0., ETSI/TC
GSM, March 1990.

[3] Alanko, T., Kojo, M., Laamanen, H., Liljeberg, M., Moilanen, M., and
Raatikainen, K., "Measured Performance of Data Transmission Over Cel
lular Telephone Networks," Computer Communication Review 24(5), Oc
tober 1994, pp. 24-44.

[4] Perkins, C. (ed.), "IP Mobility Support," Internet Draft, IETF, March
1995.

[5] Badrinath, B. R., Bakre, A., Imielinski, T. and Marantz, R., "Handling
Mobile Clients: A Case for Indirect Interaction," In Proc. of the 4th Work
shop on Workstation Operating Systems (WWOS-IV), Napa, Calif., 1993.

[6] Bakre, A. and Badrinath, B.R., "I-TCP: Indirect TCP for Mobile Hosts,"
In Proc. IEEE 15th International Conference on Distributed Computer
Systems, Vancouver, Canada, May 1995.

[7] Yavatkar, R. and Bhagawat, N., "Improving End-to-End Performance of
TCP over Mobile Internetworks," In Proc. IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, Calif., December 1994.

[8] Comer, D.E., "Internetworking With TCP/IP: Principles, Protocols, and
Architecture, 2nd Ed.," Prentice-Hall, 1991.

[9] Hall, M., Towfig, M., Arnold, G., Treawell, D., and Sanders, H., "Windows
Sockets: An Open Interface for Network Programming under Microsoft
Windows," Version 1.1, January 1993.

[10] Romkey, J., "A Nonstandard for Transmission of IP Datagrams over Serial
Lines: SLIP," Request for Comments 1055, Network Information Center,
June 1988.

[11] Simpson, W., "The Point-to-Point Protocol (PPP)," Request for Com
ments 1661, Network Information Center, July 1994.

[12] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed Serial Links,"
Request for Comments 1144, Network Information Center, February 1990.

270 CHAPTER 9

[13] Postel, J., "Simple Mail Transfer Protocol," Request for Comments 821,
Network Information Center, August 1982.

[14] Jacobson, V., "Congestion Avoidance and Control," In ACM SIG-
COMM'88 Symposium on Communications Architectures and Protocols,
Stanford, Calif., August 1988.

[15] Caceres, R. and Iftode, L., "Improving the Performance of Reliable Trans
port Protocols in Mobile Computing Environments," IEEE Journal on
Selected Areas in Communications, 1995.

[16] Kojo, M., Alanko, T., Liljeberg, M., and Raatikainen, K., "Enhanced Com
munication Services for Mobile TCP/IP Networking," Technical Report
C-1995-15, Univ. of Helsinki, Dept. of Computer Science, April 1995.

[17] "Draft Recommendation X.903: Basic Reference Model of Open Dis
tributed Processing - Part 3: Architecture," Draft ITU-T Recommenda
tion, ISO/IEC JTC1/SC21/WG7, March 1995.

[18] Liljeberg, M., Alanko, T., Kojo, M., Laamanen, H., and Raatikainen, K.,
"Optimizing World-Wide Web for Weakly Connected Mobile Worksta
tions: An Indirect Approach," In Proc. of 2nd Int. Workshop on Services in
Distributed and Networked Environments, Whistler, Canada, June 1995.

10
ASYNCHRONOUS VIDEO:

COORDINATED VIDEO CODING
AND TRANSPORT FOR

HETEROGENEOUS NETWORKS
WITH WIRELESS ACCESS

Johna than M. Reason, Louis C. Yun,
Allen Y. Lao, and David G. Messerschmitt

Electrical Engineering Division, Department of EECS
University of California, Berkeley, California 94720

USA

ABSTRACT

Wireless access to continuous-media services such as video, voice, and audio is becom
ing increasingly prevalent. Interactive video services such as video conferencing and
multimedia editing are two such services of particular interest. We discuss some of
the problems with using the MPEG standard (which was designed for wired, circuit-
switched services) for wireless packet-video transport in a mobile environment. We
propose a novel strategy for video transport using a layered source coder in conjunc
tion with a variable QOS, multiple-substream abstraction for the transport. This
abstraction addresses specifically the need to obtain simultaneously high spectral effi
ciency, good subjective quality, and low perceptual delay on a wireless channel. It also
addresses the heterogeneous transport resulting from the concatenation of a wireless
access link with a broad-band backbone network.

We use asynchronous video (ASV) reconstruction, running counter to current tech
niques, which use strictly synchronous (frame-by-frame) video processing. By doing
so, we hope to achieve a perceptual delay that is much lower than the worst-case
transport delay. By perceptual delay, we refer to the effective end-to-end latency ob
served by the user, for example as represented by the audio delay required to maintain
lip synchronization. By identifying packets to the transport with relaxed reliability
and/or delay requirements, the transport (particularly wireless) can achieve high traf-

Copyright ©1995 by IEEE. Reprinted, with permission, from Proceedings of the Work
shop on Mobile Computing Systems and Applications.

272 CHAPTER 10

fie capacity. Reasonable and promising simulation results are achieved, although much
work remains on achieving significant video compression in this environment.

1 INTRODUCTION

Wireless access to wired backbone networks will be a common model for the
future, resulting in a heterogeneous network infrastructure. Typically the wire
less access will be the bottleneck for such a heterogeneous network, due to its
scant bandwidth allocation, propagation impairments (e.g., multipath fading),
and interference. Thus, our focus in this research is the provision of video ser
vices over this heterogeneous network, with emphasis on the issues raised by
the wireless access.

In continuous-media (CM) services such as video, the only meaningful crite
rion for evaluation of the service quality is the subjective quality. The primary
subjective impairments will be time jitter, latency or delay, and artifacts in
troduced by loss mechanisms in the compression and the transport. Another
important consideration will be cost, as represented in part by the traffic ca
pacity consumed for the service, particularly on the wireless access link.

In this mix of issues, we believe that delay has been largely overlooked. For
interactive applications such as video conferencing and multimedia editing, low
delay is crucial to user acceptance, and yet current trends run directly counter
to achieving low delay. Existing examples of wireless audio/voice access, such
as digital cellular, use transcoders (conversions from one audio compression
standard to another) in the basestation, which add significant delay. A similar
approach for video would have the same problem. On variable-delay trans
port, typical of packet/cell networks, existing video compression algorithms
synchronously reconstruct video frames, implying a delay that includes the
worst-case transport delay plus any compression/decompression delay.

A primary goal of this research is to minimize the perceptual delay for video
transport. By perceptual delay, we mean the delay perceived by the user,
for example as would be indicated by the audio delay required to achieve lip
synchronization in a video conferencing application. We reduce this perceptual
delay by two related techniques. First, we code the video in such a way that
transcoders are not required within the network; that is, we transport the
video transparently from network edge to edge. Second, we do this in such a

Asynchronous Video 273

fashion that the perceptual delay is less than the transport worst-case delay
plus compression/decompression delay.

The second objective is achieved by reconstructing the video presentation at
the receiver asynchronously. That is, we identify information within the video
that can be delayed from its original frame to later frames, without significant
artifacts being introduced. For example, information elements in areas of the
screen with low motion are more tolerant to delay than areas of high motion. As
another example, the high-resolution information in areas with little motion can
be delayed relative to the low-resolution information. (This is closely related to
the well-known technique of progressive image transmission.) When the video
is asynchronously reconstructed, there is no longer a clear objective definition
of delay, but rather we have to rely on the vague notion of perceptual delay, a
quantity that can be determined only by subjective testing.

Decoupling perceptual delay from worst-case transport delay leads to another
opportunity. By allowing the worst-case transport delay to increase (without
affecting perceptual delay), we can actually increase the network traffic capac
ity. This will be particularly advantageous on wireless access links.

2 MPEG AND MOBILE CHANNELS

Given the tremendous volume of activity by the MPEG committee in establish
ing a video compression standard, the burning question may be, why not use
MPEG? In fact, with a compression ratio of about 100:1, MPEG may at first
glance seem ideal for networks with bandlimited wireless links. In a wireless
link, however, bandwidth is not the only scarce resource: high reliability is also
costly to provide. MPEG was originally designed with storage applications in
mind, and as a consequence is relatively intolerant of errors. It is this error sen
sitivity, coupled with the need for synchronous reconstruction at the decoder,
that creates difficulties when we attempt to use MPEG for wireless access.

To quantify these effects, we consider how a heterogeneous network with wire
less access may attempt to support MPEG. MPEG bit error rate (BER) re
quirements are in the range of 10~^^ to 10~^ [12] [11]. Since the BER for a
mobile wireless channel is many orders of magnitude worse, we would need
to apply forward error correction (FEC), an automatic-repeat-request (ARQ)
protocol, or a combination of both.

274 CHAPTER 10

Let us address pure FEC first. We consider the Rayleigh fading channel, a
widely accepted model for mobile radio [5] [6]. From [5], a sophisticated con
catenated convolutional and Hadamard code requires a bandwidth expansion
of approximately twice the number of orders of magnitude decrease in BER.
The BER for a mobile wireless channel is typically 10~^ to 10~^ [13]. As a
result:

• to lower the BER of a mobile wireless channel from 10"*̂ to 10~^^, the
MPEG BER requirement, requires a bandwidth expansion factor of 18. If
MPEG has a compression ratio of 100:1, then after adding channel coding
redundancy, the effective compression ratio drops to a modest 5:1;

• the FEC assumes soft Viterbi decoding, which is complex to implement in
hardware;

• a complex channel decoder at the mobile receiver will adversely impact the
power consumption of the portable unit.

We can try to ameliorate the situation by applying a combination of ARQ and
FEC. We consider the most bandwidth efficient of all ARQ protocols, namely
Selective Repeat (SR). Further, let us disregard its buffering requirements for
now and suppose that ideal SR is possible. Since MPEG decoding requires
synchronous reconstruction, if a packet is delayed beyond the tolerable bound
for interactivity, the packet becomes useless and is lost. Hence, a packet is
useful only if received within B transmissions, where

B X roundtrip delay < delay bound (10-1)

Let X be the number of transmissions of a packet, and Pe be the probability
of packet error. From [10], for ideal SR, we can express the probability that a
packet is successfully received on the i^^ transmission as,

Pr[X = i] = (1- Pe) Pr^ . (10.2)

Summing the geometric distribution, we can determine the probability that a
packet is stale, that is, the packet is lost because its total delay exceeds the
delay bound for interactivity.

Asynchronous Video 275

Pr[X > B] = P f . (10.3)

If we assume independent bit errors,

Pe = 1 - (1 - BER)^ , (10.4)

where N is the number of bits in a packet. Combining (10.3) and (10.4), we
have the result that to meet the MPEG bit-error rate requirement, the channel
bit-error rate must satisfy

BER < 1 - (l - BER'J.^p^ay' • (10-5)

If the BER is small, we can approximate (10.5) by

BER < ^^^MPEG (10 6)

For BERMPEG = 10~^^, a round-trip delay of 30 ms, an interactive delay
bound of 100 ms, and a packet size of 188 bytes (the size of an MPEG2 transport
packet [14]), the ideal SR protocol would require a BER of approximately 10"''
or lower. The BER requirement would have to be achieved by applying FEC to
the unconditioned channel. This hybrid ARQ/FEC scheme has the following
implications:

By use of ARQ, we have lightened the burden on FEC considerably. None
theless, lowering the channel BER from 10"^ to 10~^ still requires a band
width expansion factor of 8, which means the effective compression ratio
of MPEG is approximately 12:1, almost an order of magnitude lower!

ARQ is ineffective if the round-trip delay exceeds the interactive delay
bound. This may happen, for example, if the network route contains a
satellite link.

276 CHAPTER 10

ARQ incurs additional bandwidth overhead for retransmissions as well as
for error detection.

Finally, the system becomes even more complex to implement. In par
ticular, the selective repeat protocol requires extensive buffering at the
receiver, whereas, other protocols that do not require buffering at the re
ceiver (e.g., Go-Back-N) are less bandwidth efficient.

In summary, the analysis above suggest that to ameliorate MPEG's intolerance
to errors, we must use a more complex receiver in the portable unit and severely
compromise MPEG's compression ratio. We believe added complexity is a
major problem for portable, personal communications systems (PCS) since
more complexity usually leads to more power consumption, and PCS must
operate under low-power constraints. Further, an MPEG decoder is also a
fairly complex device that can consume substantial power. In fact, to date we
know of no low-power implementation of an MPEG decoder. We point out
these difficulties with MPEG not to discount MPEG, but to motivate the need
for video coding algorithms that are better coordinated with the transport of
the network, particular for wireless access. We explore this concept further
below.

3 SYSTEM LEVEL CONSIDERATIONS

To realize techniques such as end-to-end coding and asynchronous reconstruc
tion of video we must have certain functionality provided by the network. For
example, asynchronous reconstruction of video requires the video coder to iden
tify information within the video stream that can be delayed from its original
frame to later frames. However, for this technique to be useful, the network
must have the intelligence to exploit the different delay requirements of the
different information elements. That is, how does the network recognize which
information elements have relaxed delay requirements? Furthermore, once the
network has identified these elements, how does it use this information to re
duce perceptual delay and increase traffic capacity? These system-level issues
and more are discussed in detail in [1], which proposes a basic architecture for
heterogeneous CM networks. In this section, we briefly summarize the salient
features and concepts of [1] that are relevant to the current discussion.

Asynchronous Video 277

3.1 Syntactical constraints

In the realization of CM services, as distinct from other services, there are three
critical signal processing technologies: compression, forward error-correction
coding (FEC), and encryption. These signal processing technologies modify or
hide basic syntactical and semantic components of a bit stream. Subjective
quality is important for CM services, and is affected by both signal processing
and transmission impairments. Signal-processing considerations should thus
play a major role in decisions about network architecture.

Figure 1 illustrates some fundamental syntactical constraints that we should
keep in mind while designing a network architecture for CM services:

Compression must precede encryption and decryption must precede de
compression. Encryption would hide basic statistical characteristics of an
uncompressed audio or video signal, such as spatial and temporal correla
tions, that are heavily exploited by compression algorithms.

Compression must precede FEC and decompression must follow FEC, since
there is no point to "correcting" the benign and desired changes in a bit
stream due to compression and decompression.

The relationship between encryption and error-correction coding is more
complicated. We divide error-correction coding into two classes: binary
(such as algebraic and convolutional coding) that transform a bit stream
into another bit stream, and signal space (such as trellis and lattice coding)
that are integrated into a modulation system and involve Euclidean-space
manipulations [6]. There are hybrid cases, such as convolutional coding
with soft decoding, which we lump into the signal-space category. Since
encryption, like binary coding, transforms one bit stream into another,
it can precede or follow binary error-correction coding. However, since a
signal-space code generates an output in the real-number field, it cannot
precede encryption and signal space decoding cannot follow decryption.
The purpose of binary coding before encryption is to attempt to correct
post-decryption errors. The purpose of binary or signal-space coding after
encryption is to prevent errors in the transport of the encrypted bit stream,
which will indirectly prevent post-decryption errors.

278 CHAPTER 10

n
o

•T3

O
t3

CD

o
o ? tU o o ir.

o

o

£3

CD O

3 7

p . f-h^-^

C/5

CD

a
CD
O

o'
t3

CD

o o
o o

dd

34
o

D
CD
O
o

c2

o

F i g u r e 1 Syntactical Constraints on Signal Processing Functions

3.2 Edge vs. link architecture

Another crucial decision is the partitioning and mapping of the signal pro
cessing functions. For example, do we perform compression, encryption, and
forward error-correction on a per-link or an end-to-end basis? There is a strong
tendency to perform compression on a per-link basis, placing transcoders (con
verters from one compression standard to another) at the boundaries of the
subnetworks. For example, in the telephone network, in a call from a wired to
a digital cellular telephone, one voice coding technique (8 kHz sampled PCM)
is used on the wired network and another (VSELP in the case of the North
American IS-54 standard) is used on the digital cellular subnet [7]. This is for
valid and important technical reasons; namely, the desire for spectral efficiency
on the digital cellular subnet, resulting in more aggressive compression (traded
off against implementation cost and reduced subjective quality) and the need
for joint source/channel coding. An unfortunate side effect is that introducing
a new or improved service, such as 'ndeband voice, can only be done by the
service providers, not by the user. Another side effect is that privacy cannot
be guaranteed, since transcoding requires decryption and hence the user must
provide encryption keys to the service provider (or leave encryption entirely to
the service provider). A third side effect is a substantial accumulation of added
subjective impairment and delay. For example, the digital cellular transcoder
introduces on the order of 80 milliseconds of one-way delay, so that two digital
cellular phones experience a round-trip delay on the order of 320 milliseconds
due to the tandem transcoders. The extension of this approach to more com
plicated heterogeneous networking scenarios could easily result in unacceptably
large (multi-second) delays, which is an even more severe problem when video
and audio are combined.

Asynchronous Video 279

In contrast, performing some of these signal processing functions (if not all) on
an end-to-end basis offers some significant advantages:

Privacy and security. The link architecture is incapable of providing pri
vacy by end-to-end encryption under user control, since an encrypted signal
cannot be transcoded. The best that can done is encryption on a link basis
by the service provider(s).

Open to change. The edge architecture is open to substitution of different
transport service layers at the network edge (user terminal or access point).
This leads to an economically viable method to upgrade transport services
over time, as well as introduce new ones.

Performance. The link architecture suffers from the accumulation of delay
and subjective impairment through tandem compressions and decompres
sion of the CM signal. As mentioned above, this problem has already
become serious in digital cellular telephony. In more complicated het
erogeneous scenarios, delay could become unacceptable for delay-sensitive
interactive applications.

Mobility. The link architecture embeds considerably more state within the
network associated with the realization of a CM service, creating additional
requirements for migration of state when terminals are mobile.

Thus, we believe the edge architecture is superior to the link architecture and
it should be adopted for the future.

3.3 Substream abstraction of transport

One of the key features of [1] that embodies many of the ideas discussed above
is its substream abstraction for the transport network. Figure 2 illustrates this
abstraction.

For a particular audio or video stream, the transport provisions substreams
(through a link-layer protocol). Each substream has a quality of service (QOS)
specification of loss, corruption, and delay characteristics. The QOS of the
substreams are different, as negotiated at session establishment. In addition,
the collection of substreams comprising the stream has a joint specification of
rate parameters (substreams have correlated rates since they originate from
the same CM source). The substreams provide a mechanism by which a CM

280 CHAPTER 10

E
CO
0)

CO

Loss

-V

Loss

—K

\

Corruption Delay

Substreams

Corruption m Delay

Figure 2 Substream Abstraction of Transport

service can specify different QOS characteristics for different information el
ements. This in turn becomes the mechanism by which the benefits of joint
source/channel coding are achieved without a close coupling of source and chan
nel coding design. Since substreams can be transported intact across heteroge
neous subnetwork segments, joint source/channel coding on downstream links
does not require transcoders. Further, encryption does not interfere with joint
source/channel coding, as long as the substreams are independently encrypted.

In the absence of substreams, the delay characteristics of all data in a CM
stream is the same. With substreams, data can be segregated into parts with
different delay characteristics, and the network can exploit the relaxed delay
characteristics of some substreams to achieve higher overall traffic capacity (this
is one manifestation of joint source/channel coding, albeit one not previously
emphasized). From the perspective of the CM coder, there is control over which
data arrives earlier than the worst-case delay, and thus this low-delay data can
be exploited.

While constructs similar to substreams (typically called flows) have been pro
posed for future Internet protocols, we argue that substreams are crucial to
obtaining high traffic efficiency in networks with wireless access links. Since
the wireless access link is where the greatest gains in capacity can be reahzed
in a heterogeneous network, we will examine it more closely.

Asynchronous Video 281

4 QOS AND TRAFFIC CAPACITY
The key components of QOS are bandwidth, delay and reliability. Let us
consider reliability first. For packet networks, we may distinguish between cor
ruption (errors in the packet payload) versus loss (errors in the packet header,
causing the entire packet to be lost). On a wireless channel, the reliability of
a substream is proportional to the power at which it is transmitted over the
air: the greater the power of one's own signal relative to the aggregate power
of other users, the lower the probability of error. Moreover, the traffic capac
ity of wireless multiple access schemes such as code-division multiple access
(CDMA), and wireless cellular systems in general, are not just bandlimited,
but interference-limited as well [4]. It is therefore beneficial to transmit the
minimum power necessary to support a given reliability for a substream, as
this creates the least interference to other users. In the absence of substreams,
an entire video or audio stream would have to be transmitted at the reliability
level needed by its most error-sensitive component. This squanders power and
increases interference. With the application of substreams, power allocation
can be fine-tuned, thereby maximizing the interference-limited capacity of a
wireless subnet [4].

We have seen that providing variable reliability via the substream abstraction
can lead to network capacity gain. A natural question is, can we gain an ad
ditional increase in traffic capacity by making the different delay requirements
among substreams visible to the network? That is, will the network capacity
be greater if each stream is specified by a single (tightest) delay requirement, or
if each substream can specify its own delay requirement? We address this issue
by considering the impact of variable substream delays in two ways: on the
capacity of the network to accommodate delay contracts, and on the capacity
of a wireless access link limited by interference.

Consider a work conserving queue^ with inputs from streams for the following
two cases:

the server knows that each stream is further partitioned into substreams.
Hence, the server knows the average delay requirement for each substream
and achieves just those delays;

^A queue server is work-conserving if it never idles when there are packets waiting to
be transmitted; a simple example is first-come-first-served. Work conserving queuing disci
plines are widely used because they are bandwidth efficient — an important consideration
for wireless links.

282 CHAPTER 10

the server just knows a single (tightest) average delay requirement for each
stream, and achieves that delay for each stream.

Now suppose in each case the system is operating at capacity, in the sense
that the bounds on average delay are just being met. What is the maximum
utilization in each case?

For any work-conserving queuing discipline and any set of substream arrival
processes, the GI/G/1 conservation law states [2]

2_] y j Pi,j^i,j — constant, (10-'̂)
stream i substream j

where pij is the offered load (or utilization factor) and Wi^j is the average
waiting time of substream j , stream i.

Consider the case where we do not partition stream m into substreams. The
overall delay requirement of stream m then equals that of its most delay-
sensitive component. It follows that the average delay of stream m satisfies

Wm = min {Wm^j} . (10.8)
J

The utilization factor of the stream is simply pm = Y.substream j Prn.j, so we
have

PmWm = (YlsubstreamjPm,j) X m i u ^ {P^m,n}

— L^substream 3 P'^^J ^''T^^ 3 •

(10.9)

By specifying any stream m with a single (tightest) delay requirement rather
than by its individual substream delay requirements, it follows from (10.7)
and (10.9) that the delays experienced by some of the other substreams must
necessarily increase (the only case where none of the other substreams' de
lays increase is if all the substreams of stream m have identical delay require
ments). Since these substreams were already operating at the limits of their

Asynchronous Video 283

delay bounds, any further increase in delay would violate their delay require
ments. These substreams would have to be removed, decreasing the traffic
capacity of the system. Hence, introducing the substream abstraction can pro
mote the allocation of delay at fine granularity, with a corresponding increase
in the delay-limited capacity of the system. This result is completely general
and holds for any substream arrival process, the only assumption being that
the queuing discipline is work-conserving.

To obtain a concrete figure on the capacity gain, we would need to characterize
the arrival processes further. As a simple example, consider a stream with
Poisson arrivals which is segregated into three subst reams, as shown in Table
1,

TTi is the fraction of arrivals in the stream that belong to substream i, so ^ TTJ =
1. We order the substreams according to their delay requirements, so that
Wi <W2 <W3 .

Now consider statistically multiplexing independent Poisson streams with the
same substream profile as in Table 1, but possibly different rates. If the parti
tioning of each stream process into substreams is random, then the substreams
are also Poisson. The aggregation of all streams is then Poisson, and we have
an M/G/1 system.

We wish to compare the maximum load that the system can accommodate
(while meeting all stream delay requirements) when the substream structure
is hidden, versus when the structure is made visible to the server. The server
with no information about the substream structure would try to meet a sin
gle (tightest) delay requirement Wi for each stream; the server which knows
about substreams would just satisfy the individual delay requirement of each

Table 1 Sample substream profile for a stream

substream # 1
substream # 2
substream # 3

fraction of
stream arrivals

TTl

7r2

TTS

required
average delay

Wi

W2
W3

284 CHAPTER 10

substream. Let Pno.substreams-, Psuhstreams be the respective system loads. We
are interested in the capacity gain G, defined as

Psuhstreams / i n 1^^

P no sub sir earns

It can be shown [9] that

G = _ , (10.11)
-I- """ v ^ ^) Pno^substrearns

i_ W^ ^ Wo X W-x

where TT = Tvt ^i + vvi" ^2 4- ^̂ 1̂ TTS .

Intuitively, TT can be interpreted as a measure of the spread in the various
delay requirements of a stream's components. For example, we note that if
TTi = 1, corresponding to the case where each stream is comprised entirely of
substream one, then TT and the capacity gain G is unity. This is as expected,
since a system with and without substreams would then be identical. The gain
also approaches unity as the load p no.sub streams approaches one, because from
rate considerations the load cannot exceed unity. At all other operating points,
the gain in capacity is strictly greater than unity, as shown in Figure 3.

Finally, let us look at a specific numerical example. Let the substream de
lay requirements be 30, 60 and 90 ms respectively, and let [7ri,7r2,7r3] =
[0.2,0.35,0.45]. If the delay-limited capacity of a substream-less system is
P no-sub streams — 0.1, thcu the load Capacity of a system utilizing substreams
is Psuhstreams — 0.2 — a twofold gain in capacity.

We can exploit the variable substream delay concept even further by consid
ering its impact on the interference-limited capacity of wireless multiple-access
links. On a wireless link, a substream's reliability requirement is mapped onto
a desired signal-to-interference noise ratio (SNR). The capacity of a wireless
multiple-access link is interference-limited in the sense that in order for the
substream reliability requirements to be satisfied, the following condition must
hold at any time [3]:

Y, fiSNRarry substream of user k) < I, (10.12)
all users k

Asynchronous Video 285

CO

E
OS
0
u .

• ^ — •

CO
J D
13
CO

•4—»

>
c
'cO
O)

^^
o CO
Q .
CO
O

10-

8 -

6 -

4 -

2 -

O7

maximum offered load (no substreams)

F i g u r e 3 Traffic Capacity Gain Using Substreams

where f(x) is a monotonic function in x. Specifically, (10.12) must hold when
all users simultaneously transmit their maximum SNR substreams. A call ad
mission criterion satisfying this worst case may under-utilize system capacity.
However, if substreams with variable delay requirements are available, then
during times of high SNR traffic loads we can delay the transmission of sub-
streams with relaxed delay requirements until traffic conditions are lighter,
thereby increasing capacity. In a similar vein, there may be occasions when
(10.12) is satisfied, but the channel conditions are so poor that the level of
transmit power dictated by the power allocation algorithm would physically
saturate the transmitter. Again, if a given packet has more flexibility in its
transmission time, we can wait until channel conditions are more benign before

286 CHAPTER 10

transmitting, thereby providing an additional mechanism for traffic smoothing
and capacity increase.

5 VIDEO CODING FOR A SUBSTREAM
TRANSPORT

In Section 3 we discussed a substream abstraction of the transport. Further,
in Section 4, we discussed how such a substream transport can be used to
provide QOS and increase traffic capacity on a wireless subnet. In this section
we discuss a method of coding video for transport via substreams.

5.1 Overview of asynchronous video coding

Video coding for substream transport requires the partitioning of the video
stream into substreams of compressed video with different QOS characteris
tics (i.e., delay, loss, and corruption). Since substreams have different delay
characteristics, they arrive at the receiver asynchronously. It is possible to re-
synchronize substreams at the receiving terminal, but to do so will result in
transport delay (including re-synchronizing delay) that is characteristic of the
highest-delay substream. We choose a different approach, in which the video is
asynchronously reconstructed at the receiving terminal. Our goal is to achieve
a perceptual delay that is representative of the lowest-delay substream, rather
than the highest-delay substream. We define asynchronous video (ASV) as
video coding for substream transport, where we decode the video presentation
for display without re-synchronization of the substreams [8].

Figure 4 illustrates an abstracted view of ASV coding for a substream trans
port using three substreams. At the source, the ASV coder partitions a video
stream into substreams by segregated the semantic components of the stream
into three classes: high motion, low motion, and no (or very low) motion. For
example, the semantic components might be 8x8 blocks of pixels, where each
block represents a particular spatial region in one frame of video. Therefore,
the high-motion substream will carry blocks that have a high level of motion,
the low-motion substream will carry blocks that have a low level of motion,
etc., where motion is determined by some metric (see below). At the sink,
the ASV decoder asynchronously reconstructs the video stream from its sub-
streams. Thus, continuing with our example, video blocks that originate in
one frame at the source might be reconstructed in a later frame at the sink

Asynchronous Video 287

Source

high
motion Loss

low
motion

no
motion Loss

Transport Sink

Corruption

Corruption

Corruption

Delay

Delay

Delay

ASV
Decoder!

F i g u r e 4 Substream Abstraction for ASV Coding

(see Figure 5). In Section 5.2, we will explain how this can be done without
introducing undesirable artifacts.

Within this framework, we can make the following intuitive observations:

The perceptual delay will be dominated by the transport delay of the high-
motion substream. For example, in video conferencing the high-motion
areas will typically be the person's head, lips, etc., thus, the audio delay
for lip synchronization (or the perceptual delay) will be approximately
equal to the delay of the high-motion substream.

The high-motion substream is more tolerant of loss and corruption than
the other substreams since high motion can subjectively mask some of
the artifacts resulting from channel and quantization errors. Thus, this
substream can have lower resolution and relaxed loss and/or corruption
requirements relative to the other substreams.

The low-motion substreams are less tolerant of loss and corruption in both
coding and in transport, but more tolerant of delay. Thus, these sub-
streams can have higher resolution and relaxed delay requirements relative
to the high-motion substream.

Nature is kind to us, since blocks with tighter delay requirements have relaxed
loss and/or corruption requirements, and vice versa. This is precisely the typ
ical tradeoff between delay and loss in subnetworks operating with constant

288 CHAPTER 10

Source Sink

high-motion
block

low-motion
block

no-motion
block

Frame # = 1
F i g u r e 5 Example of Asynchronous Reconstruction

resource utilization. That is, techniques that improve reliability (e.g., FEC)
also introduce extra delay. Therefore, this motion-adaptive partitioning is a
natural one; that is, the ASV coder's substream abstraction maps nicely into
the transport's substream abstraction (see Figure 6).

To reiterate, with this partitioning of video streams into substreams, we ex
pect intuitively that the low-motion substreams can be delayed relative to the
high-motion substreams. Further, we expect that the perceptual delay will be
dominated by the high-motion blocks, which are transported with the lowest
delay. Thus, the perceptual delay will be dominated by the lowest-delay sub-
stream, rather than the worst-case transport delay. To the extent that the other
substreams' delay requirements can be relaxed, the network traffic capacity can
be increased. We believe that this opportunity has the greatest significance on
wireless access links, although (as noted before) we propose to use this video
coding technique transparently across the entire edge-to-edge connection to
avoid extra delay (and other problems [1]) introduced by transcoders.

Asynchronous Video 289

Source Transport

; . , ,. ^ - ^ ' ^——^ lowest delay
high motion c : : ^ C i ; ; > and reliability

low motion
higher delay

arm reliability

no motion
highest delay
ana reliability

F i g u r e 6 Mapping of Substreams From Source to Transport

5.2 ASV codec design

In this section we give a general description of our ASV codec that serves as a
framework for future designs. Here, we emphasize the substream partitioning
and asynchronous reconstruction of video, rather than the specific signal pro
cessing of each component. (See [8] for details on one such realization.) We
discuss results of an actual software implementation in the next section.

Figure 7 shows a block diagram of the coder design. In the top forward-path,
frames are first processed through a transformation component, which trans
forms the image into a suitable domain (e.g., frequency domain via subband
coding) and representation (i.e., transformed-image blocks). The substream
coder then performs quantization and compression of the transformed blocks
to provide layered resolutions of compressed video blocks and, most impor
tantly, partitions the video stream into substreams. The coder partitions the
video stream into substreams according to a bank of motion-driven, finite-state
machines (FSM), one for each spatial block-region of the image (see Figure 8).
Motion detection is performed in the bottom forward-path, where each motion
estimate is quantized into one of three motion levels: No, Low, or High. We use
the average, squared-difference in pixel values between the current and previous
blocks as our metric for estimating motion and a dual threshold to quantize
each motion estimate into one of the three levels.

290 CHAPTER 10

frames transformed
blocks

i
Block
scan

current
blocks

/Frame
(Buffer

current
blocks

high, low, and
no-motion substreams

Substream
Coding

motion
levels

Motion
Estimation

previous
blocks

motion
estimates

F i g u r e 7 Block Diagram of ASV Coder

Figure 8 illustrates the substream-coder FSM for a particular block-region. The
FSM updates its state according to the level of motion detected for that block
region. There are three states: HIGH, LOW, and NO that correspond to the
three source substreams (see Figure 6) and one state called IDLE. In particular,
the FSM makes a transition to the HIGH state whenever a high level of motion
is detected and the corresponding block is transported on the lowest-delay
substream. For low levels of motion, the FSM makes a transition into the LOW
state and the corresponding block is transported on the higher-delay substream.
When virtually no motion is detected, then the FSM makes a transition to the
NO state and the block is transported on the highest-delay substream. If there
is still no motion detected for this block at the next frame, then the FSM makes
a transition to the IDLE state, where no data is transmitted. The FSM remains
in the IDLE state until motion is detected again.

For each block, a message is sent to the decoder in the form of a packet header
that contains the following information:

Asynchronous Video 291

low
F i g u r e 8 FSM of Substream Coder

Temporal locator, which specifies a frame number

Spatial locator, which specifies the X-Y coordinates of the block.

Resolution identifier, which specifies what layered resolution to decode.

Packet size, which specifies the size of the packet (including header).

Each video packet is variable length with a fixed-length header, thus the pay-
load is variable length. We choose a variable-length pay load because ASV
coding is variable-rate video coding, which is realized (in part) by adjusting
the resolution[s] per substream. Note, the video packet header (as seen by the
decoder) contains no information identifying which substream transported the
packet. Thus, the ASV decoder maintains no state information about sub-
streams. Below, we discuss how this leads to a simplified decoder design.

Figure 9 shows a block diagram of the ASV decoder. The substream-decoding
component asynchronously reconstructs the video stream from the incoming
video packets by maintaining an ordering constraint, which is expressed by,

P < N < (P + S),
(P-S) < (iV + 7) mod 16 < P,

ifO<P<7
if S < P < 15,

(10.13)

292 CHAPTER 10

high, low, or
no-motion substreams transformed

blocks frames

Substream
Decoding

Inverse
Transformation

to display

F i g u r e 9 Block Diagram of ASV Decoder

where P is the previous frame number, Â is the current frame number, and
N,P e {0,1,. . . , 15}. That is, frame numbers are assigned using modulo 16
numbering (0,1,...15,0,1,...,15,0,1,...). If N does not satisfy (10.13), then the
current block is considered to be stale and is discarded, otherwise, the current
block is considered to be new and is displayed. For example, if P = 4, then in
coming blocks with frame numbers N e {0,1,2,3,12,13,14,15} are considered
stale. Essentially, (10.13) helps the decoder identify blocks that have experi
enced excessive delay and are no longer useful, but are still delivered by the
network because their time-to-live in the network did not expire. While we do
not attempt to maintain the exact temporal relationship of the blocks, nor do
we re-synchronize the substreams, it is necessary to impose this ordering con
straint to prevent undesirable artifacts. Referring to Figure 10, if a no-motion
block is generated in frame 1 at the source, but doesn't show up at the sink
until frame 3 (because of its relaxed delay requirements) after a high-motion
block that was generated at the source in frame 2, then the no-motion block is
stale and should be discarded. The inverse transformation component produces
the actual image representation. In summary, the substream decoder performs
a simple calculation to ensure that only the most recent image data for each
block region is displayed; stale data is always discarded.

We have not specified the way in which the layered resolution is achieved. There
are many ways this could be done, but in the present realizations we have

Asynchronous Video 293

Source Sink

Frame #

high-motion
_block

no-motion
block

violates ordering
relationships

F i g u r e 10 Example of Incorrect Asynchronous Reconstruction

chosen a simplistic subband decomposition. Further, our current ASV coder
does not utilize other known compression techniques like motion compensation,
but it may be possible to introduce these concepts later. The video coding
simulations reported here are very simple, designed to illustrate the perceptual
delay benefits of ASV.

6 RESULTS

In this section, we investigate the effects perceptual delay, delay-bound require
ments, and channel errors have on the subjective quality of ASV by discussing
results of three simulations. The ASV codec used for each simulation was based
on subband decomposition with scalar quantization of subband coefficients [8].

294 CHAPTER 10

6el Perceptual delay

To measure the perceptual delay, we used a 15 frames per second talking-heads
sequence, which we refer to as SEQ. This sequence has significant high-motion
content (i.e., head and lip movements), low-motion content (i.e., a slowly pan
ning overlay), and stationary content (i.e., a motionless background).

We simulated ASV coding of SEQ with different delay requirements for each
substream. For this experiment, we chose the delay requirement for the high-
motion substream to always be less than the 66 ms frame time for SEQ; that is,
we require that all high-motion blocks from the same frame arrive at the receiver
within 66 ms. For the other substreams, we assigned delay requirements greater
than 66 ms. We then played back the processed data with its corresponding
audio to observe lip sync.

From our observations, we could not differentiate the lip sync of the processed
video from the original, which suggest that the perceptual delay for SEQ was
indeed dominated by the high-motion substream. We were able to verify this by
keeping the delay of the high-motion substream constant (and always greater
than 66 ms) and then varying the delay requirements for the low and no-motion
substreams. Under these constraints, lip sync was always disrupted regardless
of the delay requirements assigned to the medium and fine substreams; that is,
even with a zero delay requirement on the low and no-motion substreams, lip
sync was disrupted.

In summary, this empirical evidence suggests that we can indeed relax the
delay requirements on the low and no-motion substreams without introducing
objectionable artifacts, but there are bounds on how much we can relax these
requirements. The next section presents some empirical results to quantify
these bounds.

6.2 Delay bounds

The effects of relaxed delay bounds on substreams, besides the high-motion
substream, offer the transport considerable flexibility in meeting other needs
(e.g., error protection) of these substreams. However, by relaxing the delay
bounds, we might introduce visual artifacts in the video resulting from the
temporal displacement of high, low, and no-motion blocks relative to their
original frame. The question is whether subjective quality degradation can be

Asynchronous Video 295

held in check while the transport delay bounds for certain substreams varies as
much as multiple frame intervals.

To measure how relaxed the delay bounds can be on the low and no-motion
substreams, we used a 24 frames per second action sequence, which we refer
to as MOT. This sequence also had significant high-motion, low-motion, and
stationary content.

For this experiment, we kept the delay requirement for the high-motion sub-
stream below the 42 ms frame time for MOT and varied the delay requirements
for the other substreams until the video quality became objectionable. Prom
our observations, we concluded that the low-motion substream could tolerate a
delay up to one frame time and the no-motion substream could tolerate a delay
up to three frame times. In other words, low-motion video blocks would not
arrive in time for the next output frame but for the one after and no-motion
video blocks could be delayed by two additional frames.

In summary, this empirical evidence suggests that it is possible to relax the
delay requirements on the low and no-motion substreams (to a lesser extent
for low-motion substreams). In particular, video blocks being transported by
the highest-delay (i.e., no-motion) substream can be delayed multiple frame
times and, thus, lead to substantial gains in traffic capacity as outlined by the
strategies presented in Section 4.

6.3 Error resilience and bit rate
It was also of interest to test the resilience of the video quality to error im
pairments. As discussed before the high-motion substream is more tolerant of
errors than the other substreams. For the MOT sequence, we found that the
high-motion substream could endure an error rate three to four orders of mag
nitude higher than the no-motion substream for roughly equivalent subjective
impairment. In the absence of any form of error control, we found the video
quality was good under error rates on the high-motion substream in the range
of 10""* to 10~^ , a fairly reasonable error probability to sustain on wireless
subnets.

Figure 11 provides an example of the bandwidth gains resulting from our ap
proach. For the MOT sequence displaying 320x240 frames of eight-bit gray
scale data at 24 frames per sec, the average bit rate produced by the coder
was about 5 Mbps while its raw bit rate was 14.7 Mbps. For this simple re-

296 CHAPTER 10

1e+07[
8e+06[

r

6e+06

4e+061

2e+06

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

f J

1 H

M f

i
Instantaneous 1

jrW*'*''*^ J V ^ * \ y / y ^

k-y^-—^"'Average 1

• ' '

0 10 20 30 40 50 60 70 80
Frame Number

F i g u r e 11 Bit Rate for MOT Sequence

alization of an ASV codec, the compression ratio was at best 3:1 for various
test sequences. It should be noted that the work we have discussed here has
not focused at all on attempts to merge ASV coding with popular compression
techniques such as motion compensation or vector quantization, but doing so
should result in significantly higher compression ratios. Nevertheless, our pri
mary goal has been to reduce perceptual delay and increase traffic capacity,
which is not necessarily the same as minimizing the bit rate.

7 CONCLUSIONS AND FUTURE WORK

We consider our work on ASV coding and decoding to be very preliminary.
Since we could see no path from existing video compression standards like
MPEG directly to an ASV version, we instead started from first principles.
Thus, our preliminary ASV codec might be considered a form of simple con
ditional replenishment coding, as it achieves compression only through dis-

Asynchronous Video 297

carding fine-resolution information in areas of high motion, and transporting
low-motion information less often (or only once, where there is no motion at
all). The novelty of our codec is in the temporal dimension, where we are mov
ing low-motion and stationary, high-resolution information to later frames, as
long as the resulting artifacts are not subjectively objectionable, and thereby
gaining traffic capacity advantages.

In future work, we hope to demonstrate more sophisticated versions of ASV
codecs, in particular, incorporating other known video compression techniques
such as vector quantization (VQ) and motion compensation. One such realiza
tion using multiple VQ codebooks is currently being designed. Additional work
is needed in verifying ASV video over more accurate transport models. Our
efforts to date have focused on demonstrating the perceptual delay advantages
of ASV, and the error models used are simplistic. Achieving the best combi
nation of subjective quality and traffic capacity on wireless links will require
considerable additional work.

Simultaneously, we are exploring network transport algorithms to realize some
of the capacity gains promised by joint source-channel coding via the substream
abstraction. Ideally, such an algorithm would need to incorporate and integrate
many of the concepts we described in this paper: maximizing the interference-
limited and delay-limited capacity through a coordinated allocation of reliability
(power control) and delay (queuing disciplines). We are currently designing a
real-time prototype of ASV transport by wireless CDMA in the context of the
Infopad wireless multimedia computing project at Berkeley.

Acknowledgements

This research was supported by the Advanced Research Projects Agency, Tek
tronix, the University of California MICRO Program, and Asahi Semiconduc
tor. In addition, special thanks goes to Melody Ivory and Jose Pino for helping
us successfully convert our FrameMaker document into LaTex.

REFERENCES

[1] Haskell, P., Messerschmitt, D.G., " A Signal Processing Perspective on Net
working for Continuous-Media Services", submitted to IEEE/ACM Trans-

298 CHAPTER 10

actions on Networking, November 1994.

[2] Kleinrock, L., Queuing Systems, Vol II, J. Wiley, 1976.

[3] Yun, L.C., Messerschmitt, D.G., "Variable quality of service in CDMA
systems by statistical power control", Proc. IEEE International Comm.
Conf., June 18-21, 1995, Seattle, WA, vol. 2, pp. 713-719.

[4] Gilhousen, K.S. et al, "On the capacity of a cellular CDMA system", IEEE
Trans. Vehicular Tech., (40):2, pp. 303-312, May 1991.

[5] Proakis, J.G., Digital Communications, 3rd ed., McGraw-Hill, 1995.

[6] Lee, E.A., Messerschmitt, D.G., Digital Communication, Second Edition,
Boston: Kluwer Academic Press, 1993.

[7] Natvig, J.E., Hansen, S., de Brito, J., "Speech processing in the pan-
European digital mobile radio system", Proc. GLOBECOM, Dallas, TX,
USA, Nov. 27-30, 1989.

[8] Lao, A.Y., Reason, J.M., Messerschmitt, D.G., "Asynchronous Video Cod
ing for Wireless Transport", IEEE Workshop on Mobile Computing and
Applications, December 1994.

[9] Yun, L.C., Transport for Multimedia on Wireless Networks, Ph.D. disser
tation, in preparation.

[10] Lin, S., Costello, D.J., Jr., Miller, M.J., "Automatic-repeat-request error-
control schemes", IEEE Communications Magazine, vol.22, no.12, pp.5-17,
December 1994.

[11] Lei, S., "Forward error correction codes for MPEG2 over ATM", IEEE
Trans, on Cir. and Sys. for Video Tech., vol. 4, no. 2, April 1994.

[12] Montreuil, L., "Performance of coded QPSK modulation for the delivery
of MPEG2 stream compared to analog FM modulation", 1993.

[13] Steele, R., Mobile Radio Communications, 1st ed., IEEE Press, 1992.

[14] ISO/IEC/JTC1/SC29/WG11 Systems Committee, "MPEG-2 systems
working draft", July 1993.

11
WIRELESS PUBLISHING: ISSUES

AND SOLUTIONS
T. Imielinski and S. Viswanathant

Rutgers University - New Brunswick, NJ

^Bell Communications Research - Morristown, NJ

ABSTRACT

Publishing^ is a spontaneous and periodic broadcasting (or multicasting) of data on
the wireless channel by the MSS to a specific group of clients. Since publishing is
server initiated, querying published data does not require any uplink transmission.
Thus, publishing is particularly suitable for asymmetric communication environments,
which have very narrow uplink channel or no uplink channel at all. We describe
data organization methods for publishing based on temporal as well as multicast
addressing. We also show how the publishing mode can be efficiently mixed with
the standard on-demand mode in an adaptive manner, based on the profile of user
requests.

1 INTRODUCTION

Wireless technology is gaining popularity very rapidly. Many forecast a gigantic
market with millions of mobile users carrying small, battery powered palmtops
equipped with a wireless connection. Mobile users will be in constant need of
information such as traffic information, local directories (white/yellow pages),
weather information, local sales, stock quotes, sports scores, commodity prices,
etc.

Figure 1 shows the structure of a hypothetical system that provides clients
with information services. The wireless information servers called Mobile Ser-

^ Other terms which have also been used for wireless publishing include disks on air, caches
on air, airdisks etc

300 CHAPTER 11

vice Stations (MSS) will be equipped with wireless transmitters (denoted by
tall antennas) capable of reaching thousands of users (denoted by small dark
rectangles) residing in cells. Cell sizes as well as the channel characteristics
(such as bandwidth) will vary widely. Small picocells may have a very small
range covering only relatively few clients. Larger cells will measure tens of miles
in diameter. Cells may also overlap. A small cell (based on wireless LAN, for
example) may provide a high bit rate through one wireless interface, and be
located within a larger, say, Cellular Digital Packet Data (CDPD) cell. A client
can use dual interface cards to communicate with the MSSs of both cells.

Bit rates will vary from cell to cell. Wireless LAN will oflFer relatively high bit
rates (Millions of bits per second) within a small distance range, while CDPD,
private data networks (RAM, ARDIS) or satellite networks will provide much
lower data rates with much wider distance scopes. Additionally, charges and
tariffs will depend on the network provider and, usually also on the location of
the user. The wireless LAN connectivity will be free (ignoring, the one time
fee for network interface cards and driver software) while outdoor radio con
nection will be charged per connection time or per packet sent/received. While
it is probably true that users will be able to communicate and use information
resources from any place and anytime, the cost will substantially vary, forcing
users to make choices about what to send/receive, where and when. For exam
ple, a user may delay transmitting a wireless fax until s/he is in the vicinity
of a pocket of high wireless bandwidth (like wireless LAN) rather than pay
a lot of money for slow outdoor radio link such as CDPD. In fact, specially
designed information kiosks offering very high bandwidth in a very small range
and having a low power connectivity, may be available^.

Each MSS will provide full connectivity to the internet but it may decide on
different local caching policies (for information which is frequently accessed in
its cell) as well as different modes of information delivery.

The main objective of this paper is to discuss a mechanism of information
delivery, called publishing, which we find particularly suitable for wireless en
vironments.

This paper is organized as follows: Section 2 introduces the notion of the pub
lishing mode. Sections 3 and 4 discuss the ways in which publishing can be
efficiently achieved. In section 5 we consider publishing of data items with vary
ing access frequencies. In section 6 other related information delivery modes

"^The ongoing Infostations project at Rutgers University is investigating different architec
tures for providing such high bandwidth pockets of connectivity to facilitate expensive data
comnnunication such as faxing.

Wireless Publishing: Issues and Solutions 301

Figure 1 Wireless Information Servers

are discussed and finally section 7 presents the conclusion of the paper, with a
brief sketch of the current implementation status of some of the ideas presented
in this paper.

2 PUBLISHING MODE

Publishing is a spontaneous and periodic broadcasting (or multicasting) of data
on the wireless channel by the MSS to a specific group of clients. Since pub
lishing is server initiated, querying published data does not require any uplink^
transmission from the clients. It involves client initiated filtering of the pub
lished data stream which arrives on the downlink channel. The term publishing
was first introduced in [4] and that paper also investigated broadcasting over a
wireline network as an information dissemination mechanism. In the Datacycle
project at Bellcore [3] and [6], a database circulates on a high bandwidth net
work (140 Mbps) and users query this data by filtering relevant information

^We distinguish between the uplink channel, from the client to the MSS and the downlink
channel from the MSS to the client. In asymmetric wireless environment, the uplink channel
is much more narrow than the downlink channel.

302 CHAPTER 11

using a special massively parallel transceiver capable of filtering up to 200 mil
lion predicates a second. Scheduling issues of periodic broadcast are analyzed in
[17]. Wireless publishing was considered by GifFord in [5], where a system called
Boston Community Information System is described. In this system newspa
pers are broadcast over an FM channel and this information is downloaded by
PCs equipped with radio receivers. There is a single communication channel
(network) and power conservation plays little role since, the PCs (equipped
with wireless modems) are connected to a continuous power supply.

The use of publishing as an energy efficient information dissemination mode was
first described in [7] and then later in [8] and [9]. Other terms such as "disks
on air" [13] and "cache on air" [9] have been subsequently used for wireless
publishing as well. While the paper [13] concentrate on the publishing policies,
we put more emphasis on the addressing issues for the broadcasted stream.

In this section we summarize most of the work in [9] and later discuss multicast
based publishing solutions. In practice, the publishing mode will be rarely used
alone. It will rather be mixed with the standard client-server mode (also called
on-demand mode) of interaction where the client submits an upUnk request to
the MSS and downloads the necessary information (sent by the MSS). Only the
most frequently requested data items, the so called hot spots (popular stock
quotes, airline schedules a short time before arrival/departure, etc.) will be
published. The standard on-demand mode will be used for items which are re
quested less often, since publishing these items would be a waste of bandwidth.
However, even in the on-demand mode, it will make sense to batch requests for
the same data item and send the data item once, rather than cater individually
to each request.

In general, publishing will be used in asymmetric environments where the use of
uplink link is either discouraged or simply impossible. The former applies when
uplink channel bandwidth is narrow and/or the sending terminal is powered by
batteries. The latter applies to the unidirectional communication such as the
currently used one-way paging, where the clients can only receive information
(be paged).

Let us now list the main advantages of the publishing mode.

The big advantage, first brought out in [3], is the scalability of the publishing
mode. The access time^ for a data item that is published does not depend on the

^We define access time, later called latency, more formally below. It is the delay from the
time the user issues a request until the time it downloads the data item.

Wireless Publishing: Issues and Solutions 303

number of clients who need this data item. Consequently, the publishing mode
scales up well with the number of clients. For example, if stock information
is published every minute, then it doesn't matter whether 10 clients or 10,000
clients are listening, the average waiting time will be 30 seconds. This will not
be the case if stock information is provided on-demand.

Another big advantage deals directly with the power savings on the client's side.
The publishing mode avoids the power consuming uplink transmissions from
the clients (to the MSS) and also avoids keeping the CPU "on" continuously
(upon providing a suitable directory - as explained later).

Hence, the publishing mode is very well suited for the wireless environment as
it conserves both the power at clients and the wireless bandwidth.

Let us now elaborate further on our claim that the publishing mode allows
energy efficient information access. To do this we introduce the concept of low
energy operations. The low energy operations assume that the CPU has two
basic modes of operations: active mode and, the energy efficient, doze mode.
Additionally, we assume that the receiver can be temporarily completely shut
off by the client. As indicated in the introduction both features can lead to
substantial energy savings^.

Overview of the Communication Issues

For a full implementation of the publishing mode a number of communication
issues have to be resolved. First, how can reliability be achieved for the pub
lishing mode? Since the information is published by an MSS with no uplink
transmissions from the clients (no explicit acknowledgments) - it is a challeng
ing problem to achieve reliability. Secondly, how can a client access a specific
published data item? Some form of synchronization is necessary. We assunie
that the published stream of data is packetized but how does the client know
when the relevant packet of data is published? One of the important factor
here is the type of the network which is used. In Ethernet, for example, it is
impossible to determine the exact arrival time of a packet since there are no
reservations. In reservation based protocols such as PRMA, the exact arrival
time of a packet on the network is deterministic. We will address most of above
communication issues later in the chapter (in section 3.3).

^Currently, the WaveLAN/PCMCIA card (a network adapter card providing wireless com
munication in a PC based LAN) draws approximately 3.4 watts for transmitting and 1.8 watts
for receiving.

304 CHAPTER 11

Some Possible Applications of the Publishing Mode

Below, we list some possible applications of the publishing mode:

Financial Information System

An extension of the currently used Quotrex information system^ could
periodically broadcast stock quotes together with the recent news clips
about the individual stocks. Each broadcast could limit the stories to
the most recent ones, e.g., those covering the last 2 hours. Thus, for
example, IBM's stock quote could be followed by the information of the
just released quarterly report. Notice, that each "edition" could possibly
contain varying amount of information depending on the story size, etc.
Individual users are interested only in specific stocks, thus, proper filtering
mechanisms has to be established here.

Airport Information System

Here information about airport facilities (shops, gates, restrooms, etc.)
could be periodically published. Additionally, information about the ar
rivals and departures of airplanes is a good candidate for publishing as
well.

Emergency

Emergency information such as flood and storm warning, traffic jams, etc.,
can be published periodically.

We will use the first two examples later on, to illustrate some of the publishing
techniques described in the paper.

2.1 Addressing Methods

In this subsection we will elaborate in detail on different addressing methods
for the packetized downlink stream of published data. We assume that the
client is only interested in a small subset of relevant records. For example, the
user of a financial information system may be interested only in specific stocks
and stories about this stock. Optimally, the client should have its CPU and
receiver "on" only when the relevant record is published. In order to get to
this goal, the published information should be addressed in such a way that

^Quotrex periodically broadccists stock quotes on an FM radio channel.

Wireless Publishing: Issues and Solutions 305

address matching is a low energy operation. This can be accomplished in two
basic ways:

Using Multicast Addresses

The technique of sending a common data item to a group of clients is
called multicasting and the addresses reserved for multicasting are called
multicast addresses. In IP (Internet Protocol), this constitutes all 32 bit
addresses starting with 1111. If a client is equipped with an Ethernet
card then it can match the predefined set of packet addresses and still
keep the CPU in a doze mode. Thus, if an individual record is given a
multicast address then the client can keep his CPU in a doze mode until
the published record's multicast address matches the address specified by
the user. Notice that in this technique the client's receiver still should be
"on".

Filtering by matching the multicast addresses is one way of ensuring that
the clients do not have to process all the data items. A client gets a
data item only if it is interested in that item. There are 28 bits available
for multicast groups, which provide a total of 2^^ addresses. The client
then joins a multicast group (based on directory information, as described
later) and can filter the relevant data using only the Ethernet card, without
waking up the CPU and the whole OSI protocol stack. Note that there
is usually a limit on the number of multicast addresses an Ethernet card
can simultaneously listen to (the NS8390 chip can listen to 8 multicast
addresses).

The same process can be accomplished if the mobile terminal is equipped
with a pager. The low energy consuming hardware of the pager would
perform the address matching and only when matching occurs does the
CPU wake up.

Using Temporal Addresses

The system clock is a low energy circuit. If the client knows the exact
time when the relevant record is published it can switch off the receiver,
put the CPU into the doze mode and switch back when the record arrives.
To detect the arrival of the required record, the temporal matching has
to be performed by the clock circuitry. This consumes very little energy.
However, temporal matching requires a perfect or close to perfect synchro
nization which is not necessary in case multicast addressing is used. On
the other hand, the potential energy savings of this method are larger than
those of multicast addressing since the receiver can also be temporarily shut
off (in addition to the CPU being in the doze mode).

306 CHAPTER 11

Both methods require that the client knows the mapping between the record
keys (primary or secondary) and (multicast, temporal) addresses. This map
ping, called a directory, has to be either cached by the clients or published as
well. We will discuss different methods of multiplexing the directory and the
data in the next section.

2.2 Basic Notions

Now we introduce some of basic notions.

Bucket: The smallest logical unit of publishing is called a bucket. We
assume packetized data stream and for simplicity assume that a bucket of
data fits exactly one packet - the basic unit of message transfer in networks.

Edition: The data that is published is divided into logical segments called
e d i t i o n s . Each edition consists of the data interleaved with directory
information. It is made up of a number of buckets, some carrying data
and others carrying the directory information.

A data file consists of a number of buckets, each bucket holding some data items
which are identified by an attribute value. An attribute value is the value of
the search key, i.e., the key based on which data items in a file are looked up.
Clients retrieve the required data items (identified by the attribute value) by
simple pattern matching.

In this paper, we deal with general purpose information services and not per
sonal data files. Writes to the files are sent to the MSS and the MSS updates
the files. However, updates to the file are reflected only between successive
editions. Hence, the content of the current edition is completely determined
before the start of the edition and remains unchanged throughout the current
edition.

The following two parameters are of concern for publishing.

Tuning Time: The time spent by a client listening to the publishing
channel, in order to retrieve the required data. This determines the power
consumed by the client for retrieving that data.

Wireless Publishing: Issues and Solutions 307

Initial Probe downloaded

A

Tuning Time (4)

Figure 2 Latency and Tuning Time Illustration

Latency: The time elapsed (on an average) from the moment a client
requests data^, to the point when the required data is downloaded by the
client.

Both the latency and the tuning time will be measured in terms of number of
buckets.

Figure 2 illustrates the latency and the tuning time parameters. The latency
is the time elapsed between the initial probe and the point when the required
data is downloaded. The tuning time is the number of probes made into the
publishing channel (in this case, four). Note that the worst case tuning time
would be equal to the latency. In other words, the latency subsumes the tuning
time.

Publishing requires new data organization and access methods. The tuning
time in pubUshing roughly corresponds to the access time for disk based files.
There is no parameter for disk based files that directly corresponds to the
latency on the publishing channel.

Let us now look in more detail at the two ways in which publishing can be
achieved.

^Note that in this case, "requesting" for data does not mean an uplink request to the
server. It only means that the user has specified that s/he is interested in some data and
the palmtop (client) takes up the task of getting that data. The moment of requesting data
refers to the point at which the client takes up the task of getting the data.

308 CHAPTER 11

3 PUBLISHING USING TEMPORAL
ADDRESSES

For publishing using temporal addresses, a directory of the data file has to be
published along with the data file. Let us first justify the use of a directory for
publishing. If data is published without any form of directory, then in order
to filter the required data items, the client will have to tune to the channel
continuously until all the required data items are downloaded. On an average,
the client has to be tuned to the channel for at least half the duration of the
edition. This is unacceptable as it requires the client to be in the active mode
for a long time, thereby consuming the scarce power resource. We would rather
provide a selective tuning ability, enabling the client to come into the active
mode only when data of interest is being published. Selective tuning will require
that the server in addition to publishing the data, also publishes a directory.
This directory will indicate the point in time when particular data items are
published on the publishing channel. Clients will remain in the doze mode most
of the time and tune into the publishing channel only when the required data
is published.

One idea is to let all the clients cache a copy of this directory. However, this
solution has the following disadvantages:

In a mobile environment, when a client leaves a cell and enters a new cell,
it will need the directory of the data being published in that cell. The
directory it had cached in its previous cell may not be vaUd in the new
cell.

New clients that have no prior knowledge of the data organization of the
edition will have to access the directory from the network. Palmtops that
are turned off" and switched on again can be thought of as such clients.

Data that is published can change its content and grow or shrink any
time between successive editions. In this case, the client has to refresh
its cache. This may generate excessive traffic between the clients and the
server. In fact, the directory will become a hot spot. Since we assume that
the published data is very frequently accessed, the directory will also be
accessed very frequently. Therefore, the directory is also published.

If many different files are published on different channels then clients will
need excessive storage for the directories of all the files being published.
In palmtops storage is a scarce resource and this may not be possible.

Wireless Publishing: Issues and Solutions 309

Due to the above reasons, we publish the directory of the file in the form of an
index or a hash function, along with the data. The publishing channel is the
source of all information to the clients, including data as well as the directory.

In this section, we describe some of the techniques for publishing using temporal
addresses. We will not discuss the details of the techniques nor will we provide
the analysis of the techniques (these can be found in [7], [8] and [9]). In the
following subsection we will consider a directory in the form of an index and in
the next subsection we will consider a hash function as a directory in publishing.

3.1 Indexing on Air

The organization of the data file on the publishing channel involves determin
ing how the data buckets and index buckets are interleaved to constitute an
edition. We provide methods for allocating index together with data on the
publishing channel. We do not provide new types of indexes, but rather new
index allocation methods that will multiplex index and data in an efficient way
with respect to conserving the power at the clients and utilizing the publishing
bandwidth efficiently. Our methods allocate index and data for any type of
index.

Below, the organization of buckets within an edition is described. In order to
make each bucket self-identifying, all buckets have the following header infor
mation:

— bucketJd: the offset of the bucket from the beginning of the edition

— edition.pointer: the offset to the beginning of the next edition

— index-pointer: the offset to the beginning of the next index segment

— bucket-type: data bucket or index bucket

Pointer to a specific bucket B within the edition can be provided by specifying
the offset of bucket B. The offset of bucket B from the current bucket is
computed as the difference between the bucketJd of B and the bucket-id of the
current bucket. The actual time of publishing of bucket B from the current
bucket, is the product of {offset — !) and the time necessary to publish a single
bucket.

An index bucket is arranged as a sequence of (attribute-value, offset)^ where
offset is a pointer to the bucket that contains the data item identified by

310 CHAPTER 11

attribute-value. We consider multi-level index trees. The index tree will provide
a sequence of pointers which eventually lead to the required data item. A data
bucket is arranged as a sequence of data items.

Buckets containing the index are called index buckets and buckets containing
the data are called data buckets . An index segment refers to the set of
contiguous index buckets in an edition and a da ta segment refers to the set
of data buckets published between two consecutive index segments.

The first bucket of each index segment has a tuple with the first field as the
primary key of the data item that was published last and the second field as
the ofl̂ set to the beginning of the next edition. This is to guide the clients who
have missed the required data item in the current edition and have to tune to
the next edition.

Distributed Indexing Methods

How do we multiplex index with the data so that the latency and tuning time
are minimized? As a naive approach we can broadcast index once for every
broadcast of the file. In this way, however, the user who missed the index
in the first tune-in (tuned in too late) will have to wait until the beginning
of the next edition to get the next copy of the index, increasing the latency.
Alternatively, the user could continuously tune to the broadcast and filter all
incoming packets, increasing the tuning time. One can broadcast the index m
times during each broadcast of the data file, minimizing the "bad luck" eff'ect
of missing the index in the first place. This technique, called (l,m) indexing
increases the overall size of the broadcast. The increase in the size of the
broadcast is dependent on parameter m. There is an optimal value of m for
which the latency is minimized, the value of the optimal m and other analysis
of (l,m) indexing is provided in [8]

The (l,m) indexing algorithm can be improved by cutting down on the repli
cation of the index. Distributed indexing is a technique in which the index is
partially replicated. This method is based on the observation that there is no
need to replicate the entire index between successive data segments - it is suf
ficient to have only the portion of index which indexes the data segment which
follows it. Although the index is interleaved with data in both (l,m) and dis
tributed indexing, in distributed indexing only the relevant index is interleaved
as opposed to (l,m) indexing where the whole index is interleaved.

Wireless Publishing: Issues and Solutions 311

Three different index distribution methods can be considered. In all these three
methods, the index is interleaved with data and the index segment describes
only data in the data segment which immediately follows it. The methods differ
in the degree of replication of index information.

Non-replicated Distribution

Different index segments are disjoint. Hence, there is no replication.

Entire Path Replication

The path from the root of the index (tree) to an index bucket B is repli
cated just before the occurrence of B.

Partial Path Replication (Distributed Indexing)

Consider two index buckets B and B'. It is enough to replicate just the
path from the least common ancestor of B and B' just before the oc
currence of B\ provided we add some additional index information for
navigation.

The non-replicated distribution and the entire path replication methods are
two extremes. Distributed indexing aims at getting the best of both of these
schemes.

Below, we give an example to illustrate the three kinds of index distribution
methods. Consider a financial information system with the first level of the
index listing various categories of companies (Electronics, Computer, Chemical,
etc.). We will be concerned about the stock information (and the news clips
that follow it) of the computer companies. Figure 3 shows different index
distribution methods. Each method is illustrated showing two index levels.

Consider a client who is interested in news clips of IBM. In the non-replicated
distribution, the first level of index (Elec, Comp, Chem) will be published at
the beginning of each edition. The client who tunes in between points ' 1 ' and
'2' will miss the first level of index and will have to wait until the beginning of
the next edition. Thus, the latency in this method can be large.

In the entire path replication method, the whole path (the first level of the index
and the specific company index) is replicated in front of each data segment.
Clients who tune in between points ' 1 ' and '2' will be directed to the closest
bucket containing the first level of index. The next step is to follow the pointers
in the index hierarchy and ultimately download the required data. However,

312 CHAPTER 11

Non~replicated Distribution

SUN
Data
Segment

Elec
Comj:

Chen

SUN
IBM
HP

IBM
Data
Segment

Elec
Comp

Chem

SUN
IBM
HP

HP
Data
Segment

Entire Path Replication

CHEMICAL

1 Elec
IComp
Chem

A

SUN
IBM
HP

SUN
Data
Segment

1

2

SUN
IBM
HP

1

IBM
Data
Segment

t
SUN
IBM
HP

HP
Data
Segment

Distributed Indexing

Figure 3 Index Distribution Methods

Wireless Publishing: Issues and Solutions 313

even in this method, the latency can still be large. Replication of the first
index level results in the increase of the size of edition, and consequently, in
the increase in latency.

In the distributed indexing method, only the "relevant" index is replicated in
front of each data segment. In this method only the index corresponding to
computer companies is replicated in front of each data segment. The first level
index is published just once at the beginning of each category of the companies
(once in the Electronics category, once in the Computer category and once in
the Chemical category). Clients who tune in between points ' 1 ' and '3 ' are
directed to the first level at point '3 ' , and clients who tune in between points
'3 ' and '2' are directed to the index at point '2'. Next, the clients follows the
index hierarchy to get to the relevant data. Since a client does not have to wait
until the next edition if the data it is seeking is in front of it, the latency in
this method is smaller than the latency in the previous two methods.

Distributed indexing reduces unnecessary replication of the first level of the
index. As the number of levels of index and the capacity of an index bucket
(number of records an index bucket can hold) increases, the saving due to
distributed indexing becomes quite significant.

[8] describes distributed indexing in detail. Distributed indexing results in
approximately the best latency and the best tuning time.

Secondary Indexing

Various data organization and access techniques based on secondary indexing
are described in [9]. The (l ,m) indexing algorithm for general, secondary,
clustering indexes^ is very similar to the (l,r?i) indexing for primary index
except that the access protocol changes. The access protocol has to take into
account the fact that the client has to receive all the S buckets of data items
with the required key (as opposed to just one data item as in the case of primary
indexing). This is accomplished by downloading data items until a data item
with a key other than the query key K is encountered. The distributed indexing
algorithm for a clustering index is also very similar to the distributed indexing
algorithm for a primary index. The access protocol has to be modified to take
into account the selectivity of the attribute. Again, all data items satisfying

* Clustering index is an index on an attribute such that all records with the same value of
that attribute (say S buckets of records) are located nearby on the disk, or in our case are
broadcast successively.

314 CHAPTER 11

the search key have to be downloaded since, in principle, there may be more
than one record satisfying a query.

Usually, at most one index is clustered. Other indexes are defined over non-
clustered attributes. An index can be allocated for non-clustered attributes by
generalizing the distributed indexing technique. The proposed generalization
is based on the observation that even if a file is not clustered on a particu
lar attribute, it can be always decomposed into smaller fragments which are
clustered.

Contrary to disk based files, the latency for accessing data items based on
some attribute is dependent on the presence or absence of the index for other
attributes. Indeed, each additional index increases the overall latency while
decreasing the tuning time for the indexed attribute.

3.2 Hashing on Air

In general, different types of users may need different trade-offs between tuning
time and latency. Some may value lower latency and may have more leverage in
terms of the tuning time (larger laptops which have more powerful batteries),
while others may prefer lower tuning time and may be ready to pay for it
in terms of latency. Thus, we need flexible publishing techniques capable of
accommodating different classes of users^. The indexing techniques provided
in the previous subsection are not flexible in this sense since they do not benefit
from a more lenient tuning time requirement.

Hashing based techniques can be provided to improve the direct access prop
erties and reduce the tuning time. The hashing function can be given to a
mobile client as part of the handoff protocol and it can be invalidated when
the hashing function changes. If the hashing function changes very often, then
the above method may not be good. In this case, the hashing function has to
published as well. Hashing based techniques do not require a separate directory
to be published together with the data. The hashing parameters can be simply
included in the data buckets.

Figure 4 illustrates two possible hashing methods. The first method, called
Hashing A, uses the conventional hashing method for publishing, where every
data item is hashed into a bucket numbered between 1 and n.

^Notice this whole discussion arises because we have two basic performance parameters
instead of just one as in the case of disk based files.

Wireless Publishing: Issues and Solutions 315

lA B I

I

1
I

Z Apple IBM

21

Zenith

Hashing A

A Apple B I IBM Z T^nith

J
Hashing B

F i g u r e 4 Hashing Techniques

For illustration purpose, consider a hashing function that maps the company
name to the ordinal of the first character of the company name, e.g., Apple
is hashed to 1, IBM is hashed to 9 and Zenith is hashed to 24. The overflow
buckets (in case there are many companies with names starting with the same
first letter) are published starting from the 25th bucket (after all 24 "primary"
buckets are published). Thus all the information about companies whose name
starts with 'A' will be continued after bucket 25. This will be followed by the
information corresponding to companies whose name starts with 'B', etc. The
first 24 buckets will contain, in addition to the company data, the pointer to
the position in the broadcast where the overflow data (corresponding to this
bucket) is published. We assume that the hashing function is acquired by the
client upon registration. It may also be published as a part of each published
bucket.

A client searching for information about IBM would determine that it has to
tune to the 9th bucket (since the hash value of IBM is 9). If the initial tuning
took place before the point ' 1 ' , then the client could successfully download the
content of the bucket 9, switch into the doze mode, wake up at '2' and download
the rest of the required information. If the client tunes in between points ' 1 '
and '2' then it would miss bucket 9 (thereby missing the pointer to the position
of occurrence of IBM) and it will have to tune in at the 9th bucket of the next
edition^^. This increases the latency for the client.

^°If the client tunes in after the required information has passed (point '2 ' in this case),
then it will access it in the next edition.

316 CHAPTER 11

Note that the server knows the content of next edition of information to be
published, prior to publishing that edition. This observation can be used by
the server to provide a hashing function which is "optimal" for that specific
edition. This hashing technique which is better than Hashing A, is called
Hashing B.

The detailed description and analysis of flexible publishing techniques based on
hash functions (including Hashing A and Hashing B) are provided in [7].

Which hashing function minimizes the latency for a given file? For disk based
files, the best function is the perfect hashing function (a function with no
overflow). Contrary to disk based files, perfect hashing does not provide the
minimum latency in publishing. This critical difference comes from the fact
that the total number of buckets in an edition has immediate impact on the
latency (the more one has to wait for the next edition). The perfect hashing
function does not minimize the number of physical buckets necessary for the
edition. On the contrary, the more overflow buckets are used, the smaller the
total number of buckets in an edition. Indeed, the more overflow buckets the
file has, the lesser "half-empty" buckets are present in an edition and this
consequently results in better bucket utilization. The smaller the overflow
buckets, the lower the tuning time. This reaches the minimum for the perfect
hashing function. This further shows the basic diff'erences between the data
organization for publishing and data organization for disks. Hashing based
technique for the publishing displays a random access behavior for the tuning
time and a sequential access behavior for the access time (where the size of the
file matters). Hence, hashing functions used in disk based files cannot be used
directly for efficient publishing.

In the next subsection we elaborate on the communication issues.

3.3 Coramunication Issues

A number of practical communication issues have to be considered when pub
lishing using temporal addresses. We now discuss these communication issues
briefly. More details can be found in [9].

Synchronizat ion:
For selective tuning clients have to be guaranteed that data will appear on the
publishing channel at a pre-specified time, i.e., clients and the server (which
publishes the data) have to be synchronized. This calls for the network to be

Wireless Publishing: Issues and Solutions 317

deterministic. This is a reasonable assumption for exclusively used channels
such as Motorola's Satellite Networks (Embarc) where information is guaran
teed to come at a specific time since there is only one server and the clients
only listen.

In general, synchronization can be easily achieved if the MSS has a higher access
priority than any client. This is not the case for Ethernet where the publishing
traffic has to be interleaved with the on-demand traffic and it is very difficult to
adequately predict the time of transmission. For such channels, the techniques
for publishing have to be modified. One solution is to have the clients tune in
epsilon (buckets) ahead of time (the required bucket is expected to arrive on
the publishing channel). Epsilon varies from client to client depending on the
accuracy of its clock and the time after which it is tuning into the publishing
channel (the smaller the time period, the smaller the epsilon). Epsilon tuning
has to be done taking the setup time into consideration, i.e., the client has to be
in the active mode epsilon buckets in advance. Another solution, as described
in section 4, is to use multicast addresses. In this case, each data item is
multicast on a different multicast address and the client joins only multicast
groups of data items it is interested in.

Setup Time:
The setup time refers to the time taken by the CPU for switching between the
doze mode and the active mode (and vice versa). It can also refer to the time
necessary to switch the receiver on (or off). In reality, each tuning out and
tuning in operation will not occur instantaneously, but will take some small
amount of time. Usually, the setup time is negligible compared to the time it
takes to publish a bucket [14] and hence it can be ignored. In case the setup
time cannot be ignored, then all data access techniques have to be modified -
this is discussed in [9].

Reliability:
The error rates in wireless transmissions are much higher than the error rates
on fixed networks. Thus, maintaining the reliability of publishing in wireless
networks is an important issue. Publishing is inherently unreliable and meth
ods are needed for recovery, especially in an error prone wireless environment.
The conventional method of achieving reliability by means of retransmissions
and acknowledgments is not suited for publishing. A flood of negative acknowl
edgments will result in the acknowledgment implosion problem.

However, publishing being periodic in nature, data is retransmitted anyway in
the next edition. Thus, mitigating to a large extent, the effect of lost buckets.
Clients who miss buckets in a particular edition can receive them in the next

318 CHAPTER 11

edition with a very high probability. This results in an increase in latency for
those clients who perceive lost data.

Securi ty:
An information stream should be made secure and be available only to a selected
group of clients (who pay for it). This can be done by assigning a multicast
address for each service and providing this address only to clients who pay for
the service^ ̂ .

4 PUBLISHING USING MULTICAST
ADDRESSES

Hashing is a much more effective directory organization technique for multicast
based addressing than it is for the temporal based addresses. Indeed, the
multicast addresses do not need to be consecutive and therefore the multicast
addressing space is much easier to handle using hashing than the strictly ordered
temporal domain. There are two basic cases: the hashing function is acquired
by the client upon entering the cell, or it is published under some well known
multicast address.

The access protocol on the client side is simple. Depending on the data item
required, the client computes the hash value of the data item. It then sets
the network interface card to receive (listen to) all buckets on the multicast
address which corresponds to the hash value computed. The hashing function
can be given to the client as part of the handoff protocol. If the data file is very
dynamic (changes often) then the hashing function may have to change. In this
case, it might be better to have a multicast address reserved for publishing the
hashing function. Whenever the hashing function changes, the altered hashing
function is published on a predefined multicast address. This multicast address
can then be passed on to the clients as part of the registration in a new cell.

The latency for any data item depends on the publishing strategy used by the
server. If the server publishes all the data items periodically one after another,
then the latency for any data item is half the duration required to publish all
the data items (duration of an edition). A randomized publishing algorithm
which minimizes the expected latency is described in [10].

^^ Embarc uses this kind of solution.

Wireless Publishing: Issues and Solutions 319

The tuning time for accessing any data item depends on the number of multicast
addresses available. If the number of multicast addresses is greater than or
equal to the number of data items to be published, then the tuning time for
any data item is equal to one. If the number of multicast addresses is less
than the number of data items, then the tuning time for accessing a data item
depends on the way in which the data items are distributed among the multicast
addresses. In [15] an algorithm is provided that optimally partitions the data
items into the available multicast addresses so as to get the minimum tuning
time for accessing any data item.

Notice that no synchronization between the client and the server is necessary
in case the multicast addressing is used.

Below, an example of a hypothetical information service that is structured in
a hierarchical fashion is given.

4.1 An Example

In this example, we assume a hyperlink structure for the information service.
In this structure, in order to access a given bucket of information, the user has
to first access the parent of that bucket. Thus, the root of the structure and
its children are likely to be hotspots of requests and are good candidates for
publishing.

Consider figure 5, which shows an information service near an airport. The
root bucket of the service will have a number of options. The user can navigate
through the tree by selecting the required hyperlinks. The buckets with dark
background are published (the multicast address for the bucket is specified on
the top of the bucket) and the rest of the buckets are provided on demand. A
leaf bucket has various information about a particular flight, like the terminal
it is expected to depart from, the boarding gate, the time of arrival, etc. Some
of these buckets could be provided on-demand throughout the day, but 2 hours
before the time of departure of the flight, they can be published. As the time for
departure draws nearer, the frequency of publishing of that bucket can increase
and eventually after a few minutes of the departure of the flight, this bucket
can no longer be published and it can be provided on-demand again. Thus,
a bucket goes through diff^erent data delivery modes through the duration of
the day. Most of the time a bucket is identified by a specific IP address, using
which a client can access the bucket by the on-demand mode. A couple of hours
before the departure of the flight, the bucket is published using a temporal

320 CHAPTER 11

255.6.4.3

l»MiiI4'-il!'yjii
I l»!tTi'iT^-^!fi|i.T

255.6.4.9

UA111

|255.6.4.11

I255.6.4.I2

Terminal

Time

Direction

55.6.4.13

Directions
Parl(inaSDOt

Entrance
Exit

Trash Can

55.6.4.21

F i g u r e 5 An Information Service near an Airport

Wireless Publishing: Issues and Solutions 321

address. Clients can access the bucket by listening to the publishing channel,
say, at every 10th minute of the hour. Immediately, say 15 minutes, before
the departure of the flight, the bucket is published using a multicast address.
Clients join the multicast group corresponding to the required bucket.

Note that if the user is familiar with the layout of the information services (say,
the client has cached the directory), s/he can avoid going through the root and
accessing all the buckets along the path down to the leaf. For example, if the
user knows the flight number and needs to get the flight's arrival time s/he can
just specify the flight number followed by the required information.

5 ADAPTIVE PUBLISHING

Usually, the frequencies of requests for data items vary. Some data items are
requested very often and some others are rarely requested. The general phi
losophy should be to publish the more frequently requested data items more
often.

In [10] we consider publishing based on the access frequencies of the data items.
Additionally, as indicated earlier, the popular data items will be published and
the rest will be provided on demand. An algorithm called adaptive scheduling
algorithm is described in [10] for deciding which data items to publish and which
data items to provide on demand. This algorithm also optimally divides the
overall channel bandwidth between the publishing channel and the on-demand
channel.

5.1 General Model of a Server

How does the MSS decide which data items to publish and which provide on
demand? Let us consider all options starting from the standard client server
model (pure on-demand mode).

Exclusive On-demand

All the data items are assigned to the on-demand channel and the schedul
ing is by the M/M/1 queuing model. The queuing model can be varied.

This method can only handle up to a certain number of requests per unit of
time, beyond which the system will be blocked and the access time becomes

322 CHAPTER 11

infinite. This method has low power efficiency - any request requires a
power consuming uplink request.

This solution is desirable in case power efficiency is not an issue (a mobile
client powered from a car battery) and the volume of requests is not very
high.

• Batching

The on-demand requests are not handled immediately. All requests for a
data item are collected over a period of L time units and are served by the
same single download. In this case, each request is delayed by at most L
time units before it is downloaded.

The bandwidth efficiency is better than in the case of the exclusive on-
demand method. However, the power efficiency remains the same as in
the previous method. The recommendations are similar as in the previous
case.

• Exclusive Publishing

All the data items are assigned to the publishing channel and the schedul
ing is simple - the data items are published one after another. All the data
items are published equal number of times.

For small number of requests this method has a very low bandwidth effi
ciency. However, irrespective of the number of requests, there is no block
ing at all. If the directory is provided then, this method has the best power
efficiency, since uplink transmissions are completely avoided.

Wireless broadcasting services such as radio and TV use this publishing
method. This method is useful when dealing with one way communication,
for instance, it is useful for one way pagers and pager based communication.
As indicated earlier, this method is very useful for the dissemination of hot
spots. Another possible use is in situations when uplink transmission is
possible, but requires lot of power due to the large distance between the
mobile client and the MSS.

• Frequency Based Exclusive Publishing

The data items are published in the ratio of their frequencies. This method
has a better bandwidth efficiency than the exclusive publishing method and
is equally power efficient. Recommendations are similar as in the previous
case.

The next two strategies mix the publishing and the on-demand modes. They
strike a compromise between the best bandwidth efficiency and the best power
efficiency.

Wireless Publishing: Issues and Solutions 323

Greedy Publishing

In this method the on-demand traffic has a higher priority than publishing
traffic and consequently, the data items that are published are downloaded
by the MSS only when there is no on-demand traffic. Multicast addresses
are used by the MSS for publishing. Before submitting an upUnk request
for the required data item, the client first listens to the publishing channel.
Only if that data item is not provided within a specific period L, does the
client submit an uplink request.

Data items are published during the unused time between the retrieval of
data items by the on-demand mode. During the unused time, data items
are published in such a way that, the number of uplink transmissions are
minimized. Let Â denote the number of requests per unit time (access
frequency) for the data item Di. Let Ti denote the time period for which
data item Di hasn't been sent (either by publishing or by on-demand). The
algorithm is to publish data item Dj such that the following inequality is
satisfied:

Xj^Tj > = Xi*Ti Vz

This protocol uses the bandwidth very efficiently but, the blocking prob
lem characteristic of the pure on-demand mode cannot be avoided. This
method is not as power efficient as the pure publishing methods, since
uplink transmissions cannot be completely avoided.

Adaptive Publishing

Decisions about the bandwidth allocation between the two channels are
made dynamically, based on the request patterns of clients. For a given
bandwidth efficiency, such protocols have the best power efficiency. One
such algorithm is described in [10].

The above list is by no means exhaustive and there is a broad range of other
possible ways in which the MSS can schedule its services between the publishing
and the on-demand channels.

5.2 Gathering Access Profile of Clients

For adaptive publishing the frequencies of access for the various data items
have to be available. Gathering statistics for the data items that are accessed
on-demand is straightforward. The key difficulty is to obtain the frequency

324 CHAPTER 11

of access for the data items that are published. Obtaining such feedback is
contradictory to the nature and motivation of publishing which assumes no
uplink transmissions from the clients regarding the published data items.

Below, we give some methods for gathering statistics for the data items that
are published. They vary on how much the MSS is "up to date" regarding the
access frequencies of the data items.

When the client sends a request to the MSS for accessing a data item
provided by the on-demand mode, it piggybacks an additional message.
The piggybacked message will include the number of times it accessed
each data item (that was published) between the last access of a data item
accessed by the on-demand mode and the current request.

If the information service is organized as a tree (as in the WWW), then
it is may be the case that the top few levels are published and the rest,
especially the leaves, are provide on-demand. Hence, the request for each
leaf goes to the MSS. The frequency of access for each of the data items
in the interior of the tree can be extrapolated. The frequency of access of
a data item (in the interior of the tree) is equal to the sum of frequency of
access of its children.

In case the client informs the MSS just before disconnection (of its im
pending disconnection), then it can piggyback a message indicating the
number times it accessed each data item (belonging to the set of published
items) in the duration of its registration under that MSS.

The demand for the published data items can be measured periodically, by
taking a data item that is being currently published and providing it on-
demand for a while, thereby estimating as to how frequently that data item
is requested. This frequency of access of a data item is maintained until
the next time that data item is dropped again from the set of published
items. Depending on how accurately the MSS has to be informed of the
frequency of access for various data items, the data items can be dropped
often or just once in a while.

A representative sample of the client population can be monitored to ex
trapolate the access frequencies of the various data items.

Wireless Publishing: Issues and Solutions 325

6 OTHER INFORMATION DELIVERY
METHODS

In this subsection we describe data dissemination methods in case the data
changes often and in case the clients may frequently be disconnected.

Disconnection will be a feature not a bug in the wireless environment. Users
will disconnect in order to save batteries or access cost and hence proper dis
connection and reconnect ion protocols will have to be designed. Frequent dis
connection is a major factor that will affect caching solutions [2]. In [2] we
argue that solutions which require the server to maintain the precise state of
the clients, including information about who is disconnected, are impractical
due to mobility of the clients and possible frequent disconnections. Hence, we
have advocated a stateless solution in which the server does not maintain any
information about the state of the clients but rather periodically multicasts an
invalidation report which, for each data item provides the last timestamp when
this data item changed. Publishing information about changes (invalidations)
rather than the information itself is called called delta publishing. Delta pub
lishing is useful for disconnected clients because when a client becomes active, it
can compare the timestamp in the cache with the one obtained from the invali
dation report and decide to submit the "uplink message" only if the timestamp
of the cache is earlier (smaller). The granularity of invalidation report could
be much higher than individual cached data items. For example, one entry in
the invalidation report can represent to all NorthEast bound flights of a partic
ular airline. Invalidation report entry (NE, 11:05AM) will mean that the last
change to the North East schedules of that airline occurred at 11:05AM. Thus,
the clients who were disconnected, say, at 11:30AM and had a copy of the cache
with timestamp of 11:15 AM may avoid energy consuming uplink request.

A new set of issues come up when location dependent data is cached. Data such
as the name of nearest printer, supermarket, hospital, restaurant, etc. change
when users move. Assuming that the client caches several location dependent
data items, we would like to avoid a situation where each move by the client
would cause a "cache refresh" request to be sent uplink by the client. Different
data items may vary in their sensitivity to the location of the user. We discuss
the proposed solution to cache consistency of location dependent data.

The initial work in this direction has been published in [2]. In that manuscript
different types of invalidation reports has been introduced, namely broadcasting
timestamps, amnesic terminals and signatures. In the broadcasting timestamps
method, the invalidation report is composed of the timestamps of the latest

326 CHAPTER 11

change for items that have had updates in the last w seconds. The mobile
unit listens to the report and updates the status of its cache. For each item
cached, the mobile unit either purges it from the cache (when the item is
reported to have changed at a time larger than the timestamp stored in the
cache), or updates the cache's timestamp to the timestamp of the report (if
the item was not mentioned there). Note that this is done for every item in
the cache, regardless of whether there is a pending query to this item or not.
In the amnesic terminals strategy, the server only broadcasts the identifiers of
the items that have changed since the last invalidation report. A mobile client
that has been disconnected for while, needs to start rebuilding its cache from
scratch. As before, we assume that if the client is awake, it listens constantly
to reports and modifies its cache by dropping invalidated items. Finally, in
signatures the checksums computed over the values of items are sent in the
invalidation reports. This technique has been used for efficient testing if two
versions of a file differ. In [2], signatures is used to provide a compressed view
of all data items which have changed.

In [2] we provide extensive analysis comparing the performance the three tech
niques mentioned above. To this end we divide all mobile clients into sleepers
(units which are disconnected for a long time) and workaholics (units which are
on most of the time). The comparison shows that different caching techniques
are good for different client populations. For example, signatures are best for
long sleepers when the period of disconnection is long and difficult to predict.
Broadcasting with timestamps is effective for scenarios when the rate of queries
is greater than the volume of updates. Finally, the amnesic terminals are best
for workaholics.

The work described in [2] is only the initial effort in this direction. More work
is necessary in order to provide a comprehensive solution for the problem of
cache invalidation in mobile wireless environments. How do we decide whether
to use stateless caching techniques (when MSS does not maintain information
about the state of client's caches) or stateful methods?. When do we decide
whether to simply publish a new value rather than to use delta publishing by
sending an invalidation report? The last question is similar to the distinction
between change propagation and cache invalidation in standard caching. It is
important to develop methods to decide when it is more beneficial to publish a
data item rather than offer it in the delta publishing mode. It is also necessary
to examine methods based on quasicopies [1] in the context of delta publishing,
when invalidation report is based on larger granularity of changes (e.g., only
stock moves by more than 1% lead to cache invalidation). Flexible methods
based on quasicopies are extremely important in environments with widely

Wireless Publishing: Issues and Solutions 327

varying bandwidth - the lesser the bandwidth available, the more imprecise the
quasicopies become.

Finally, the issue of caching location dependent data deserves more attention.
To avoid refreshing the cache of location dependent data items upon every
move, we associate with each location dependent data item a concept of scope.
The scope is defined as the set of locations surrounding the current client's
location where the data item has still the same value. For example, the nearest
printer may be the same for the whole building and moving between different
floors would not affect the value of the nearest printer^^. In the proposed
solution the client caches a data item along with its scope and refreshes the
cache only when it moves out of the scope of that data item. We would like
to extend this technique for more complex queries that depend on location
dependent data.

7 CONCLUSIONS AND
IMPLEMENTATION STATUS

Future wireless information services will be provided through collections of
autonomous cells offering information services of widely varying geographic
scope. The information content, as well as the methods of its delivery may
differ from cell to cell. In this paper, we have described how the publishing
mode (for information delivery) can be combined with the standard client server
interactions to provide solutions which are both bandwidth and energy efficient.

In general, the more frequent the requests for a particular information, the
more it is worthy of publishing. It may also be appropriate to publish location
dependent data if the client population is highly mobile. One such example is an
airport setting, where there are a lot of requests for common information such
as airport layout and plane schedules. Although the airport layout (locations
of the restrooms, shops, etc.) does not change, the population of clients is
highly transient and, thus, it makes sense to publish such information. Time
dependent data, i.e., information which changes often, may also be appropriate
for publishing. This is true irrespective of the mobility of the clients. The data
delivery mode in a cell will also be determined by its size. The smaller the cell

The mobile user usually is aware of his location clown to the level of a cell by recognizing
a beacon periodically transmitted by the MSS. Using Global Positioning System (GPS) may
provide more precise determination of location in the future.

328 CHAPTER 11

size (which translates to smaller number of clients) the less likely is the use of
publishing mode.

Implementation Status

The publishing mode is currently being investigated and implemented at our
lab, both in a wireless LAN setting (Wavelan) and in an outdoor radio (CDPD)
setting. The current implementation which is based on multicast addressing,
is a stock server application. In this application stock quotes are periodically
published on a wireless LAN and the clients filter the published data stream to
access information about individual stocks.

The earlier mentioned Infostations project will use publishing mode as one of
the basic modes in which the i n f o s t a t i o n s will provide information to their
clients. The adaptive methods described in this paper, which are different
combinations of the publishing and the on-demand modes, will be used for the
Infostations project.

REFERENCES

[1] Rafael Alonso and Hank Korth, "Database Issues in Nomadic Computing,"
MITL Technical Report-36-92, December 1992.

[2] Daniel Barbara and T. Imielinski, "Sleepers and Workaholics: Caching
Strategies in Mobile Environment," Proc. of ACM-SIGMOD, International
Conference on Data Management - Minnessota - pp. 1-12, May 1994.

[3] T. F. Bowen et al., "The Datacycle Architecture," Communications of the
ACM, Vol. 35, No. 12, pp. 71-81, December 1992.

[4] David Cheriton, "Dissemination-Oriented Communication Systems,"
Stanford University, Technical Report, 1992.

[5] David Gifford et. al., "The Application of Digital Broadcast Communica
tion to Large Scale Information Systems," IEEE Journal on selected areas
in communications, Vol 3, No. 3, pp. 457-467, May 1985.

[6] G. Herman et al., "The Datacycle Architecture for Very Large High
Throughput Database Systems," Proc of ACM SIC MOD Conference, San
Francsco-California, pp. 97-103, May 1987.

Wireless Publishing: Issues and Solutions 329

[7] T. Imielinski, S. Viswanathan and B. R. Badrinath, "Power Efficient Fil
tering of Data on Air," Proc, of 4 ih International Conference on EDBT
(Extending DataBase Technology), Cambridge-U.K, pp. 245-258, March
1994.

[8] T. Imielinski, S. Viswanathan and B. R. Badrinath, "Energy Efficient
Indexing on Air," Proc. of ACM-SIGMOD, International Conference on
Data Management, Minnessota, pp. 25-36, May 1994.

[9] T. Imielinski, S. Viswanathan and B. R, Badrinath, "Data on Air : Or
ganization and Access," To appear in IEEE Transactions in Data and
Knowledge Engineering, 1995.

[10] T„ Imiehnski and S. Viswanathan, "Adaptive Wireless Information Sys
tems," Proc. of SIGDBS (Special Interest Group in DataBase Systems)
Conference, pp. 19-41, Tokyo-Japan, October 94.

[11] Christopher O'Malley, "Turning Down the Power," Mobile Office, pp. 118-
120, June 1993.

[12] Samuel Sheng, Ananth Chandrasekaran, and R. W. Broderson, "A
Portable Multimedia Terminal for Personal Communications," IEEE Com
munications Magazine, pp. 64-75, December 1992.

[13] Swarup Acharya, Rafael Alonso, Michael Franklin and Stanley Zdonik,
"Broadcast Disks: Data Management for Asymmetric Communication En
vironments," Proc. of ACM-SIGMOD, International Conference on Man
agement of Data, San Jose, pp. 199-210, June 1995.

[14] Steele, Raymond., "Mobile Radio Communications," Pentech Press, Pub
lishers - London, 1992.

[15] S. Viswanathan, "Publishing in Wireless and Wireline Environments,"
Ph.D. Thesis - Rutgers, The State University of New Jersey, 1994.

[16] Lee, William C. Y., "Mobile Cellular Telecommunications Systems," New
York: McGraw-Hill, 1989.

[17] J.W. Wong., "Broadcast Delivery," Proc. of the IEEE, Vol. 76, No. 12, pp.
1566-1577, December 1988.

12
BROADCAST DISKS: DATA

MANAGEMENT FOR
ASYMMETRIC COMMUNICATION

ENVIRONMENTS
Swarup Acharya*, Rafael Alonso**,

Michael Franklin***, and Stanley Zdonik*

* Department of Computer Science, Brown University
Providence, Rhode Island 02912

** Matsushita Information Technology Laboratory
Princeton, NJ 08540

*** Department of Computer Science, University of Maryland
College Park, Maryland 20742

USA

ABSTRACT

This pape r proposes t h e use of repet i t ive broadcas t as a way of augment ing t h e m e m

ory hierarchy of clients in an a symmet r i c communica t ion env i ronment . We describe

a new technique called "Broadcas t Disks" for s t ruc tu r ing t h e b roadcas t in a way t h a t

provides improved performance for non-uniformly accessed d a t a . T h e Broadcas t Disk

super imposes mul t ip le disks spinning a t different speeds on a single b roadcas t chan

nel — in effect creat ing an arbi t rar i ly fine-grained m e m o r y hierarchy. In addi t ion t o

proposing and defining t h e mechanism, a ma in result of th is work is t h a t exploi t ing

t h e po ten t ia l of t h e b roadcas t s t ruc tu re requires a re-evaluat ion of basic cache m a n

agement policies. We examine several "pure" cache m a n a g e m e n t policies and develop

Previously appeared in Proceedings of the ACM SIGMOD International Conference on
the Management of Data, 1995, pp. 199-210. Copyright ©1995 by the Association for Com
puting Machinery, Inc. Reprinted by permission. Permission to make digital or hard copies
of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or direct commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc.,
fax + 1 (212) 869-0481,or (permissions@acm.org)

332 CHAPTER 12

and measure implementable approximations to these policies. These results and oth
ers are presented in a set of simulation studies that substantiates the basic idea and
develops some of the intuitions required to design a particular broadcast program.

1 I N T R O D U C T I O N

1.1 Asymmetric Communication Environments

In many existing and emerging application domains the downstream communi
cation capacity from servers to clients is much greater than the upstream com
munication capacity from clients back to servers. For example, in a wireless
mobile network, servers may have a relatively high bandwidth broadcast capa
bility while clients cannot transmit or can do so only over a lower bandwidth
(e.g., cellular) link. Such systems have been proposed for many application
domains, including traffic information systems, hospital information systems,
public safety applications, and wireless classrooms (e.g.,[Katz94, Imie94a]). We
refer to these environments as Asymmetric Communications Environments.

Communications asymmetry can arise in two ways: the first is from the band
width limitations of the physical communications medium. An example of
physical asymmetry is the wireless environment as described above; stationary
servers have powerful broadcast transmitters while mobile clients have little or
no transmission capability. Perhaps less obviously, communications asymme
try can also arise from the patterns of information flow in the application. For
example, an information retrieval system in which the number of clients is far
greater than the number of servers is asymmetric because there is insufficient
capacity (either in the network or at the servers) to handle the simultaneous
requests generated by the multiple clients.

Because asymmetry can arise due to either physical devices or workload char
acteristics, the class of asymmetric communications environments spans a wide
range of important systems and applications, encompassing both wired and
wireless networks. Examples include:

Wireless networks with stationary base stations and mobile clients.

Information dispersal systems for volatile, time-sensitive information such
as stock prices, weather information, traffic updates, factory floor infor
mation, etc.

Broadcast Disks 333

Cable or satellite broadcast television networks with set-top boxes that al
low viewers to communicate with the broadcasting home office, and video-
on-demand servers.

Information retrieval systems with large client populations, such as mail
order catalog services, mutual fund information services, software help
desks, etc.

1.2 Broadcast Disks

In traditional client-server information systems, clients initiate data transfers by
sending requests to a server. Such systems are pull-based; the clients "pull" data
from the server in order to provide data to locally running applications. Pull-
based systems are a poor match for asymmetric communications environments,
as they require substantial upstream communications capabilities. To address
this incompatibility, we have proposed a new information system architecture
that exploits the relative abundance of downstream communication capacity
in asymmetric environments. This new architecture is called Broadcast Disks.
The central idea is that the servers exploit their advantage in bandwidth by
broadcasting data to multiple clients. We refer to this arrangement as a push-
based architecture; data is pushed from the server out to the clients.

In this approach, a server continuously and repeatedly broadcasts data to the
clients. In effect, the broadcast channel becomes a "disk" from which clients
can retrieve data as it goes by. Broadcasting data has been proposed previ
ously [Herm87, Giif90, Imie94b]. Our technique differs, however, in two ways.
First, we superimpose multiple disks of different sizes and speeds on the broad
cast medium, in effect, creating an arbitrarily fine-grained memory hierarchy.
Second, we exploit client storage resources as an integral part of this extended
memory hierarchy.

The broadcast is created by assigning data items to different "disks" of varying
sizes and speeds, and then multiplexing the disks on the broadcast channel.
Items stored on faster disks are broadcast more often than items on slower
disks. This approach creates a memory hierarchy in which data on the fast
disks are "closer" to the clients than data on slower disks. The number of
disks, their sizes, and relative speeds can be adjusted, in order to more closely
match the broadcast with the desired access probabilities at the clients. If the
server has an indication of the client access patterns (e.g., by watching their
previous activity or from a description of intended future use from each client),
then hot pages (i.e., those that are more likely to be of interest to a larger part

334 CHAPTER 12

of the client community) can be brought closer while cold pages can be pushed
further away.

1.3 Scope of the Paper

In this paper, we focus on a restricted broadcast environment in order to make
an initial study of the broadcast disk approach feasible. The restrictions in
clude:

The client population and their access patterns do not change. This implies
that the content and the organization of the broadcast program remains
static.

Data is read-only; there are no updates either by the clients or at the
servers.

Clients retrieve data items from the broadcast on demand; there is no
prefetching.

Clients make no use of their upstream communications capability, i.e., they
provide no feedback to servers.

In this environment, there are two main interrelated issues that must be ad
dressed:

1. Given a client population and a specification of their access probabilities
for the data items, how does the server construct a broadcast program to
satisfy the needs of the clients?

2. Given that the server has chosen a particular broadcast program, how does
each client manage its local data cache to maximize its own performance?

The remainder of the paper is organized as follows. Section 2 discusses the
way in which we structure the broadcast program and Section 3 shows how
the client's cache management policy should be designed to complement this
choice. Section 4 describes our simulation model and Section 5 develops the
main experimental results derived from this model. Section 6 compares o îr
work to previous work on repetitive broadcast. Section 7 summarizes our results
and describes our future work.

Broadcast Disks 335

STRUCTURING THE BROADCAST
DISK

2.1 Properties of Broadcast Programs

In a push-based information system, the server must construct a broadcast
"program" to meet the needs of the client population. In the simplest scenario,
given an indication of the data items that are desired by each client listening
to the broadcast, the server would simply take the union of the requests and
broadcast the resulting set of data items cyclicly. Such a broadcast is depicted
in Figure 1.

Figure 1 A Flat Broadcast Program

When an application running on a client needs a data item, it first attempts
to retrieve that item from the local memory or disk. If the desired item is not
found, then the client monitors the broadcast and waits for the item to arrive.^
With the flat broadcast, the expected wait for an item on the broadcast is
the same for all items (namely, half a broadcast period) regardless of their
relative importance to the clients. This "flat" approach has been adopted in
earlier work on broadcast-based database systems such as Datacycle[Bowe92]
and [Imie94a].

Alternatively, the server can broadcast different items with differing frequency.
Such a broadcast program can emphasize the most popular items and de-
emphasize the less popular ones. Theoretically, the generation of such non-
flat broadcast programs can be addressed as a bandwidth allocation problem;
given all of the client access probabilities, the server determines the optimal
percentage of the broadcast bandwidth that should be allocated to each item.
The broadcast program can then be generated randomly according to those

^This discussion assumes that broadcast items are self-identifying. Another option is to
provide an index, as is discussed in [Imie94b].

336 CHAPTER 12

bandwidth allocations, such that the average inter-arrival time between two in
stances of the same item matches the needs of the client population. However,
such a random broadcast will not be optimal in terms of minimizing expected
delay due to the variance in the inter-arrival times.

A simple example demonstrating these points is shown in Figure 2. The figure
shows three different broadcast programs for a data set containing three equal-
length items (e.g., pages). Program (a) is a flat broadcast, while (b) and (c)
both broadcast page A twice as often as pages B and C. Program (b) is a skewed
broadcast, in which subsequent broadcasts of page A are clustered together. In
contrast, program (c) is regular, there is no variance in the inter-arrival time for
each page. The performance characteristics of program (c) are the same as if
page A was stored on a disk that is spinning twice as fast as the disk containing
pages B and C. Thus, we refer to program (c) as a Multi-disk broadcast.

<3=
III
(a)

B
(b)

M.
(c)

Figure 2 Three Example Broadccist Programs

Table 1 shows the expected delay for page requests given various client ac
cess probability distributions, for the three different broadcast programs. The
expected delay is calculated by multiplying the probability of access for each
page times the expected delay for that page and summing the results. There
are three major points that are demonstrated by this table. The first point is
that for uniform page access probabilities (1/3 each), a flat disk has the best
expected performance. This fact demonstrates a fundamental constraint of the
Broadcast Disk paradigm, namely, that due to fixed bandwidth, increasing the
broadcast rate of one item must necessarily decrease the broadcast rate of one
or more other items. The second point, however, is that as the access probabil
ities become increasingly skewed, the non-flat programs perform increasingly
better.

Broadcast Disks 337

Access Probability 1

A

0.333
0.50
0.75
0.90
1.0

B

0.333
0.25

0.125
0.05
0.0

C

0.333
0.25

0.125
0.05
0.0

1 Expected Delay
1 (in broadcast units)

Flat

1 (a)
1.50
1.50
1.50
1.50
1.50

Skewed
(b)
1.75
1.63
1.44
1.33
1.25

Multi-disk
(c)

1.67
1.50
1.25
1.10
1.00

T a b l e 1 Expected Delay For Various Access Probabilities

The third point demonstrated by Table 1 is that the Multi-disk program always
performs better than the skewed program. This behavior is the result of the
so-called Bus Stop Paradox. If the inter-arrival rate (i.e., broadcast rate) of a
page is fixed, then the expected delay for a request arriving at a random time
is one-half of the gap between successive broadcasts of the page. In contrast,
if there is variance in the inter-arrival rate, then the gaps between broadcasts
will be of different lengths. In this case, the probability of a request arriving
during a large gap is greater than the probability of the request arriving during
a short gap. Thus the expected delay increases as the variance in inter-arrival
rate increases.

In addition to performance benefits, a Multi-disk broadcast has several other
advantages over a random (skewed) broadcast program. First, the random
ness in arrivals can reduce the effectiveness of some prefetching techniques
that require knowledge of exactly when a particular item will next be broad
cast [Zdon94]. Second, the randomness of broadcast disallows the use of "sleep
ing" to reduce power consumption (as in [Imie94b]). Finally, there is no notion
of "period" for such a broadcast. Periodicity may be important for providing
correct semantics for updates (e.g., as was done in Datacycle [Herm87, Bowe92])
and for introducing changes to the structure of the broadcast program. For
these reasons, we argue that a broadcast program should have the following
features:

The inter-arrival times of subsequent copies of a data item should be fixed.

338 CHAPTER 12

There should be a well defined unit of broadcast after which the broadcast
repeats (i.e., it should be periodic).

Subject to the above two constraints, as much of the available broadcast
bandwidth should be used as possible.

2.2 Broadcast Program Generation

In this section we present a model for describing the structure of broadcast
programs and describe an algorithm that generates broadcast programs with
the desired features listed in the previous section. The algorithm imposes a
Multi-disk structure on the broadcast medium in a way that allows substantial
flexibility in fitting the relative broadcast frequencies of data items to the access
probabilities of a client population.

The algorithm has the following steps (for simplicity, assume that data items
are "pages", that is, they are of a uniform, fixed length):

1. Order the pages from hottest (most popular) to coldest.

2. Partition the list of pages into multiple ranges., where each range contains
pages with similar access probabilities. These ranges are referred to as
disks.

3. Choose the relative frequency of broadcast for each of the disks. The only
restriction on the relative frequencies is that they must be integers. For
example given two disks, disk 1 could be broadcast three times for every
two times that disk 2 is broadcast, thus, reLfreq(l) = 3, and reLfreq(2) = 2.

4. Split each disk into a number of smaller units. These units are called
chunks (dj refers to the j ^ ^ chunk in disk i). First, calculate max-chunks
as the Least Common Multiple (LCM) of the relative frequencies. Then,
split each disk i into num.chunks(i) = max.chunks / reLfreq(i) chunks. In
the previous example, num-chunks(l) would be 2, while num^chunks(2)
would be 3.

5. Create the broadcast program by interleaving the chunks of each disk in the
following manner:

Broadcast Disks 339

01 for z := 0 to max.chunks - 1
02 for j := 1 io num-disks
03 k := i mod num-chunks{j)
04 Broadcast chunk Cj^k
05 endfor
06 endfor

Figure 3 shows an example of broadcast program generation. Assume a list
of pages that has been partitioned into three disks, in which pages in disk
1 are to be broadcast twice as frequently as pages in disk 2, and four times
as frequently as pages in disk 3. Therefore, reLfreq(l) = 4, reLfreq(2) = 2,
and reLfreq(3) = 1. These disks are split into chunks according to step 4 of the
algorithm. That is max-chunks is 4, so num.chunks(l) = 1, num-chunks(2) = 2,
and num.chunks(3) = 4. Note that the chunks of different disks can be of
differing sizes. The resulting broadcast consists of 4 minor cycles (containing
one chunk of each disk) which is the LCM of the relative frequencies. The
resulting broadcast has a period of 16 pages. This broadcast produces a three-
level memory hierarchy in which disk one is the smallest and fastest level and
disk three is the largest and slowest level. Thus, the multi-level broadcast
corresponds to the traditional notion of a memory hierarchy.

Database HOT WM$
(paaes) WKLA^

10 11 COLD

Tracks 4 5 6 7 8 9 10 11

Chunks I E 4 5 6 7 8 9 10 11

^1,1 ^2,1 ^2,2 ^3J ^3,2 ^3,3 ^3,4

Major Cycle

l i iEEHIllEHi 1110 11

l^y,/ ^,1 (^3,1,1^1,1^2,2 ^3,2 ^1,1^,1 ^3,3 ^1,1 ^2,2 ^3,4

Minor Cycle

Figure 3 Deriving a Server Broadcast Program

340 CHAPTER 12

The algorithm produces a periodic broadcast program with fixed inter-arrival
times per page. Some broadcast slots may be unused however, if it is not
possible to evenly divide a disk into the required number of chunks (i.e., in
Step 4 of the algorithm). Of course, such extra slots need not be wasted,
they can be used to broadcast additional information such as indexes, updates,
or invalidations; or even for extra broadcasts of extremely important pages.
Furthermore, it is anticipated that the number of disks will be small (on the
order of 2 to 5) and the number of pages to be broadcast will be substantially
larger, so that unused slots (if any) will be only a small fraction of the total
number of slots; also, the relative frequencies can be adjusted slightly to reduce
the number of unused slots, if necessary.

The disk model, while being fairly simple, allows for the creation of broadcast
programs that can be fine-tuned to support a particular access probability dis
tribution. There are three inter-related types of knobs that can be turned to
vary the shape of the broadcast. First, the number of disks (nurri-disks) deter
mines the number of different frequencies with which pages will be broadcast.
Then, for each disk, the number of pages per disk, and its relative frequency of
broadcast {reLfreq(i)) determine the size of the broadcast, and hence the arrival
rate (in real, rather than relative time) for pages on each disk. For example,
adding a page to a fast disk can significantly increase the delay for pages on the
slower disks. Intuitively, we expect that fast disks will be configured to have
many fewer pages than the slower disks, although our model does not enforce
this constraint.

Recall that the only constraint on the relative broadcast frequencies of the
disks is that they be expressed as positive integers. Thus, it is possible to
have arbitrarily fine distinctions in broadcasts such as a disk that rotates 141
times for every 98 times a slower disk rotates. However, this ratio results in
a broadcast that has a very long period (i.e., nearly 14,000 rotations of the
fast disk). Furthermore, this requires that the slower disk be of a size that can
be split into 141 fairly equal chunks. In addition, it is unlikely that such fine
tuning will produce any significant performance benefit (i.e., compared to a 3
to 2 ratio). Therefore, in practice, relative frequencies should be chosen with
care and when possible, approximated to simpler ratios.

While the algorithm specified above generates broadcast programs with the
properties that we desire, it does not help in the selection of the various pa
rameter values that shape the broadcast. The automatic determination of these
parameters for a given access probability distribution is a very interesting opti
mization problem, and is one focus of our on-going work. This issue is beyond
the scope of the current paper, however. In this paper we focus on examining

Broadcast Disks 341

the basic properties of this new paradigm of broadcast disks. The broadcast
disk changes many basic assumptions on which traditional pull-based mem
ory hierarchies are founded. As a result, it is imperative to first develop an
understanding of the fundamental tradeoffs that affect the performance of a
broadcast system. The performance study described in Section 5 presents an
initial investigation of these issues.

3 CLIENT CACHE MANAGEMENT

The shared nature of the broadcast disk, while in principle allowing for nearly
unlimited scalability, in fact gives rise to a fundamental tradeoff: tuning the
performance of the broadcast is a zero-sum game; improving the broadcast for
any one access probability distribution will hurt the performance of clients with
different access distributions. The way out of this dilemma is to exploit the
local memory and/or disk of the client machines to cache pages obtained from
the broadcast. This observation leads to a novel and important result of this
work: namely, that the introduction of broadcast fundamentally changes the
role of client caching in a client-server information system. In traditional, pull-
based systems clients cache their hottest data (i.e., the items that they are most
likely to access in the future). In the push-based environment, this use of the
cache can lead to poor performance if the server's broadcast is poorly matched
to the client's page access distribution. This difference arises because of the
serial nature of the broadcast disk — broadcast pages are not all equidistant
from the client.

If the server can tailor the broadcast program to the needs of a particular
client, then the client can simply cache its hottest pages. Once the client has
loaded the hottest pages in its cache, then the server can place those pages on a
slower spinning disk. This frees up valuable space in the fastest spinning disks
for additional pages. In general, however, there are several factors that could
cause the server's broadcast to be sub-optimal for a particular client:

• The access distribution that the client gives the server may be inaccurate.

• A client's access distribution may change over time.

• The server may give higher priority to the needs of other clients with
different access distributions.

342 CHAPTER 12

The server may have to average its broadcast over the needs of a large
client population. Such a broadcast program is likely to be sub-optimal
from the point of view of any one client.

For these reasons, in a push-based system clients must use their cache not to
store simply their hottest pages, but rather, to store those pages for which the
local probability of access is significantly greater than the page's frequency of
broadcast. For example, if there is a page P that is accessed frequently only
by client C and no other clients, then that page is likely to be broadcast on
a slow disk. To avoid long waits for the page, client C must keep page P
cached locally. In contrast, a page Q that is accessed frequently by most clients
(including client C), will be broadcast on a very fast disk, reducing the value
of caching it.

The above argument leads to the need for cost-based page replacement. That is,
the cost of obtaining a page on a cache miss must be accounted for during page
replacement decisions. A standard page replacement policy tries to replace
the cache-resident page with the lowest probability of access (e.g., this is what
LRU iries to approximate). It can be shown that under certain assumptions,
an optimal replacement strategy is one that replaces the cache-resident page
having the lowest ratio between its probability of access (P) and its frequency
of broadcast {X). We refer to this ratio (P/X) as VI^ {P Inverse X). As an
example of the use of VI^, consider two pages. One page is accessed 1% of
the time at a particular client and is also broadcast 1% of the time. A second
page is accessed only 0.5% of the time at the client, but is broadcast only 0.1%
of the time. In this example, the former page has a lower VI^ value than the
latter. As a result, a page replacement policy based on VIA! would replace the
first page in favor of the second, even though the first page is accessed twice as
frequently.

While VI^ can be shown to be an optimal policy under certain conditions, it
is not a practical policy to implement because it requires: 1) perfect knowledge
of access probabilities and 2) comparison of VIX values for all cache-resident
pages at page replacement time. For this reason we have investigated im-
plementable cost-based algorithms that are intended to approximate the per
formance of VI^. One such algorithm, adds frequency of broadcast to an
LRU-style policy. This new policy is called CIX and is described and analyzed
in Section 5.4.

Broadcast Disks 343

4 MODELING THE BROADCAST
ENVIRONMENT

In order to better understand the properties of broadcast program generation
and client cache management we have constructed a simulation model of the
broadcast disk environment. The simulator, which is implemented using CSIM
[Schw86], models a single server that continuously broadcasts pages and a single
client that continuously accesses pages from the broadcast and from its cache.
In the simulator, the client generates requests for logical pages. These logical
pages are then mapped to the physical pages that are broadcast by the server.

The mapping of logical pages to physical pages allows the server broadcast to be
varied with respect to the client workload. This flexibility allows the simulator
to model the impact of a large client population on the performance of a single
client, without having to model the other clients. For example, having the client
access only a subset of the pages models the fact that the server is broadcasting
pages for other clients as well. Furthermore, by systematically perturbing the
client's page access probabilities with respect to the server's expectation of those
probabilities, we are able to vary the degree to which the server broadcast favors
the particular client that we are modeling. The simulation model is described
in the following sections.

4.1 Client Execution Model

The parameters that describe the operation of the client are shown in Table 2.
The simulator measures performance in logical time units called broadcast units.
A broadcast unit is the time required to broadcast a single page. In general, the
results obtained from the simulator are valid across many possible broadcast
media. The actual response times experienced for a given medium will depend
on the amount of real time required to broadcast a page.

CacheSize
ThinkTime

AccessRange

e
RegionSize

Client cache size (in pages)
Time between client page accesses
(in broadcast units)
of pages in range accessed by client
Zipf distribution parameter
of pages per region for Zipf distribution

T a b l e 2 Client Parameter Description

344 C H A P T E R 12

The client runs a continuous loop that randomly requests a page according
to a specified distribution. The client has a cache that can hold CacheSize
pages. If the requested page is not cache-resident, then the client waits for
the page to arrive on the broadcast and then brings the requested page into
its cache. Client cache management is done similarly to buffer management in
a traditional system; if all cache slots are occupied, then a page replacement
policy is used to choose a victim for replacement.^ Once the requested page
is cache resident, the client waits ThinkTime broadcast units of time and then
makes the next request. The ThinkTime parameter allows the cost of client
processing relative to page broadcast time to be adjusted, thus it can be used
to model workload processing as well as the relative speeds of the CPU and the
broadcast medium.

The client chooses the pages to access from the range 1 to AccessRange, which
can be a subset of the pages that are broadcast. All pages outside of this range
have a zero probability of access at the client. Within the range the page access
probabilities follow a Zipf distribution [KnutSl, Gray94], with page 1 being
the most frequently accessed, and page AccessRange being the least frequently
accessed. The Zipf distribution is typically used to model non-uniform access
patterns. It produces access patterns that become increasingly skewed as 6
increases — the probability of accessing any page numbered i is proportional
to {l/iY' Similar to earlier models of skewed access [Dan90], we partition
the pages into regions of RegionSize pages each, such that the probability of
accessing any page within a region is uniform; the Zipf distribution is applied
to these regions. Regions do not overlap so there are AccessRange/RegionSize
regions.

4.2 Server Execution Model

The parameters that describe the operation of the server are shown in Ta
ble 3. The server broadcasts pages in the range of 1 to ServerDBSize, where
ServerDBSize > AccessRange. These pages are interleaved into a broadcast
program according to the algorithm described in Section 2. This program is
broadcast repeatedly by the server. The structure of the broadcast program
is described by several parameters. NumDisks is the number of levels (i.e.,
"disks") in the multi-disk program. By convention disks are numbered from
1 (fastest) to 'N=NumDisks (slowest). DiskSizci, i G [1..N], is the number of
pages assigned to each disk i. Each page is broadcast on exactly one disk, so
the sum of DiskSizci over all i is equal to the ServerDBSize.

•̂ We discuss the performance of various replacement policies in Section 5.

Broadcast Disks 345

ServerDBSize
NumDisks
DiskSizei
A

Offset
Noise

Number of distinct pages to be broadcast
Number of disks
Size of disk i (in pages)
Broadcast shape parameter
Offset from default client access
% workload deviation

Table 3 Server Parameter Description

In addition to the size and number of disks, the model must also capture their
relative speeds. As described in Section 2, the relative speeds of the various
disks can be any positive integers. In order to make experimentation tractable,
however, we introduce a parameter called A, which determines the relative
frequencies of the disks in a restricted manner. Using A, the frequency of
broadcast reLfreq{i) of each disk z, can be computed relative to re/_/re^(N),
the broadcast frequency of the slowest disk (disk N) as follows:

^^^iS) =(N-i)A + l

When A is zero, the broadcast is flat: all disks spin at the same speed. As A is
increased, the speed differentials among the disks increase. For example, for a
3-disk broadcast, when A = 1, disk 1 spins three times as fast as disk 3, while
disk 2 spins twice as fast as disk 3. When A = 3, the relative speeds are 7, 4,
and 1 for disks 1, 2, and 3 respectively. It is important to note that A is used
in the study only to organize the space of disk configurations that we examine.
It is not part of the disk model as described in Section 2.

The remaining two parameters, Offset and Noise, are used to modify the map
ping between the logical pages requested by the client and the physical pages
broadcast by the server. When Offset and Noise are both set to zero, then
the logical to physical mapping is simply the identity function. In this case,
the DiskSizei hottest pages from the client's perspective (i.e., 1 to DiskSizei)
are placed on disk 1, the next DiskSize2 hottest pages are placed on disk 2,
etc. However, as discussed in Section 3, this mapping may be sub-optimal due
to client caching. Some client cache management policies tend to fix certain
pages in the client's buffer, and thus, those pages do not need to be broadcast
frequently. In such cases, the best broadcast can be obtained by shifting the
hottest pages from the fastest disk to the slowest. Offset is the number of pages
that are shifted in this manner. An offset of K shifts the access pattern by K

346 CHAPTER 12

DISK2

r̂ *" -

:<^^^

jg^

•••' \ 'i." \ •'\ V ^ ** , ,

<"} ""^J:^".. y-''^ '\'^ """-"

-J

-<-^-»- AccessRange ServDBSize

Figure 4 Using Offset to vary client access

pages, pushing the K hottest pages to the end of the slowest disk and bringing
colder pages to the faster disks. The use of offset is demonstrated in Figure 4.

In contrast to Offset^ which is used to provide a better broadcast for the client,
the parameter Noise is used to introduce disagreement between the needs of
the client and the broadcast program generated by the server. As described
in Section 2, such disagreement can arise in many ways, including dynamic
client access patterns and conflicting access requirements among a population
of clients. Noise determines the percentage of pages for which there may be a
mismatch between the client and the server. That is, with probabiUty Noise
the mapping of a page may be switched with a different page.

The generation of the server broadcast program works as follows. First, the
mapping from logical to physical pages is generated as the identity function.
Second, this mapping is shifted by Offset pages as described above. Third, for
each page in the mapping, a coin weighted by Noise is tossed. If based on the
coin toss, a page i is selected to be swapped then a disk d is uniformly chosen
to be its new destination.^ To make way for z, an existing page j on d is chosen,
and i and j exchange mappings.

5 EXPERIMENTS AND RESULTS

In this section, we use the simulation model to explore the performance char
acteristics of the broadcast disk. The primary performance metric employed

•^Note that a page may be swapped with a page on its own disk. Such a swap does not
affect performance in the steady state, so Noise represents the upper hmit on the number of
changes.

Broadcast Disks 347

ThinkTime
ServerDBSize
AccessRange
CacheSize
A

e
Offset
Noise
RegionSize

2.0
5000
1000
50(5%), 250(25%), 500(50%)
1,2,...7
0.95
0, CacheSize
0%, 15%, 30%, 45%, 60%, 75%
50

Table 4 Parameter Settings

in this study is the response time at the client, measured in broadcast units.
The server database size {ServerDBSize) was 5000 pages, and the client access
range AccessRange was 1000 pages. The client cache size was varied from 1
(i.e., no caching) to 500 (i.e., half of the access range). We studied several
different two-disk and three-disk configurations of broadcast programs. All of
the results presented in the paper were obtained once the client performance
reached steady state. The cache warm-up effects were eliminated by begin
ning our measurements only after the cache was full, and then running the
experiment for 15,000 or more client page requests (until steady state).

Table 4 shows the parameter settings used in these experiments. It should
be noted that the results described in this section are a very small subset of
the results that have been obtained. These results have been chosen because
they demonstrate many of the unique performance aspects and tradeoffs of
the broadcast disk environment, and because they identify important areas for
future study.

5.1 Experiment 1: N o Caching, 0% Noise

The first set of results examine the case where the client performs no caching
(i.e., it has a cache size of one page). Figure 5 shows the client response time
vs. A for a number of two and three disk configurations. In this graph, Noise
is set to 0%, meaning that the server is providing preferential treatment to the
client (i.e., it is giving highest priority to this client's pages). As A is increased
along the x-axis of the figure, the skew in the relative speeds of the disks is
increased (as described in Section 4). As shown in the figure, the general trend
in these cases is that response time improves with increasing disk skew. When
A = 0, the broadcast is flat (i.e., all disks rotate at the same speed). In this

348 CHAPTER 12

3000
D1 <500,4500> ^
D2<900,4100> R--
D3 <2500.2500> X
D4 <300,1200,3500> A
D5 <500,2000,2500> G "

0 1 2 3 4 5 6 7
Delta

Figure 5 Client Performance, Cache Size = 1, Noise= 0%

case, as would be expected, all disks result in a response time of 2500 pages —
half the ServerDBSize. As A is increased, all of the disk configurations shown
provide an improvement over the flat disk. The degree of improvement begins
to flatten for most configurations around a A value of 3 or 4.

Turning to the various disk configurations, we first examine the two-disk con
figurations: Dl , D2, and D3. For Dl , 500 pages fit on the first (i.e., fastest)
disk. Because Noise and Offset are both zero, the hottest half of the client's
access range is on the fast disk, and the colder half is on the slower disk. As
A is increased, performance improves until A = 3 because the hotter pages
are brought closer. Beyond this point, the degradation caused by the access to
the slow pages (which get pushed further away) begins to hurt performance.
In contrast, D2, which places 90% of the client access range (900 pages) on
the fast disk improves with increasing A for all values of A in this experiment.
Because most of the accessed pages are on the fast disk, increasing A pushes
the colder and unused pages further away, allowing the accessed pages to arrive
more frequently. At some point, however, the penalty for slowing down the 10%
will become so great that the curve will turn up again as in the previous case.
The final two-disk configuration, D3, has equal sized disks. Although all of the
accessed data fits on the fast disk, the fast disk also includes many unaccessed
pages. The size of the fast disk causes the frequencies of the pages on this disk
to be lower than the frequencies of pages on the fast disks of D2 and Dl at
corresponding values of A. As a result, D3 has the worst performance of the
two-disk configurations for most of the A values shown.

Turning to the three-disk configurations: D4 and D5, it can be seen that config
uration D4, which has a fast disk of 300 pages has the best performance across
the entire range. At a A of 7, its response time is only one-third of the flat-disk

Broadcast Disks 349

response time. D5, which is simply the D3 disk with its first disk split across
two disks, performs better than its two-disk counterpart. The extra level of disk
makes it easier to match the broadcast program to the client's needs. However,
note that response time for D5 is typically higher than the two-disk D2, and
thus, the extra disk level does not necessarily ensure better performance.

5.2 Experiment 2: Noise and No Caching

In the previous experiment, the broadcast program generation was done giving
our client's access pattern the highest priority. In this experiment we examine
the performance of the broadcast disk as the server shifts its priority away from
this client (i.e., as Noise is increased). These results are shown in Figures 6
and 7, which show how the client performs in the presence of increasing noise
for configurations D3 (two-disks) and D4 (three-disks) from Figure 5 respec
tively. As expected, performance suff'ers for both configurations as the Noise
is increased; as the mismatch between the broadcast and the client's needs
increases, the skew in disk speeds starts to hurt performance. Ultimately, if
the mismatch becomes great enough, the multi-disk approach can have worse
performance than the flat disk. This is shown in the performance disk of D3
(Figure 6). This susceptibility to a broadcast mismatch is to be expected, as
the client accesses all of its data from the broadcast channel. Thus, it is clear
that if a client does not have a cache, the broadcast must be well suited for that
client's access demands in order to gain the benefits of the multi-disk approach.

F i g u r e 6 Noise Sensitivity - Disk
D3(<2500,2500>), CacheSize = 1

F i g u r e 7 Noise Sensitivity - Disk
D4(<300,1200,3500>), Cac/ie5'zze = 1

350 CHAPTER 12

5.3 Experiment 3: Caching and Noise

The previous experiments showed that even in the absence of caching, a multi
level disk scheme can improve performance, but that without a cache, per
formance can suffer if the broadcast program is poorly suited to the client's
access demands. In this experiment we introduce the use of a client cache, to
reduce the expected page access delay and to increase the client's tolerance to
mismatches in the broadcast program. We use an idealized page replacement
policy called 'P, which keeps the pages with the highest probability of access in
the cache. 'P, however, it is not an implementable policy, as it requires perfect
knowledge of access probabilities and a great deal of local computation.^ We
use P , therefore, to gain an understanding of the performance in a simplified
setting and as a point-of-reference for other (implementable) policies.

In steady state, a client using the V replacement policy will have the CacheSize
hottest pages in its cache. Consequently, broadcasting these cache-resident
pages on the fastest disk is a waste of bandwidth. Thus, as stated in Section 4.2,
the best broadcast program will be obtained by shifting the CacheSize hottest
pages from the fastest disk to the slowest. Such shifting is accomplished in the
simulation model by setting Offset = CacheSize.^ Given this Offset^ we now
examine the effectiveness of a cache (using the idealized V replacement policy)
in allowing a client to tolerate Noise in the broadcast. Figure 8 shows the
impact of increasing Noise on the performance of the three-disk configuration
D4 as A is varied. In the case shown, CacheSize and Offset are both set to
500 pages. Comparing these results with the results obtained in the no caching
case (see Figure 7), we see that although as expected the cache greatly improves
performance in an absolute sense, surprisingly, the cache-based numbers are if
anything, somewhat more sensitive to the degree of Noise than the non-caching
numbers. For example, in the caching case, when A is greater than 2, the higher
degrees of noise have multi-disk performance that is worse than the flat disk
performance, whereas this crossover did not occur for similar A values in the
non-caching case. The reason for this additional sensitivity is that when Noise
is low and Offset = CacheSize^ V does exactly what it should do — it caches
those hot pages that have been placed on the slowest disk, and it obtains
the remainder of the hottest pages from the fastest disk. However, as noise
increases, V caches the same pages regardless of what disk they are stored on.
Caching a page that is stored on the fastest disk is often not a good use of the
cache, as those pages are broadcast frequently. As noise increases, V's cache
hit rate remains the same, but its cache misses become more expensive, as it

It is trivial to implement V in the simulator, as the probability of each page is known
from the client access distribution.

^The impact the Offset parameter is discussed in more detail in [Acha94].

Broadcast Disks 351

has to retrieve some pages from the slower disks. These expensive cache misses
are the cause of 7 '̂s sensitivity to Noise.

F i g u r e 8 Noise Sensitivity - Disk D4,
CacheSize = 500, Rep. Policy = V

F i g u r e 9 Noise Sensitivity - Disk D4,
CacheSize = 500, Rep. Policy = VIX

800

700

600

500-

400

300

200j

100

0

.X-

P Delta 3 <0 -
Deltas X-

PIX Delta 3 R--
DeltaS S
Delta 0 + -

30 45
Noise%

F i g u r e 10 V vs. VXX With Varying
Noise, Disk D4, CacheSize = 500

O0.6-I

<

«0.4^

^0.2-1

0.0 Ml

Cache

^ D i s k 2
^ • D i s k S

is_̂
PIX

F i g u r e 11 Access Locations for V vs.
VXX, Disk D4, CacheSize = 500, Noise
= 30%, A = 3

5.4 Cost Based Replacement Algorithms

In the previous section, it was shown that while standard caching can help
improve performance in a multi-disk broadcast environment, it can actually
increase the client's sensitivity to Noise. Recall that Noise represents the degree
to which the server broadcast deviates from what is best for a particular client.
It is likely, therefore, that some type of "noise" will be present in any application
in which there are multiple clients that access the broadcast disk. The V
replacement policy was found to be sensitive to noise because it ignored the cost

352 CHAPTER 12

of re-acquiring a page when choosing a victim for replacement. To address this
deficiency, we examine a second idealized algorithm called VTX^ that extends
V with the notion of cost. As stated in Section 3, VXX always replaces the page
with the lowest ratio of access probability to broadcast frequency. Thus, the
cost of re-accessing a replaced page is factored into the replacement decision.

Experiment 4- VXX and Noise

Figure 9 shows the response time of the client using VXX for the same case
that the previous experiment showed for V (see Figure 8). Comparing the two
figures it can be seen that VXX is much more successful at insulating the client
response time from effects of Noise. Of course, an increase in Noise still results
in a degradation of performance; this is to be expected. However, unHke the
case with 'P, using VXX the performance of the client remains better than
the corresponding flat disk performance for all values of Noise and A in this
experiment. Under VXX, the performance of the client for a given Noise value
remains stable as A is increased beyond a certain point. In contrast, under V,
in the presence of noise, the performance of the client quickly degrades as A is
increased beyond a value of 1 or 2. This experiment demonstrates the potential
of cost-based replacement for making the broadcast disk practical for a wider
range of applications.

Figure 10 shows results from the same set of experiments in a sUghtly different
light. In this figure, the effect of increasing noise on the response time of the
two algorithms for A = 3 and A = 5 is shown. The performance for the fiat
disk (A = 0) is given as a baseline.^ Note that V degrades faster than VXX
and eventually becomes worse than the flat disk at around Noise = 45%. VXX
rises gradually and manages to perform better than the flat disk within these
parameters. Also, notice how 'P's performance degrades for A = 5; unHke VXX
it fails to adapt the cache contents with increasing differences in disk speeds.

The performance differences between the two algorithms result from the differ
ences in the places from which they obtain their pages (as shown in Figure 11
for the case where Noise = 30%). It is interesting to note that VXX has a
lower cache hit rate than V. A lower cache hit rate does not mean lower re
sponse times in broadcast environments; the key is to reduce expected latency
by caching important pages that reside on the slower disks. VXX gets fewer
pages from the slowest disk than does V, even though it gets more pages from

^Note that at A = 0 (i.e., a flat disk), V and VXX are identical, as all pages are broadcast
at the same frequency.

Broadcast Disks 353

the first and second disks. In this case, this tradeoff results in a net performance
win.

5.5 Implementing Cost Based Policies

The previous sections have shown that multi-disk broadcast environments have
special characteristics which when correctly exploited can result in significant
performance gains. They also demonstrated the need for cost-based page re
placement and examined a cost-based algorithm (VTA!). Unfortunately, like
V, the policy on which it is based, VI^ is not an implementable algorithm.
However, based on the insight that we gained by examining V and VXJY we
have designed and implemented an approximation of'PJA', which we call CIM.

CZX is a modification of LRU that takes into account the broadcast frequency.
LRU maintains the cache as a single linked-list of pages. When a page in the
cache is accessed, it is moved to the top of the list. On a cache miss, the page
at the end of the chain is chosen for replacement.

In contrast, CXX maintains a number of smaller chains: one corresponding to
each disk of the broadcast ^CIX reduces to LRU if the broadcast uses a single
flat disk). A page always enters the chain corresponding to the disk in which
it is broadcast. Like LRU, when a page is hit, it is moved to the top of its own
chain. When a new page enters the cache, CXX evaluates a fe value (see next
paragraph) only for the page at the bottom of each chain. The page with the
smallest lix value is ejected, and the new page is inserted in the appropriate
queue. Because this queue might be different than the queue from which the
slot was recovered, the chains do not have fixed sizes. Rather, they dynamically
shrink or grow depending on the access pattern at that time. CXX performs
a constant number of operations per page replacement (proportional to the
number of disks) which is the same order as that of LRU. Figure 12 shows an
example of CXX for a two-disk broadcast. Pages g and k are at the bottom
of each chain. Since g has a lower lix value it is chosen as the victim. The
new page z, being picked from the second disk, joins Disk2Q. Note the relative
changes in the sizes of both the queues.

In order to compute the lix value, the algorithm maintains two data items per
cached page i : a running probability estimate (pi) and the time of the most
recent access to the page {U), When the page i enters a chain, pi is initially set
to zero and U is set to the current time. If i is hit again, the new probability
estimate for i is calculated using the following formula:

354 CHAPTER 12

DisklQ Disk2Q

lix =0.37

a
b
c
d
e
f
9

h

• l i i l

-/

DisklQ Disk2Q

New Page

J

lix = 0.85

a
b
c
d
e
f

z
h
i

J
k

New Page = z

Figure 12 Page replacement in CXX

Pi = A / (CurrentTime- U) -f (1- A)pi ^

ti is then subsequently updated to the current time. A is a constant used
to appropriately weigh the most recent access with respect to the running
probability estimate; in these experiments, it is set to 0.25. This formula
is evaluated for the least recently used pages of each chain to estimate their
current probability of access. This value is then divided by the frequency for
the page (which is known exactly) to get the lix value. The page with the
lowest lix value is ejected from the cache. £JA' is a simple approximation
of VIM^ yet in spite of this, it performs surprisingly well (as is shown below).
Better approximations of VIA!, however, might be developed using some of the
recently proposed improvements to LRU like 2Q[John94] or LRU-k[ONei93].

Experiment 5: CXX vs. LRU

The next set of experiments are similar to those for V and VIX and compare
CIA! and LRU. However, unlike V, the best performance for LRU isn't at an
offset equal to the cache size. Being only an approximation of 'P, LRU isn't
able to retain all of the hot pages that are stored on the slowest disk and
thus, it performs poorly at this offset. For similar reasons, CIA! also does not
perform best at this offset. As a result, we also compared the performance
of CIA! and LRU to a modified version of CIA! called C. C behaves exactly
like CIA! except that it assumes the same value of frequency for all pages.
Thus, the difference in performance between C and LRU indicates how much
better (or worse) an approximation of probability C provides over LRU, and
the performance difference between CIA! and C shows the role that broadcast
frequency plays (if any) in the performance of the caching strategies.

Broadcast Disks 355

Figure 13 shows the performance of the three algorithms for different values
of A. These results show the sensitivity of the algorithms to changing A for
the same case as in Figure 10 (i.e., Offset=CacheSize=bOO), with Noise set to
30%. In this experiment, LRU performs worst and consistently degrades as A
is increased. C does better at A = 1 but then degrades. The benefits of using
frequency are apparent from the difference in response time between CIA! and
£. The response time of CIA! is only between 25% to 50% that of C. The solid
line on the bottom of the graph shows how the ideal policy (VXA!) performs;
it does better than CIA!, but only by a small margin. The factors underlying
these results can be seen in Figure 14, which shows the distribution of page
access locations for the results of Figure 13 when A is set to 3. In this case,
CIA! obtains a much smaller proportion of its pages from the slowest disk than
do the other algorithms. Given that the algorithms have roughly similar cache
hit rates, the differences in the distributions of access to the different disks is
what drives the performance results here.

F i g u r e 13 Sensitivity to A - Disk D4,
CacheSize = 500, Noise = 30%

W0.6

^0 .2 J

m i \m

I I I Cache
^ D i s k l
^Disk2
• Disk3

LRU LIX

F i g u r e 14 Page Access Locations
Disk D4, CacheSize = 500, Noise =
30%, A = 3

Figure 15 shows the performance of the three algorithms with varying Noise
with A = 3. In this case, it can be seen that C performs only somewhat better
than LRU. The performance of £JAf degrades with noise as expected, but it
outperforms both C and LRU across the entire region of Noise values. These
results demonstrate that the frequency-based heuristic of CIA! can provide
improved performance in the presence of noise.

356 CHAPTER 12

Figure 15 Noise Sensitivity - Disk D4, CacheSize = 500, A = 3

6 PREVIOUS WORK

While no previous work has addressed multilevel broadcast disks and the re
lated cache management techniques described in this paper, several projects
in mobile databases and other areas have performed related work. As stated
previously, the notion of using a repetitive broadcast medium for database
storage and query processing was investigated in the Datacycle project at Bell
core [Herm87, Bowe92]. Datacycle was intended to exploit high bandwidth,
optical communication technology and employed custom VLSI data filters for
performing associative searches and continuous queries on the broadcast data.
Datacycle broadcast data using a flat disk approach and so the project did
not address the multi-level disk issues that we have addressed in this paper.
However, the Datacycle project did provide an optimistic form of transaction
management which employed an "upstream network" that allowed clients to
communicate with the host. We intend to investigate issues raised by allow
ing such upstream communication through low-bandwidth links as part of our
ongoing work. An early effort in information broadcasting, the Boston Com
munity Information System (BCIS) is described in [Giff90]. BCIS broadcast
newspapers and information over an FM channel to clients with personal com
puters specially equipped with radio receivers. Like Datacycle, they too used
a flat disk approach.

More recently, the mobile computing group at Rutgers has investigated tech
niques for indexing broadcast data [Imie94b]. The main thrust of this work
has been to investigate ways to reduce power consumption at the clients in
order to preserve battery life. Some of the indexing techniques described in

Broadcast Disks 357

[Imie94b] involve the interleaving of index information with data, which forms
a restricted type of multilevel disk. However, this work did not investigate the
notion of replicating the actual data to support non-uniform access patterns
and did not investigate the impact of caching. In our current work we have as
sumed a fixed broadcast program, so that indexing was not needed. However,
we are currently investigating ways to integrate indexes with the multilevel
disk in order to support broadcast program changes due to client population
changes and updates. Caching in a mobile environment has been considered
in [Barb94]. However, their model was different in that it considered volatile
data and clients who could be inactive (and/or disconnected) over long periods
of time. Thus, the focus of both broadcasting and caching in this work was
to efficiently detect and avoid access to stale data in the cache. Very recently,
another approach to broadcasting data for video on demand has been taken in
[Vish94]. The technique, called pyramid broadcasting, splits an object (e.g., a
video clip) into a number of segments of increasing sizes. To minimize latency
the first segment is broadcast more frequently than the rest. While similar in
spirit, a key difference is that the data needed by the client is known a priori
once the first segment (the choice of movie) is decided upon and thus, they do
not need to address the issues related to caching dealt in this paper.

The issues that arise due to our use of a broadcast medium as a multi-level
device also arise in other, more traditional types of complex memory hierarchies.
The need for cost-based caching and page replacement has been recognized in
other domains in which there is a wide variation in the cost of obtaining data
from different levels of the storage hierarchy. For example, [Anto93] describes
the need for considering "cost of acquisition" for page replacement in deep-
store file systems involving tertiary mass storage. This issue is also addressed
for client-server database systems in which a global memory hierarchy is created
by allowing clients to obtain data from other clients that have that data cached
[Fran92]. In this work, server page replacement policies are modified to favor
pages that are not cached at clients, as they must be obtained from disk,
which is more expensive. Recently, a technique called "Disk-Directed I /O" has
been proposed for High Performance Computing applications [Kotz94]. Disk-
Directed I/O sends large requests to I/O devices and allows the devices to
fulfill the requests in a piecemeal fashion in an order that improves the disk
bandwidth. Finally, the tradeoff between replication to support access to hot
data while making cold data more expensive to access has been investigated
for magnetic disks [Akyu92].

358 CHAPTER 12

7 SUMMARY AND FUTURE WORK

In this paper, we have described our design of a multilevel broadcast disk
and cache management policies for this style of memory. We believe that
this approach to data management is highly applicable to asymmetric network
environments such as those that will naturally occur in the Nil as well as many
other modern data delivery systems. We have demonstrated that in designing
such disks, the broadcast program and the caching policy must be considered
together.

It has been shown that there are cases in which the performance of both two
and three level disks can outperform a flat broadcast even when there is no
caching. We have argued that our scheme for interleaving the data is desirable
because it provides a uniform expected latency.

We have further shown that introducing a cache can provide an advantage by
smoothing out disagreement between the broadcast and the client access pat
terns. The cache gives the clients a way to hoard their hottest pages regardless
of how frequently they are broadcast. However, doing page replacement solely
on probability of access can actually increase a client's sensitivity to the server's
broadcast.

We then introduced a caching policy that also took into account the broadcast
frequency during replacement. We showed that this not only improves client
performance but also shields it from vagaries of the server broadcast. This is
because the clients can cache items that are relatively hot and reside on a slow
disk and thus, avoid paying high cache miss penalties.

Finally, we demonstrated a straightforward implementation technique that ap
proximates our ideal cost-based caching scheme. This technique is a modifica
tion of LRU which accounts for the diff^erences in broadcast frequency of the
data.

We believe that this study while interesting and useful in its own right, is just
the tip of the iceberg. There are many other opportunities that can be exploited
in future work. Here, we have only considered the static read-only case. How
would our results have to change if we allowed the broadcast data to change
from cycle to cycle? What kinds of changes would be allowed in order to keep
the scheme manageable, and what kinds of indexing would be needed to allow
the client to make intelligent decisions about the cost of retrieving a data item
from the broadcast?

Broadcast Disks 359

We are currently investigating how prefetching could be introduced into the
present scheme. The client cache manager would use the broadcast as a way to
opportunistically increase the temperature of its cache. We are exploring new
cache management metrics for deciding when to prefetch a page.

We would also like to provide more guidance to a user who wants to configure a
broadcast. We have experimental results to show that good things can happen,
but given a workload, we would like to have concrete design principles for
deciding how many disks to use, what the best relative spinning speeds should
be, and how to segment the client access range across these disks. We are
pursuing an analytic model to address this.

Finally, once the basic design parameters for broadcast disks of this kind are
well-understood, work is needed to develop query processing strategies that
would exploit this type of media.

Acknowledgements

The authors would like to thank M. Ranganathan for providing them with
a number of important insights into the properties of broadcast programs.
Franklin's research was supported in part by a grant from the University of
Maryland General Research Board, NSF grants IRI-9409575 and IRI-9501353
and by a gift from Intel Corporation. Acharya and Zdonik were supported in
part by ONR grant number N00014-91-J-4085 under ARPA order number 8220
and by a gift from Intel Corporation. Acharya was also supported in part by a
fellowship from IBM Corporation.

REFERENCES

[Acha94] S. Acharya, R. Alonso, M. Franklin, S. Zdonik, "Broadcast Disks:
Data Management for Asymmetric Communications Environments", Tech.
Report CS-94-43, Brown Univ.; Tech. Report CS-TR-3369, Univ. of Mary
land, Oct. 1994.

[Akyu92] S. Akyurek, K. Salem, "Placing Replicated Data to Reduce Seek
Delays" Proc. USENIX File System Conf., May 1992.

[Anto93] C. Antonelli, P. Honeyman, "Integrating Mass Storage and File Sys
tems", Proc. 12th IEEE Symp on Mass Storage Sys., 1993.

[Barb94] D. Barbara, T. Imielinski, "Sleepers and Workaholics: Caching Strate
gies in Mobile Environments",Proc. ACM SIGMOD Conf., May, 1993.

[Bowe92] T. Bowen, et al. "The Datacycle Architecture" CACM 35,(12), Dec,
1992.

[Dan90] A. Dan, D. M. Dias, P. Yu, "The Effect of Skewed Access on Buffer
Hits and Data Contention in a Data Sharing Environment", Proc. 16th
VLDB Conf., Aug., 1990.

[Fran92] M. Franklin, M. Carey, M. Livny, "Global Memory Management in
Client-Server DBMS Architectures", Proc. 18th VLDB Conf., Aug., 1992.

[Giff90] D. Gifford, "Polychannel Systems for Mass Digital Communica
tions", C l̂ CM, 33(2), Feb., 1990.

[Gray94] J. Gray, et al., "Quickly Generating Billion-Record Synthetic
Databases", Proc. ACM SIGMOD Conf., May, 1994.

[Herm87] G. Herman, G. Gopal, K. Lee, A. Weinrib, "The Datacycle Architec
ture for Very High Throughput Database Systems", Proc. ACM SIGMOD
Conf., May, 1987.

[Imie94a] T. Imielinski, B. Badrinath, "Mobile Wireless Computing: Challenges
in Data Management", CACM, 37(10), Oct., 1994.

[Imie94b] T. Imielinski, S. Viswanathan, B. Badrinath, "Energy Efficient In
dexing on Air" Proc. ACM SIGMOD Conf., May, 1994.

[John94] T. Johnson, D. Shasha, "2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm", Proc. 20th VLDB Conf.,
Sept., 1994.

Broadcast Disks 361

[Katz94] R. Katz, "Adaption and Mobility in Wireless Information Systems",
IEEE Personal Comm., 1st Quarter, 1994.

[KnutSl] D. Knuth, "The Art of Computer Programming, Vol I F , Addison
Wesley, 1981.

[Kotz94] D. Kotz, "Disk-directed I/O for MIMD Multiprocessors", 1st Sympo
sium on OS Design and Implementation^ USENIX, Nov., 1994.

[ONei93] E. J. O'Neil, P. E. O'Neil, G. Weikum, "The LRU-k Page Re
placement Algorithm for Database Disk Buffering", Proc. ACM SIGMOD
Conf., May, 1993.

[Schw86] H. D. Schwetman, "CSIM: A C-based process oriented simulation
language", Proc. 1986 Winter Simulation Conf.^ 1986.

[Vish94] S. Vishwanath, T. Imielinski, "Pyramid Broadcasting for Video on
Demand Service", Rutgers Univ. Tech. Report DCS TR-311, 1994.

[Zdon94] S. Zdonik, M. Franklin, R. Alonso, S. Acharya, "Are 'Disks in the
Air' Just Pie in the Sky?", IEEE Wkshp on Mobile Comp. Sys. and Ap
plications, Santa Cruz, CA, Dec, 1994.

13
APPLICATION DESIGN FOR

WIRELESS COMPUTING
Terri Watson

Department of Computer Science & Engineering,

University of Washington, Seattle, WA 98195

USA

ABSTRACT

As mobile computing becomes more prevalent, systems and applications must deal
with a growing disparity among resource types and availabilities at the user interface
device. Network properties, display size, input method, and local storage are some
of the more obviously affected characteristics. Although the challenges of effectively
managing these resources are partially addressed by existing systems, their solutions
are hindered by the system's lack of knowledge about application behavior. This,
combined with the narrower application domain commonly used during mobile com
puting, suggests addressing these concerns from the application level. This paper
presents strategies for designing applications for a wireless environment, by reducing
the demands placed on the wireless network. A World Wide Web client browser is
used to illustrate this design.

1 INTRODUCTION

Today's wireless technologies have latency and bandwidth characteristics that
are anachronistic in the context of current wired networks and applications'
expectations. Although these limitations are being addressed in successive
technologies, the performance disparity between wireless and wired networks
is likely to remain. The problems of wireless links, such as high and variable
latency, low bandwidth, high cost, and incomplete coverage, argue for a soft-

This research was sponsored by a Presidential Young Investigator Award from the Na
tional Science Foundation, with matching funds from the Xerox Corporation.

Copyright ©1994 by IEEE. Reprinted, with permission, from Proceedings of the Work
shop on Mobile Computing Systems and Applications, December 1994.

364 CHAPTER 13

ware architecture that reduces the demands placed on the wireless link, and
supports disconnected operation.

Several systems exist that provide various solutions for dealing with network
resource scarcity. Coda [10, 6] and Little Work [5] both use caching to permit
continued operation during disconnection. RUSE [7] and newer revisions of
the ParcTab [1] download code to the mobile device permitting some local
interactions. This reduces user-perceived latency and often the amount of data
transferred for those operations.

Although techniques for tolerating network constraints (for example, caching
and prefetching) are often employed at the system level, their effectiveness
is hindered by a lack of information. We chose to attack the problem from
a higher level, and present a strategy for designing applications whose data
and functional organization provide implicit information about structure and
reference patterns to increase the benefits of traditional techniques.

If one examines the use of emerging PDAs and other handheld devices, their
utility is derived from a fairly small set of applications. In inventory, medical
and other vertical markets, the number of applications is even fewer, and appli
cations are tailored to the device. In light of this, it is reasonable to (re)design
wireless applications to perform well in the presence of resource constraints and
diversity. This application-level approach directly addresses two goals: first, to
exploit an application's knowledge of its own behavior, and second, to spec
ify user interactions in a more abstract manner, to reduce the dependency on
particular input and output devices. This paper focuses on the first goal, as it
applies to using the network link more effectively.

The remainder of the paper is structured as follows. Section 2 presents a
strategy for designing applications that use the network link more effectively.
Section 3 briefly describes our wireless platform. Section 4 uses W*, a World
Wide Web client browser, to illustrate the design of a wireless appHcation.
Section 5 details our experiences with W*. Section 6 contains the conclusions
and future work.

Application Design for Wireless Computing 365

1 Technique

1 caching
1 prefetch
1 data encoding
1 lazy evaluation
1 futures
1 data reduction

Potential Benefits [

reduce latency and bandwidth [
hide latency, reduce burstiness |
reduce bandwidth and latency |
reduce bandwidth |
hide latency through concurrency |
reduce bandwidth and latency |

T a b l e 1 Communication Optimization Techniques

2 APPLICATION DESIGN FOR A
WIRELESS ENVIRONMENT

Central to the design of our mobile software is the concept of a partitioned
application. Application functionality is partitioned into components that ex
ecute either on the mobile device or a machine on the wired network. This
has similarities to a client/server or network agent [2, 1] architecture, but with
slightly different characteristics than are typical for either of those models. The
interface boundary is chosen based on efficiency and constrained by network
connectivity and data or function location. A typical partition might place
data gathering and parsing functions in the wired network component, and
user interface functions in the mobile component. In some cases, the boundary
may change dynamically.

Partitioning is only one part of designing applications that make effective use
of the mobile network. Table 1 lists several well-known techniques for more
effective use of the communications link and their potential benefits. Unfortu
nately, the policy decisions for when to exercise many of these usually rely on
predictions concerning data access patterns.

The following design strategies strive to maximize the accuracy of these pre
dictions, provide additional information about relative data importance, and
increase the usability of the wireless application.

Expose network costs. Structure the user interface to unobtrusively convey
information about high cost operations, offer lower cost versions of the same,
facilitate user hints to designate background data transfer, and facilitate user-
specified data filters that are applied on the wired-network side.

366 CHAPTER 13

Organize to provide reference information. Structure the application to imply
what data will be accessed next based on the current context, and to allow data
transfer during user latency, transfer of important data first or by itself (hier
archical), and continued operation on available data when new data requests
are unsatisfied.

Utilize wired-network resources. Use a wired-network workstation to reduce or
filter the data sent to the client, provide additional resources to the mobile
device (CPU, disk space), hide limitations of the mobile device from network
applications (including disconnection, high latency), and allow the mobile de
vice to exploit services in the network.

Adapt to variations in network connectivity. Structure the application to allow
adaptation to connectivity changes through migrating function and adaptive
data transfer, and by providing functionality on the mobile device to support
some form of disconnected operation.

In general, the application should be structured to expose information about
which data is necessary and important (to the user as well as to the application),
which data is most likely to be needed next, and alternative actions to be taken
if the data is unavailable. This information is used to more effectively exploit
traditional techniques.

3 WIRELESS PLATFORM

The software system platform for our wireless applications is Wit [12], the suc
cessor to BNU [13]. Wit is a system infrastructure that supports wireless con
nection of a palmtop to the wired LAN. Wireless communication occurs through
infra-red transceivers and software developed at Xerox PARC. Wit provides a
primitive windowing system, non-preemptive threads, and connections, all of
which are controlled by applications through a Tel [9] interpreter. These ser
vices support local execution, which is required by disconnected operation, and
permit a wide range of solutions for hiding low bandwidth constraints.

The system hardware platform includes HPlOOlx palmtops (PC-XT compat
ible, 80cl86 processor) as the mobile devices, SUN workstations and PARC
IR transceivers. The transceivers communicate with an attached palmtop or
workstation via a serial link at 38000 bps, and over the wired network at 19200

Application Design for Wireless Computing 367

bps. In practice, the data throughput is significantly lower (3000-4000 bps) due
to a combination of transceiver and protocol overheads.

Wireless communication links are shared with ParcTabs [1] using the PARC
IRNet. Communication is routed as follows. Packets travel from the palmtop
to its attached transceiver, wirelessly to another transceiver attached to a work
station, and then to the controlling gateway process on the workstation. The
gateway forwards the packet on to the appropriate Wit process for that palm
top, which may pass the data on to an application component. The ParcTab
software tracks location and performs cell handofF as appropriate.

4 W* : A W^IRELESS APPLICATION

We focused our initial application efforts on a World Wide Web (WWW) [3, 15]
client browser. This is a hypertext browser that retrieves documents based on
the user's selection of a hyperlink. Hyperlinks point to documents that are
related to the text in which they appear. There are several motivations for
choosing this application:

1. The growing popularity of WWW [8] is increasing the amount of interesting
and useful information accessible through web browsers.

2. Information retrieval and management are two of the primary uses of
PDAs. A WWW client is an obvious choice for extending information
retrieval over the wireless connection.

3. The highly structured nature of hypertext documents is well suited to
exploring application specific optimizations for low bandwidth links.

4. The hypertext interface has minimal input requirements that are well
suited to pen or limited keyboard interactions.

Other applications that allow interactive retrieval of information from the wired
network, such as email, netnews, or documentation readers, are also good can
didates for this approach.

W*, Wit's wireless WWW browser, is used to illustrate how application struc
ture and data can be tailored for better use of communication optimization
techniques. Table 2 lists the techniques along with some example applications

368 CHAPTER 13

1 Technique

1 caching
1 prefetch
1 data encoding
1 lazy evaluation
1 futures
1 data reduction

Applied to WWW client |

cache frequently accessed documents [
prefetch the first page of the first Â hyperUnks |
compress documents |
display first screen and lazily evaluate page down |
display first screen with rest of document as future |
demand for uncached document retrieves outline only |

Table 2 Application of Communication Optimization Techniques

in a w w w client. Caching, prefetching and data reduction are implemented in
W*. Lazy evaluation and futures are supported in the HTML parsing and dis
play routines, but the current version of W* transfers only complete documents
or outlines. Data encoding is not implemented.

4.1 User Interface

A document's hyperlinks are used to convey additional information about the
cost (latency) of traversing a hyperlink. This can be done unobtrusively through
underlining (the percentage underlined reflects relative cost) or through a sta
tus line for the current hyperlink. This feedback helps set user expectations,
although it is not necessary for the user to understand the new information in
order to continue using the application. Prefetching is assisted by allowing the
user to specify a set of hyperlinks in which they are interested. The system
works on obtaining these while the user is reading the current document. An
alternative way to traverse a hyperlink is to retrieve just an outline consisting
of the headings and hyperlinks for a document. Like a "folding editor", the
user can expand sections of the document by selecting section headings.

4.2 Workstation Resources

W* uses a two level cache for documents, one at the palmtop, and one at
the workstation. Prefetching documents to the workstation, but not all the
way to the palmtop, hides some latency without placing additional demands
on the wireless link. The workstation cache also facilitates user-specified data
reduction. Scripts, possibly written or parametrized by the user on the palmtop,

Application Design for Wireless Computing 369

can be executed remotely on the workstation. A simple example is a filtering
script that returns only documents or sections of documents that match some
criteria. The script examines a set of cached documents on the workstation by
starting in one document and following its hyperlinks to a specified depth or
until an uncached reference. It selects matching sections and sends an outline
of the results to the palmtop. General purpose scripts or templates can be
shared among users.

4.3 Application and Data Structure

In W*, parsing functionality is duplicated on both sides of the wireless link.
Disconnected access to cached documents requires local parsing. But in some
cases (for example, large documents or wireless contention) it becomes desirable
to either send outlines or, if the target of a hyperlink is not at the top of a
document, only transfer the desired page and lazily bring over other pages as
needed. These solutions require that the workstation parse the document as
well.

When browsing a hypertext document, the most likely operations are page up,
page down, or traversal of a visible hyperlink. The structure of the application
and data provide good "hints" about which data to prefetch. Prefetching the
first screen of output from each of these actions can improve response times.
The number of visible hyperlinks, current resource constraints, and document
or user specific access patterns suggest when prefetching can be profitably em
ployed. Another concern with both prefetching and user scripts that access
HTTP servers is the possibility of overloading the servers with a large number
of successive requests. Guidelines for WWW crawlers [4], programs that ex
plore and index the web, have been developed to minimize the adverse impact
of automatically accessing sets of documents.

5 EXPERIENCES

Table 3 shows the component costs for a typical HTML document access from
the palmtop to a remote HTTP server. The document size of 6.2K is an average
derived from httpd access logs. Wireless file-transfer occurs over a reliable
connection that uses an unoptimized send/acknowledge protocol with no sliding
windows. This connection is a good approximation of typical wide area wireless
communication bandwidth.

370 CHAPTER 13

1 Access 6.2K HTML document

1 HTTP GET (to workstation)
1 workstation to palmtop
1 other communication

1 Total (to palmtop)

seconds

2.9
14.2
0.2

17.3

percent |

rn
82

11
100 1

T a b l e 3 Sample Access Times for a Typical Document

Palmtop file caching has the largest impact on performance. The prototype
does not currently make any attempt to validate the cached copy, but the user
can request that it be re-loaded from the network. User specified background
fetch of one or more documents also improves the usability of W*, since the user
can ask for other documents early, then continue to read the current document.

The HTTP GET is performed by executing a perl script, "hget" from the Tel
interpreter. Although the variance for the HTTP GETs that provided the data
in Table 3 was not very high, in general, document retrieval via HTTP exhibits
unpredictable latencies. This may make workstation caching and prefetching
more desirable.

We are currently conducting a study on World Wide Web document access pat
terns [14] to provide additional data on the expected effectiveness of caching
and prefetching. It is often not advisable to prefetch all visible hyperlinks.
When viewing a densely hyperlinked document or during periods of high net
work contention it is useful to know that a particular hyperlink traversal is
likely. We are analyzing server access logs to look for patterns where an access
to document A is typically followed by an access to document B. This uncovers
document-specific access patterns. We also plan to use client traces to deter
mine user-specific access patterns. Although there are a number of limitations
to this approach, preliminary results indicate certain subtrees of documents
are good candidates for prefetching. These are usually documentation files or
on-line books that are traversed in section order.

We do not yet have enough experience with the outline retrieval to evaluate its
usefulness in practice. The effectiveness of this technique depends largely on
the relative sizes of the outline and the original document. On small or densely
hyperlinked documents, little benefit is obtained. Where there is a significant

Application Design for Wireless Computing 371

difference, the outline can be effective if either the user is familiar with the
contents, or the headers and hyperlink names are self-explanatory.

6 CONCLUSIONS

The performance disparity between wireless and wired networks motivates the
need for appUcations that better tolerate slow communication links. This pa
per presents a strategy for designing applications that are partitioned across
the wireless link. The application data and functional organization provide
implicit information about reference patterns that can be utilized to increase
the benefits of traditional techniques.

Based on our experiences with W* and other wireless applications, we are devel
oping a new system. Wit II [11] is designed to provide effective management of
mobile computing resources using a cooperative approach between applications
and the system. The system manages data transfer between the components
of a partitioned application, employing techniques such as filtering, prefetching
and caching. Application-supplied information about data structure, priority
and access patterns is used to improve system policy decisions. This approach
reduces the complexity of developing mobile applications that perform well by
decoupling the implementation of optimization techniques from the specifica
tion of application data semantics that guide policy decisions.

Acknowledgments

The author would like to thank Brian Bershad and Mark Weiser, who initiated
the Wit project and contributed valuable insights and advice during its design.
Many of the application design strategies presented here were influenced by
discussions with members of the Tab project at Xerox PARC, and the TIP and
Coda projects at CMU. Dylan McNamee and Stefan Savage provided helpful
comments on this paper.

REFERENCES

[1] N. Adams, R. Gold, B. Schilit, M. Tso, and R. Want. An Infrared Network

372 CHAPTER 13

for Mobile Computers. Proceedings of the 1st Usenix Symposium on Mobile
& Location-Independent Computing, pp. 41-51, August 1993.

[2] A. Athan and D. Duchamp. Agent-Mediated Message Passing for Con
strained Environments. Proceedings of the 1st Usenix Symposium on
Mobile & Location-Independent Computing, pp. 103-107, August 1993.

[3] T. Berners-Lee, R. Cailliau, A. Loutonen, H. F. Nielsen, A. Secret. The
World Wide Web. Comm. of the ACM, vol 37, no 8, pp. 76-82, August
1994.

[4] Guidelines for Robot Writers, http://web.nexor.co.uk/mak/doc/robots/
guidelines.html

[5] L. B. Huston, P. Honeyman. Disconnected Operation for AFS. Proceed
ings of the First Usenix Symposium on Mobile & Location-Independent
Computing, pp. 1-10, August 1993.

[6] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda
Filesystem. ACM Trans, on Computer Systems, 10(1), February 1992.

[7] J. A. Landay and T. R. Kaufmann. User Interface Issues in Mobile Com
puting. Proceedings of the Fourth Workshop on Workstation Operating
Systems, pp. 40-47, October 1993.

[8] NSFNET Statistics at GVU Center, http://www.cc.gatech.edu/gvu/stats/
NSF/merit.html

[9] J. K. Ousterhout, Tel and the Tk Toolkit. Addison-Wesley Publishing
Company, 1994.

[10] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
and D. C. Steere. Coda: A Highly Available Filesystem for a Distributed
Workstation Environment. IEEE Trans, on Computers, 39(4), April 1990.

[11] T. Watson. Effective Wireless Communication through Application Par
titioning. Proceedings of the Fifth Workshop on Hot Topics in Oper
ating Systems, pp. 24-27, May 1995. http://snapple.cs.washington.edu/
papers/hot-OS.ps

[12] T. Watson. Wit: An Infrastructure for Wireless Palmtop Computing.
Technical Report UW-CSE-94-11-08. University of Washington, Novem
ber 1994. http://snapple.cs.washington.edu/papers/wit.ps

Application Design for Wireless Computing 373

[13] T. Watson, B. Bershad. Local Area Mobile Computing on Stock Hard
ware and Mostly Stock Software. Proceedings of the 1st Usenix Symposium
on Mobile & Location-Independent Computing, pp. 109-115, August 1993.
http://snapple.cs.washington.edu/papers/bnu.ps

[14] Wit Web Document Access Study, http://snapple.cs.washington.edu/
wit/webstats/webstudy.html

[15] World Wide Web initiative at CERN. http://info.cern.ch/hypertext/
WWW/TheProject.html

Mohisaic 377

Wireless World Wide Web (W4) project [2]. The W4 system consists of a
Web client that runs on an Apple Newton MessagePad and communicates with
the wired network via a ~2400 baud Motorola CELLect modem and MicroTac
phone. The Web client is structured so that a workstation host on the remote
end of the modem link does most of the document formatting, thereby relieving
the less powerful PDA of the CPU intensive formatting task and conserving as
much of the limited wireless bandwidth as possible. The W4 project has shown
that current PDAs are feasible platforms for running Web clients when care is
taken in implementing the client.

The Dynamic Documents project at MIT has also investigated providing mobile
access to the World Wide Web [6]. Dynamic Documents are Tel scripts that,
once received, are executed in a "safe" Tel interpreter in a modified Mosaic
Web client. The output of the Tel script is an HTML document that is dis
played by the client. Dynamic Documents can interact with the Web client, for
example, to configure their output for displaying on small displays. In addition.
Dynamic Documents can use the Tk library to create their own user interfaces
to implement more complex Web applications from within the client.

The primary diflFerence between the Dynamic Documents project and Mobi-
saic is that the Dynamic Documents project has focused on the problems of
overcoming the limited bandwidth of the wireless communication link and the
display limitations of mobile devices, whereas Mobisaic has focused on enhanc
ing the utility of the Web by incorporating information from the user's mobile
computing context into the system.

1.2 Paper outline

The rest of this paper is organized as follows. Section 2 gives an overview of
the World Wide Web system, and describes the extensions to the system used
for incorporating a user's mobile computing context into the WWW. Sections
3 and 4 describe dynamic URLs and active documents. Section 5 discusses
how Mobisaic can be useful in the desktop environment as well as the mobile
environment. Section 6 describes the implementation of Mobisaic. Section 7
discusses future work, and section 8 summarizes.

378 CHAPTER 14

2 SYSTEM OVERVIEW

This section first provides a high-level overview of the World Wide Web infor
mation system, and then describes the extensions used by Mobisaic for incor
porating a user's mobile computing environment into the system.

2.1 The World Wide Web

The three main components of a World Wide Web (WWW) information sys
tem are clients, documents, and information servers. The user interacts with
the system using a Web client, which lets the user name and load documents
from servers for viewing. Web clients typically support a number of differ
ent document types, such as files available via ftp, netnews, and Hypertext
Markup Language (HTML), and support connections with a variety of infor
mation servers, such as ftp daemons, news servers, and Hypertext Transport
Protocol (HTTP) daemons. Documents are files on a server referenced by Uni
form Resource Locators (URLs), and they can contain a variety of data types,
including ASCH text formatted according to HTML directives, embedded pic
tures, and audio and video clips, as well as embedded URLs that are used as
hypertext links to other documents. URLs can also name programs on HTTP
daemons that, when executed, produce an HTML document as output.

2.2 Extensions for a mobile W W W

In its current form, the Web infrastructure cannot easily accommodate mobile
clients because the dynamic information it supports is either returned from
the server without incorporating any user context at all, or is incorporated
explicitly using forms-based interfaces that require user input on the client.
Moreover, there is no support for automatically updating a document when it,
or the reason for displaying it, changes.

To better support the use of dynamic information, we have extended the Web
infrastructure to include:

A network server that maintains mobile computing contexts within a client-
specific domain;

An asynchronous callback mechanism to notify Web clients when a user's
dynamic computing environment changes;

14
MOBISAIC: AN INFORMATION

SYSTEM FOR A MOBILE
WIRELESS COMPUTING

ENVIRONMENT
Geoffrey M. Voelker and Brian N. Bershad

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

ABSTRACT

Mobisaic is a World Wide Web information system designed to serve users in a mobile
wireless computing environment. Mobisaic extends the Web by allowing documents
to both refer and react to potentially changing contextual information, such as one's
current location in the wireless network. Mobisaic relies on client-side processing of
Hyper Text Markup Language documents that support two new concepts: Dynamic
Uniform Resource Locators (URLs) and Active Docunnents. A dynamic URL is
one whose results depend upon the state of the user's mobile context at the time it
is resolved. An active document automatically updates its contents in response to
changes in a user's mobile context. This paper describes the design of Mobisaic, the
mechanism it uses for representing a user's mobile context, and the extensions made
to the syntax and function of Uniform Resource Locators and Hyper Text Markup
Language documents to support mobility.

1 INTRODUCTION

This paper describes Mobisaic, a system that uses the World Wide Web [3] to
enable information browsing in a mobile computing environment. Information
browsing is an ideal mobile application because it allows users to interact with
their environment as they work within it; it places minimal requirements on a
user-input device; and it cannot be handled with large on-board caching. With
mobile information browsing, users can discover who and what is in their im-

Copyright ©1994 by IEEE. Reprinted, with permission, from Proceedings of the Work
shop on Mobile Computing Systems and Applications, December 1994.

376 CHAPTER 14

mediate surroundings, whether it is colleagues at a business meeting, speakers
at a presentation, projects in a lab, or displays in a museum. A mobile infor
mation system can also allow users to execute general queries that incorporate
information from their environment, such as finding the nearest cafe or the
nearest bus stop that will take them to a specific location.

Users of the World Wide Web (WWW) rely on client browsers to access in
formation servers on the Internet. With Web clients, users browse documents
written in the HyperText Markup Language (HTML) by traversing hypertext
links, called Uniform Resource Locators (URLs), that load documents or invoke
programs on the information servers.

Mobisaic extends standard client browsers to take advantage of mobiUty in
two ways. First, Mobisaic allows authors to reference dynamic information,
such as a user's location, in hypertext links called dynamic URLs. When the
user traverses a dynamic URL, the client resolves any references to dynamic
information it may contain and sends the result to the server. Second, Mobisaic
supports active documents, documents that present and automatically update
information for the user as the information they contain changes or otherwise
becomes invalid. The update is done by the client browser, which receives
notifications when the dynamic information changes.

Dynamic information in Mobisaic is represented using dynamic environments
[9]. Just as standard UNIX shells provide environment variables to customize
applications started from the shell (e.g., DISPLAY), dynamic environments
provide environment variables for customizing mobile applications. For exam
ple, a dynamic document might include a reference to the Location dynamic
environment variable to customize its contents according to the user's current
location.

1.1 Related work

Researchers at Xerox PARC have broadly introduced the idea of context-aware
applications [8]. They also initially proposed the notion of dynamic environ
ments as a means of representing and disseminating information from users'
mobile contexts throughout the system. Mobisaic is essentially an application
of those ideas to World Wide Web browsing.

Joel Bartlett at DEC WRL has investigated the feasibility of implementing
and using a Web client on a handheld personal digital assistant (PDA) in the

Mobisaic 379

A syntax for referencing dynamic information in URLs and documents.

Representing mobile computing contexts

Mobisaic uses dynamic environments to represent a user's mobile computing
context. The basic unit in a dynamic environment is the dynamic environment
variable, which is conceptually similar to a standard UNIX shell environment
variable: dynamic environment variables have a name and a value, and they
can be accessed and changed to customize applications to the user's mobile
computing environment just as shell environment variables customize applica
tions launched from the shell. However, unlike shell environment variables that
are associated with a login process, dynamic environment variables are associ
ated with users and places, and have indefinite lifetimes. Applications on the
network with sufBcient privilege can access and change dynamic environment
variables, and whatever changes they make can be seen by other applications
with sufficient access privileges.

Notification of changes in mobile computing contexts

Active documents allow environmental changes to be reflected in the informa
tion displayed to the user. If the information in an active document becomes
invalid, then the client can be notified of the change so that it can display a
more relevant document. Included in such notifications are the name of the
variable that changed and its new value.

For example, say that the user changes cell locations in the wireless environ
ment. The wireless communications system that is monitoring the user's loca
tion can publish the new location by updating the Location variable in the
user's dynamic environment. If the user were displaying a document that was
sensitive to location, the client would have subscribed to the Location vari
able, and would receive a notification informing it of the change. At this point,
the client could take action in response to the change, such as loading a new
document that directly relates to the user's new location.

Syntax and scope

A Mobisaic client relies on a syntax for referencing dynamic environment vari
ables within dynamic URLs and active documents. The syntax supported by
Mobisaic is of the form $ (environment, variable), where environment and vari-

380 CHAPTER 14

able denote a dynamic environment and dynamic environment variable, respec
tively. For example, $(voelker.Location) would reference the name of Geoff's
current location in the wireless network. Mobisaic also supports a shorthand
notation for referencing variables in the user's own dynamic environment. If
the reference doesn't contain the name of an environment, then Mobisaic as
sumes that the variable referenced is in the environment associated with the
user. Thus, $ (Location) refers to the Location environment variable in the
user's dynamic environment.

Mobisaic supports recursive references to dynamic environment variables so
that environment or variable names can themselves be references to dynamic
environment variables. For example, given that locations have dynamic envi
ronments associated with them, $($(Location).Printer) would reference the
Printer variable in the environment associated with the user's current location.

3 USING DYNAMIC URLS

Dynamic URLs allow a single URL to return different documents or execute
different commands depending upon the state of the user's dynamic environ
ment at the time the URL is selected. A URL is dynamic if it references at
least one dynamic environment variable. For example, in our department we
have written HTML documents describing ourselves and the places in which
we work (see Figure 1). The name space of these documents on our server is
well structured, enabling the following dynamic URL to return the document
describing the user's current location:

http://www/places/$(Location).html ^

Another example of a dynamic URL is a Web server that has a program bus-
rou te which takes a starting location, a destination, and a time as arguments,
and returns an HTML document detailing how to get to the closest bus stop
on the shortest bus route to the destination. A dynamic URL to find the bus
route to the Space Needle in Seattle would appear as:

http://www/htbin-post/busroute?\
$(Location)-fSpaceNeedle-h$(Time.TIME)

^For brevity, we use www in place of our server at www.cs.washington.edu.

Mobisaic 381

^K^ -flffiljifffflf jMlMbMAt jJBJUlCJWly ««<^^!j

i j ^ ^ j l l ^ ^ s - I

Figure 1 The Where Ami active document referenced by the dynamic URL
http://www/places/$(Location).html.

Note that the question mark and plus signs in the query are standard URL
syntax denoting the arguments that are passed to the program invoked on the
server.

3.1 Resolving dynamic URLs

When a user selects a dynamic URL in a document, the client browser is re
sponsible for resolving all references to dynamic environment variables within
the URL. The client obtains the values of dynamic environment variables from
the appropriate dynamic environment and replaces the references with the val
ues as strings. When all variable references have been resolved, the result is a
standard URL that the client then sends to the server. For example, if a user
were in office 433 and selected the location description dynamic URL in the
previous section, the client would resolve the Location dynamic environment
variable in the user's context and send the following URL to the server:

http://www/places/433.html

382 CHAPTER 14

Having the Mobisaic client resolve the dynamic environment variable refer
ences gives the most flexibility to the system. The variable references could
have been resolved in two other places: the application, if the dynamic URL
named a program on the server to execute, or the server. If applications had to
resolve the variable references, then dynamic URLs would be hmited to nam
ing only those applications that were modified to understand and use dynamic
environment variables. Likewise, if the server were to resolve the references,
then dynamic URLs would be limited to using only dynamic environment aware
servers. When the client resolves the references, however, dynamic URLs can
evaluate to a URL that names any document or program on any server that a
standard URL can name.

4 ACTIVE DOCUMENTS

Active documents are HyperText Markup Language documents that enable the
Web client to automatically react to changes in a user's mobile computing con
text. They give the client the ability to update the information being displayed
without the user having to take action, and place less of a burden on the user
to search for information by placing more of a burden on the author to organize
it. This tradeoff is possible in a mobile environment because users who roam
the wireless network are quite likely to be interested in who and what is in
their immediate surroundings, and the information in a user's mobile context
is enough to enable a Web client to do the searching on the user's behalf. In
this way, active documents can change the way users interact with the Web:
they spend less time searching for information because the client presents it to
them as they interact with their surroundings.

This section describes how to write active documents and how the client han
dles them when they are being viewed by the user. To illustrate these processes,
this section also describes a set of pages collectively called the WhereAmI active
document, which is a guide for visitors to our department. Each page corre
sponds to a place in our wireless network and contains a brief description of the
place, links to the home pages describing the occupants of the place, and links
to pages describing any projects hosted in the place. When a user selects this
active document, the client loads the page corresponding to the user's location.
Then, as the user changes rooms, the client automatically discards the page
describing the old room and replaces it with the one describing the new room.
Each page in the WhereAmI active document can be loaded using the dynamic
URL from the previous section:

Mobisaic 383

http://www/places/$(Location).html

Authors write active documents just like they write standard HTML docu
ments, with one addition. They must place a subscribe command in the docu
ment which lists the dynamic environment variables that the client must sub
scribe to when it loads the document. In effect, the variables listed in the
subscribe command are the elements of a user's mobile context that, when
they change value, invalidate the information in the document. The new val
ues of the variables also provide the information necessary for the client to
determine which document to load in place of the current one.

A subscribe command is embedded in an HTML comment line. The command
has the following form:

<!- (subscribe to variable variable ...) - >

Variable is a standard reference to a dynamic environment variable. When the
client loads the document and parses subscribe commands, it subscribes to each
variable specified in the command.

When the client receives a notification for a subscribed variable indicating that
the variable has changed value, the new value of the variable in the notification
determines what action the client will take at the moment of notification. The
new value of the variable can be an explicit directive to the client:

reload Re-execute the URL that loaded the current document. If the URL
is dynamic, the references to dynamic environment variables are resolved
again.

load URL Execute a new URL and load the document in the same window.

spawn URL Execute a new URL and load the document in a new window.

close Close the current window.

Otherwise, the client does not interpret the new value and simply reloads the
document. If the URL naming the document is a dynamic URL, then the client
will evaluate the dynamic URL as if the user had selected it.

384 CHAPTER 14

MohisaU ClUia

$(Location).html F
3) Get 432.html

2) Location = 432

432.html

433.html

5) Subscribe to Location

Dytuunk EHvironment

Figure 2 An example showing a user loading the Where Ami active document
named by the dynamic URL $(Location).html.

For the Where Ami active document, each page has the following subscribe
command:

<!- (subscribe to $(Location)) - >

The command tells the client that, when it loads the page, it should subscribe
to the Location variable in the user's dynamic environment. When this vari
able changes value, the client will receive a notification with the new value of
Location. Since the value is not an explicit command to the client, it will
ignore the value itself and use the notification as a signal to reload the active
document. And since the URL naming the document is dynamic, the client
will re-evaluate it and load the active document that describes the user's new
location.

Figures 2 and 3 show an example of how dynamic URLs and active documents
in the WhereAmI application interact with a user's changing mobile comput
ing environment. Figure 2 shows a user running a Mobisaic cHent browser, a
WWW server, and the user's dynamic environment. In this figure, the user is
in room 432 and is loading the dynamic URL $ (Location).html. The client
resolves this dynamic URL by sending a message to the user's dynamic en
vironment, asking for the value of the Location variable (message 1). The
dynamic environment responds with the value of Location (message 2). The
client now has a fully resolved dynamic URL to the active document 432.html,
which it asks the server to return (message 3). The server responds with the
document 432.html (message 4). Since 432.html is an active document that
contains a subscription to the variable Location, the client subscribes itself to
the variable in the user's dynamic environment (message 5).

Mobisaic 385

Mobisaic Client

$(Location).html

2) Location = 433

Dynamic Environment

y 432.html

433.html

J 1) Set Location = 433 [J

Figure 3 The example continued showing what occurs when the user changes
location.

Figure 3 shows what takes place when the user moves from room 432 to room
433. In this figure, a "user agent" process has been added to represent a process
that tracks the user's movement in the wireless networking environment. When
the user moves from room 432 to room 433, the agent detects the movement,
performs its normal tasks for such an event (such as updating network routes),
and lastly updates the variable Location in the user's dynamic environment
with the user's new location (message 1). Upon receiving the update, the
dynamic environment notifies all processes subscribed to the Location variable
or the environment. Since the client is subscribed to the variable, it receives a
notification (message 2). Upon receiving the notification, the client reloads the
active document by executing the dynamic URL again. In a process similar
to that shown in Figure 2, the client resolves the dynamic URL to 433.html,
which corresponds to the document describing the user's new location. The
client requests this document from the server (message 3), the server returns it
(message 4), and the client displays it to the user.

Arbitrary client notifications

In addition to receiving notifications for any active documents the client is
displaying, the client can also receive notifications that do not refer to any of
its displayed documents. To receive such notifications, the client subscribes
to the MOBISAIC-STREAM variable in the user's dynamic environment.
Any process can then send notifications to the client, for example, to spawn a
window and load a new document that might be of interest to the user.

386 CHAPTER 14

5 MOBISAIC ON THE DESKTOP

Although Mobisaic was originally inspired for use in a mobile computing envi
ronment, it can also be useful in the desktop environment. There are a number
of information sources in the WWW that produce information periodically, and
it is straightforward to write documents in Mobisaic that tap into these sources.
Some documents that have already been written include simple daily scripts
that, early in the morning, publish the URLs for the Dr. Fun and Dilbert comic
pages to a list of interested users running Mobisaic. The published URLs spawn
new windows showing the contents of the pages. When users come in to work
in the morning, the daily comic pages are already showing on their screens.

As another example, we use active documents together with electronic mail to
implement a distributed, recommendation-based "hot list" of new and inter
esting pages. Our local departmental version of Mosaic has been modified to
make it easy to forward URLs to others in our department using email. It is
now common practice for people in the department to forward to colleagues
URLs that they have discovered and find interesting. The email messages gen
erated by Mosaic have a special mail tag, X- URL, that contains the URL being
forwarded. A user's incoming mail filter detects these tags and publishes the
URLs in them to the user's Web client. The result is that, when users have
a URL forwarded to them, a window automatically appears on their screen
displaying the document referenced by the URL.

A third application uses active documents to display and update stock quotes.
A background filter monitors a stock quote information source, and, in a dy
namic environment for stock prices, publishes the latest values of the stocks
it monitors as they change. Documents displaying the information for a given
stock subscribe to the dynamic environment variable associated with the stock
in the stock dynamic environment. When users view a document describing
or referencing a stock, the document will update itself as new stock values are
published in the dynamic environment.

6 IMPLEMENTATION

This section discusses our implementation of Mobisaic and the changes we
applied to a standard Web client to use active documents and dynamic URLs.

Mobisaic 387

6.1 Dynamic environments

Dynamic environments [9] provide a network-based publish and subscribe in
frastructure [5]. A dynamic environment is maintained by a subscription-based
server to which applications broadcast queries and from which applications
receive multicast notifications. We use the Zephyr notification system [4] to
implement the publish and subscribe facilities.

We chose to use Zephyr because it provides network transparency, automatic
subscriber-based routing, authentication, asynchronous notification, and the
ability to run redundant Zephyr clients supporting redundant instances of the
same dynamic environment. (We presently do not take advantage of Zephyr's
authentication system or support for redundancy). Zephyr is not without its
drawbacks, however. It operates only within relatively small administrative
domains, such as a department or campus. It cannot distribute information
quickly to many hosts, which can become a problem in the current system
during heavy load. (This bottleneck and possible solutions to it are discussed
in [7].) Fortunately, a C library interface hides the use of Zephyr from Web
clients, so changing to a new transport should be relatively easy.

In our implementation, dynamic environments are maintained by a dynamic
environment server, a process that maintains the data structures for an ar
bitrary number of dynamic environments. For each dynamic environment it
maintains, the server subscribes to a Zephyr message class that uniquely cor
responds to the dynamic environment by sending a Zephyr subscription to the
Zephyr server. This message class is the one to which clients address messages
in order to make requests of the dynamic environment.

Client processes subscribe to dynamic environments and their variables by send
ing a subscription to the Zephyr server that names the Zephyr message class
corresponding to the dynamic environment and variable. Note that client sub
scriptions are not sent to the dynamic environment servers; the Zephyr server
keeps track of which clients are subscribed to which dynamic environments and
variables through the subscriptions sent to it by both the dynamic environ
ment clients and servers. When a dynamic environment server wants to notify
clients of a change in a dynamic environment variable, it sends a message to
the Zephyr server naming the Zephyr message class that corresponds to the dy
namic environment variable. The Zephyr server then multicasts this message
to all clients subscribed to this message class.

388 CHAPTER 14

User Agent Zephyr Server

Q-^ Server: <EnvServer,voelker,*>
Client: <Envaient,voelker,Location>

s c c

I I Dynamic \ \Dyi
I Environment I £n<

[J Server { J CU,
Environment
Client

Message 5 Message C
<EnvServer,voelker,*> <EnvClient,voelker,Location>
Location = 433 Location = 433

Figure 4 An example showing how dynamic environment events are propa
gated through the Zephyr system.

Figure 4 shows an example of how dynamic environment events are propagated
through the Zephyr system. This figure shows the Zephyr server, a dynamic
environment server maintaining the voelker dynamic environment, a dynamic
environment client, and a user agent process that keeps track of the user in the
wireless network. All entities are processes that can run on any machine in the
Zephyr administrative domain.

The dynamic environment server has subscribed to the Zephyr message class
<EnvServer,voelker,*> at the Zephyr server. Dynamic environment clients
send messages to this message class to send requests to the dynamic envi
ronment server. The dynamic environment client has subscribed to the Zephyr
message class <EnvClient,voelker,Location> at the Zephyr server. The dy
namic environment server sends messages to this message class to notify clients
of changes to the variable Location in the voelker dynamic environment.

In Figure 4, the agent process is updating the variable Location in the voelker
dynamic environment. To do so, it sends the message 5, which names the
dynamic environment server and contains the new value for the variable, to the
Zephyr server. The Zephyr server then multicasts the message 5 to all processes
subscribed to this message class. By design, only the dynamic environment
server subscribes to this class and only it receives the message from the Zephyr
server.

The dynamic environment server updates the Location variable in the voelker
environment, and then proceeds to notify all dynamic environment clients sub
scribed to this variable. To notify clients, the dynamic environment server
sends the message C, which names all clients subscribed to this variable and
contains the new value of the variable, to the Zephyr server. The Zephyr server

Mobisaic 389

then multicasts the message Cto all processes subscribed to this message class.
Since the dynamic environment client is subscribed to this message class, it
receives the message and is thereby notified that the Location variable in the
voelker dynamic environment has changed to the new value specified in the
message.

6.2 Client modifications

Any Web browser can be modified to support dynamic URLs and active doc
uments provided that it supports an interface for loading and reloading doc
uments and spawning and closing windows, and it has the ability to add an
asynchronous input descriptor to its set of inputs. A client library handles all
communication with dynamic environments, and parses dynamic environment
variable references. Filters, supplied by the library, are applied to the input
and output communication paths. The filter on the output stream resolves ref
erences to dynamic environment variables embedded in dynamic queries, and
the filter on the input stream subscribes the client to dynamic environment
variables embedded in active documents. If the client supports an internal in
terface for document and window manipulation, then it can be directly linked
with the Mobisaic client library. For those clients that only support an external
interface or do not have an interface for adding asynchronous input descriptors,
we have a wrapper program that handles dynamic environments and controls
the Web client as a child process.

Our prototype Mobisaic client is the X Mosaic client [1] extended with the Mo
bisaic client library. The X Mosaic client has a relatively clean internal interface
for loading documents and spawning windows, so most of the code changes were
to add the file descriptor for the dynamic environment communication channel
to the list of input descriptors, the callback to handle asynchronous input on
the descriptor, and calls to the Mobisaic library filters on the input and output
communication paths. Overall, our changes added less than 60 lines to the
client.

7 FUTURE WORK

This section discusses some of the limitations of the current design and imple
mentation of Mobisaic, and suggests possible approaches for overcoming these
limitations in future work.

390 CHAPTER 14

7.1 Callbacks

Integrating the subscribe mechanism of dynamic environments into Web cHents
effectively provides a callback mechanism for other applications to notify the
client that the state of the document the client is viewing has changed in some
respect. However, it is not a general callback mechanism for the World Wide
Web since it requires the use of dynamic environments. The Internet Engi
neering Task Force (lEFT) is in the process of designing a standard callback
mechanism with which Web servers and other applications can communicate
asynchronously with Web clients, and Mobisaic's use of dynamic environments
should be compatible with this callback standard once it emerges.

7.2 storing URLs

Uniform Resource Locators are stored in various collections, such as hotlists,
session and global histories, indices, bookmarks, and even email, to aid the user
in organizing access to interesting documents. Storing dynamic URLs raises an
interesting issue about what actually is stored because the user or Web client
now has the choice of storing either the dynamic URL itself or the result of
evaluating the URL at the time it is stored.

One can imagine wanting to do both in different situations. For example,
assume a user has selected the first location-based dynamic URL from section
3 and finds the loaded document interesting. If the user wanted to store this
document in a hotlist, the user would want to store the evaluated dynamic URL.
However, if the user wanted to store a reference to the WhereAmI document,
the user would want to store the dynamic URL itself in the hotlist so that,
the next time it is selected, the dynamic URL would be evaluated in the user's
current context.

To address this problem, Mobisaic could store evaluated dynamic URLs by
default, and allow users to explicitly override the default behavior with a menu
option. However, such behavior would require more extensive changes to each
Web client supporting the Mobisaic extensions since these changes need to be
made to the user interface.

Mobisaic 391

7.3 Disabling active documents

Active documents in Mobisaic are always active in the sense that they will
react to notifications to their subscriptions whenever they receive them. This
behavior may not always be desirable. For example, imagine that you are in
a museum that used active documents to describe its exhibits and you have
just walked up to a particularly interesting exhibit. It is so interesting, in
fact, that you want to show your friend just down the hall the document that
has appeared in your browser. If you walk down the hall to show your friend
the document, though, it may no longer be in the browser, having since been
replaced with the document that describes the exhibit in front of your friend.

Mobisaic should provide some mechanism for allowing the user to disable active
documents, such as with a button at the bottom of the document window,
although, again, this would require more client-specific changes.

7.4 Subscriptions

The current method of subscribing active documents to dynamic environment
variables is inflexible in two ways. The ability to express interest in combina
tions of multiple dynamic environment variables is limited. Furthermore, users
might want subscriptions in some active documents to continue to hold even
after the document is no longer being viewed.

Variable expressions in subscriptions

Subscriptions to multiple dynamic environment variables implicitly form an OR
clause of those variables since the client subscribes to all variables and receives
notifications when any of them change. A more expressive syntax would allow
authors of active documents to subscribe their documents to arbitrary logical
expressions of dynamic environment variables combined with arithmetic and
string operators.

Our implementation of dynamic environments could be extended to support
such subscriptions so that, whenever any of the dynamic environment variables
referenced in the expression change, the expression included in the subscription
would be evaluated. If the expression evaluates to a non-zero value, the client
would then be notified of the new value of the variable that changed and, possi
bly, the value of the evaluated expression. With such a syntax, an author might

392 CHAPTER 14

subscribe a location-based active document using the following expression that
disables the active document in, for example, the restroom:

<!- (subscribe to $(Location) && ($(Location) != "Restroom")) - >

As another example, the following subscription might be used to receive up
dates when the stock AStock falls below a certain threshold. The stock price
is maintained in the dynamic environment Stocks, and the threshold AStock-
Threshold is maintained in the user's dynamic environment:

<!- (subscribe to $(Stocks.AStock) && ($(Stocks.AStock) < $(AS-
tockThreshold))) - >

Indefinite subscriptions

One feature of Mobisaic is that active document subscriptions only last as long
as the document is being browsed. However, this feature is also a Umitation.
Consider the situation where a user is exploring a building while viewing the
Where Ami active document, and is using the Where Ami document as a start
ing point for exploring other documents when entering a new room. Once
the user loads another document instead of the Where Ami active document,
though, the location-based subscription is lost. Consequently, when the user
moves to a different place, no notifications are sent to the client even though
the user might still be interested in receiving them.

It is possible to address this problem with the current version of Mobisaic
by having whatever process that updates the Location dynamic environment
variable also send a goto command to the user's Web client subscription,
MOBISAIC-STREAM, the variable to which the client is always subscribed.
However, this approach to the problem is limited in the sense that whatever is
updating Location now has to know about the Mobisaic application.

Another possibility is to have a button or command in the Web client toggle
the scope of subscriptions between single documents or all documents, although
this would seem to require too much user interaction. Alternatively, Mobisaic
could support a (subscribe indefinitely to) syntax that would give active
documents the ability to have the client make document-specific subscriptions,
such as to $(Location) != "Res t room" , and indefinite subscriptions, such

Mohisaic 393

as to $ (Location). A button or command could then be provided by the Web
client to clear all indefinite subscriptions when the user finished browsing, for
example, the set of documents comprising the Where Ami application.

8 CONCLUSIONS

This paper has described a World Wide Web information system called Mo-
bisaic that investigates information browsing in a mobile wireless computing
environment. Mobisaic introduces two mechanisms, dynamic URLs and ac
tive documents, for incorporating contextual information from a user's mobile
computing environment into the Web. Dynamic URLs allow a single URL to
return different documents or execute different commands depending upon the
values of the embedded variables at the time the URL is selected by the user.
Active documents specify dynamic environment variables to which clients sub
scribe. With these subscriptions, clients respond to changes in the user's mobile
context and update the active documents being browsed.

Minimal modifications are required to Web clients and the URL syntax to sup
port the features of Mobisaic. Web servers need no modifications whatsoever.
A library hides the details of the communication mechanism and provides filters
for parsing and resolving dynamic environment variable references, making it
straightforward to modify a Web client to take advantage of the features of the
Mobisaic Web system.

The X Mosaic Web client has been modified to use the Mobisaic extensions, and
is currently running on PC laptops running the Linux operating system. The
laptops are mobile and communicate with the World Wide Web using Proxim
RangeLan2 wireless ethernet PCMCIA cards. The WhereAmI application de
scribed in this paper is accessible via the first dynamic URL from section 3.
An infrared receiver attached to each laptop's serial line detects transmissions
from infrared beacons placed in rooms and hallways, providing the fine-grained
location information needed to make the WhereAmI application useful. Work
is ongoing on incorporating the Mobisaic extensions with a second Web client,
the W* client running in the Wit [10] mobile environment.

394 CHAPTER 14

Acknowledgements

We would like to thank Marc Fiuczynski, Ed Lazowska, Hank Levy, Stefan
Savage, Terri Watson, George Forman, and John Zahorjan for their suggestions
on Mobisaic. Bill SchiUt at Xerox Pare has been incredibly helpful in discussing
context-aware applications. Finally, special thanks are due to Xerox PARC for
supplying us with the software and hardware that began our experiment in
mobile computing.

R E F E R E N C E S

[1] Marc Andreessen and Eric Bina. "NCSA Mosaic: A Global Hypermedia
System" In Internet Research, 4(1):7-17, Spring 1994.

[2] Joel F. Bartlett. "W4 — the Wireless World Wide Web." In Proceedings
of the Workshop on Mobile Computing Systems and Applications, pp. 176-
178, December, 1994.

[3] Tim Berners-Lee, Robert Cailliau, Jean-Francois Groff, and Bernard
Pollermann. "World-Wide Web: The Information Universe" In Electronic
Networking: Research, Applications, and Policy, 2(1): 52-58, Spring 1992.

[4] C. Anthony DellaFera, Mark W. Eichen, Robert S. French, David C. Jedin-
sky, John T. Kohl, and William E. Sommerfeld. "The Zephyr Notification
Service." In Proceedings of the USENIX 1988 Winter Conference, Winter
1988.

[5] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. "The Information
Bus — An Architecture for Extensible Distributed Systems" In Proceed
ings of the Fourteenth ACM Symposium on Operating System Principles,
December 1993.

[6] M. Frans Kaashoek, Tom Pinckney, and Joshua A. Tauber. "Dynamic
Documents: Mobile Wireless Access to the WWW." In Proceedings of the
Workshop on Mobile Computing Systems and Applications, pp. 179-184,
December, 1994.

[7] Bill N. Schilit and Marvin M. Theimer. "Disseminating Active Map Infor
mation to Mobile Hosts" IEEE Network, September, 1994.

[8] Bill N. Schilit, Norman Adams, Rich Gold, Michael Tso, and Roy Want.
"The ParcTab Mobile Computing System." In Proceedings of the Fourth
Workshop on Workstation Operating Systems, pp. 34-39, October 1993.

Mobisaic 395

[9] Bill N. Schilit, Marvin Theimer, and Brent B. Welch. "Customizing Mobile
Applications." In Proceedings of the USENIX Symposium on Mobile &
Location-Independent Computing, pp. 129-139, August 1993.

[10] Terri Watson. "Application Design for Wireless Computing." In Proceed
ings of the Workshop on Mobile Computing Systems and Applications, pp.
91-94, December, 1994.

15
PROVIDING LOCATION

INFORMATION IN A UBIQUITOUS
C O M P U T I N G E N V I R O N M E N T

Mike Spreitzer and Marvin Theimer

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.

Palo Alto, California, 94304

ABSTRACT

To take full advantage of t h e promise of ub iqui tous c o m p u t i n g requires t h e use of

locat ion information, yet people should have control over who m a y know thei r where

abou t s . We present an archi tec ture t h a t achieves these goals for an interes t ing set

of appl icat ions. Personal informat ion is managed by User Agents , and a par t ia l ly

decentral ized Locat ion Query Service is used to facilitate locat ion-based opera t ions .

This archi tec ture gives users p r imary control over the i r locat ion information, a t t h e

cost of mak ing more expensive cer ta in queries, such as those wherein locat ion and

ident i ty closely in terac t . We also discuss various extensions t o our a rch i tec ture t h a t

offer users addi t ional trade-offs between privacy and efficiency. Finally, we repor t

some measuremen t s of t h e unex tended sys tem in opera t ion , focusing on how well

t h e sys tem is actual ly able t o t rack people. Our sys tem uses two kinds of locat ion

informat ion, which t u r n ou t t o provide pa r t i a l a n d complemen ta ry coverage.

Appeared previously in Proceedings of 14th ACM Symposium on Operating System Prin
ciples, Dec 5-8 1993 and ACM Operating Systems Review Vol. 27, No. 5, Dec 1993. Copyright
©1993 by the Association for Computing Machinery, Inc. Reprinted by permission. Per
mission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
direct commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Publications Dept, ACM Inc., fax -|-1 (212) 869-0481, or (permissions@acm.org).

398 CHAPTER 15

1 INTRODUCTION

Mobile and ubiquitous computing requires and can exploit a variety of kinds
of location information[9, 7, 4]. Just providing a person with access to their
normal computing services on a continual basis requires that their location be
known to a certain extent. In addition, if information is available about who and
what is in the vicinity of a person, then that person's computing environment
and applications can behave in a context-sensitive manner. Applications can
reflect a user's current circumstances and and can respond to changes that
might occur in the user's environment.

While desiring to exploit location information, we consider unrestricted access
to a person's location data to be an unacceptable invasion of privacy[5]. One
way to address this fundamental tension between location-based functionality
and privacy is to try to give each user control over their location information
and over who may gain access to it. Unfortunately, guaranteeing that no one
can gain unauthorized access to one's location information is, in general, very
difficult and expensive.

Another important issue is the accuracy and temporal resolution of location
information. The sensing facilities we have available to us are not perfect and
hence it is important to determine how well they work in practice. Temporal
resolution comes into play because it implicitly defines how small a movement
the sensing facilities are able to distinguish, and hence how quickly they are
likely to detect a change in someone's location. Providing useful location in
formation to applications thus faces both the problems of limits of the location
sensing technologies used as well as protection of users from abuse of those
technologies.

A topic not covered in this paper is the spatial resolution provided by a sys
tem and the implications that has for the kinds of applications that can be
implemented. We did not explore this topic because the only spatial resolution
provided by our sensing technologies is "room-level" resolution. This enables
applications such as migrating display windows from one's office to a conference
room, but does not easily support finer-grained applications, such as "flicking"
a window from one's portable notebook computer to that of a neighbor sitting
in the next chair.

In order to understand the issues of providing location information to a system
we have chosen a suite of location-based applications to focus on and have de-

Providing Location Information 399

signed and built a location infrastructure in support of them. The applications
we have built or prototyped include the following:

Visitor guidance : Guide a person to a designated location.

Migrating windows : Migrate a user's windows to a designated location.

Note distribution : Send a message to all persons at a given location or set
of locations.

Ubiquitous Message Delivery (UMD) : A message submitted for delivery
is delivered at the soonest "acceptable" time via the most "appropriate"
terminal near the recipient. Acceptable delivery time depends on the con
text of the recipient. For example, the recipient's profile may specify that
messages below a certain priority level should not be delivered when the
recipient is in a meeting with other people. Similarly, the most appropriate
terminal to use will depend on which devices are available at the recipient's
current location.

Media Call : A user can request to be connected to one or more other users—
wherever they currently are—by the "best" means available. Choices in
clude video, audio, and teletype "talk" connections. As with UMD, users
may specify policy constraints that control which kinds of connections may
be established under various circumstances.

Scoreboard : This application is an information-oriented "screen saver".
When a display is not being used for anything else, it displays information
of general interest, but tailored to the interests of the people nearby.

Responsive environment : A "smart building" can optimize its energy us
age by exploiting knowledge about which rooms are occupied. It can also
control the environmental settings of each room according to the prefer
ences of the people in them[3].

FindNearest : Find the nearest resource or person matching a given specifi
cation, such as "color printer" or "Unix wizard".

Locations : Display the current locations of various persons, printers, copiers,
etc. A common variant is to show the locations of all nearby persons,
printers, etc. (see Figure 1).

Of these applications UMD and the Locations program are deployed and in use
in our lab; for the other applications we have initial prototypes running.

400 CHAPTER 15

Computer Science Laboratory

CooFSRmcFTt *311

m
m

MW
lw-\

5 M

\M\ 4^[i i

• tf . tr«no». .

Tue Aug 17 13:35:19 1993
Ei^lowM amrano* .

Figure 1 Output of one variant of the Locations program:
location of all nearby people willing to be publicly visible.

displays the

In the remainder of this paper we describe the location architecture we have
designed and built, the design rationales behind it, various extensions one could
add to offer users additional privacy/efficiency trade-offs, and the current status
of our implementation. We also report some measurements of the system in
operation, focusing on how well the system is actually able to track people. We
conclude with a discussion of the insights we have gained from our work.

2 A R C H I T E C T U R E

2.1 Key Issues

The design of a location infrastructure must concern itself with a variety of
fundamental issues. In order to motivate the design of our architecture we
start by presenting the key issues that we wanted to address. Examples of how

Providing Location Information 401

applications use our architecture and more detailed design considerations are
presented in later sections, after the description of the architecture itself.

Perhaps the most important assumption we make is that our system will span
more than one administrative domain. This being the case, we cannot trust all
parts of the system with equal measure. In particular, designs that require one
to indiscriminately trust the services and servers of foreign administrative do
mains seem unacceptable to us. The main consequence is that we cannot simply
keep everyone's location information in a federation of centralized databases,
which would otherwise be the simplest means of providing a location infras
tructure.

A second consequence of multiple administrative domains is that we must as
sume the possibility of sophisticated attempts at traffic analysis occurring in
some or all parts of a system. As a result, "perfect" privacy guarantees are, in
general, very hard (and expensive) to provide.

An important observation for our design is that most peoples' privacy and
functionality requirements differ according to the context they are in. Many
situations in which functionality is most desired are also situations in which
strict privacy guarantees are not so important or where greater trust of system
components is warranted. For example, coworkers in a company with benevo
lent management might be perfectly willing to have their whereabouts known
to each other while at work, but might insist on exercising far greater control
over who may know their movements when off the job. Furthermore, if the
building they work in is physically secure, they may also be willing to accept a
more centralized implementation of the location infrastructure in exchange for
greater functionality or efficiency.

Our canonical example of an untrusted, or partially trusted, environment is a
shopping mall. It would be undesirable to allow just anyone (such as junk mail
senders) to have access to all one's movements within the mall, yet one might
wish to be visible to, or reachable by, a select set of friends and family.

An important consideration to keep in mind is that in many circumstances
having one's privacy compromised (e.g. while at the mall) is an inconvenience
rather than a real problem. Hence, providing guaranteed privacy all the time at
a high price—say, in the form of too little functionality and/or too high a per
formance cost—will not reflect users' true needs. On the other hand, there are
clearly circumstances when very strong privacy guarantees are a requirement.
The conclusion we draw from these examples is that we need an architecture
that provides user-controllable trade-offs between privacy guarantees and both

402 CHAPTER 15

functionality and efficiency. Much of our design focuses on how to selectively
regain the efficiency achievable by centralized designs when users are willing to
risk trusting various system components to some degree.

2.2 Description

Figure 2 illustrates the architecture we have designed in response to the issues
just discussed. The circles show programs, which run on a network of computers
and communicate via RPC. Some of the computers are connected by a wired
network; some may be portables that communicate wirelessly. The black arrows
show the flow of location information while the gray arrows show the path
of a ubiquitous message delivery. Not shown are various application-specific
servers and our Name-and-Maintenance Service, which uses familiar techniques
to enable lookup of servers by name and keep programs up and running.

There is one User Agent for each user. Access control for personal information
is implemented primarily by a user's agent. That is, each User Agent collects
and controls all the personal information pertaining to its user and applica
tions can only get personal information from a user's agent—and only if that
agent consents. In fact, a user's agent can lie about the user's personal in
formation, because consumers of that information have no other authoritative
way of determining that information. A user's agent is under the control of
the user: he determines the policies implemented by his agent, chooses which
implementation of the agent to run (or writes his own), and runs it on one or
more computers he trusts.

A User Agent consists of several modules, some of which perform system in
frastructure functions, and some of which are responsible for implementing the
agent's responsibilities for specific applications. User Agents are the locus of
control for customizing applications with respect to their environment. That
is, knowledge about the user's environment and context and his preferences
with respect to various circumstances are maintained in the User Agent and
propagated from there to the user's various applications. Thus, the User Agent
serves as a general policy coordinator for both the user's privacy concerns as
well as his context-sensitive customization concerns.

Each User Agent collects location information from a variety of sources, exam
ples of which might include:

1. infra-red-based active badges[8, 7],

Providing Location Information 403

A p p l i c a t i o n s

L o c a t i o n s SendMsg

Figure 2 Basic system architecture, with an instance of UMD message delivery
illustrated by the gray arrows.

2. wireless nano-cell communications activity[9],

3. global positioning system information[1],

4. device input activity from various computers [6],

5. motion sensors and cameras [3], and

6. explicitly specified information obtained directly from human beings.

Our existing system employs 1, 4, and 6. The badges in our system emit a
unique id every 15 seconds and a Badge Server in each region passes data ob
tained from polling its badge sensors to interested parties. Each User Agent

404 CHAPTER 15

registers for information about the badge id representing its user; the corre
spondence between a badge id and a user's identity is known only by the user's
agent.

In a similar fashion, the Unix Location Server polls the ru se r s daemons on our
Unix workstations and passes data on each user to his User Agent. Users may
also inform their User Agent of their current location explicitly by running the
AtLocation program. Each User Agent synthesizes the (possibly inconsistent)
location hints it receives from the various sources into one opinion.

A User Agent is a well-known service that external clients can ask for a variety
of information about the user it represents, such as the user's current location.
The User Agent will either honor or reject any request depending on the poHcy
its user has specified. Subject to the user's policy, the agent also makes its user
findable by location using the facilities described later.

Some applications work by simply interacting with User Agents. For example,
submitting a message for ubiquitous delivery consists of simply giving the mes
sage to the User Agents for the recipients; each agent then takes care of getting
the message to its user. Other applications, like Scoreboard, Responsive Envi
ronment, and FindNearest, are primarily concerned with a given location, and
must perform some kind of a query to find the agents for the people at or near
that location. Sometimes User Agents themselves need to perform location-
based queries—for example, to find nearby terminals through which to present
a message for ubiquitous delivery.

One of the key problems addressed by our architecture is how to keep disclosure
of the association between a person's identity and that person's location under
the control of that person while supporting our applications with reasonable
efficiency. Our architecture provides control through the User Agent: (1) an
application starting from a person's identity can only discover that person's
location by asking the person's agent, and (2) an application starting from
a location must use the Location Query Service (see below) to discover the
identities of the people at that location, and the Location Query Service is
designed to give User Agents control over the circumstances of the release of
that information.

The Location Query Service (LQS) provides a way of executing location queries
that offers different trade-offs between efficiency and privacy. It is built around
the idea of queries over located objects, A located object is represented by a
tuple consisting of a location, an RFC handle, and an association-list describ
ing the object's type and other information that the object chooses to make

Providing Location Information 405

available.^ Examples of located objects include users (represented by User
Agents) and terminals (represented by Terminal Agents). A query is a predi
cate over a location and an association-list; the result of a query is the set of
tuples that satisfy the predicate.

A key feature of the LQS is that located objects can be anonymous. That is, a
tuple's association-list may reveal only its type and its RPC handle may employ
techniques such as indirection through trustworthy intermediaries to hide the
true identity of the real server behind the handle. A client getting a query
response listing a tuple with an anonymous RPC handle and no identity in
the association-list would have to use the RPC handle to ask the object for its
identity.^ That object (e.g., a User Agent) can respond truthfully, falsely, or not
at all, depending on its policy (which might, for example, require authenticating
the caller).

Note that a located object could register several tuples for itself, in order to
make traffic analysis more difficult.

The LQS is organized by regions, with a centralized server, called the Location-
Broker, running in each region. Public objects whose identities and locations
are not meant to be kept secret—such as printers and office display terminals—
register a full description of themselves in the LocationBroker covering the re
gion they inhabit. A private object—such as a User Agent—who is willing
to reveal that someone (without revealing who) is at their current location,
registers itself in the appropriate LocationBroker in an anonymous fashion.

Each region's LocationBroker also supports standing queries: a client can sub
mit a query and a callback RPC handle, with the LocationBroker notifying the
client of the change whenever the answer to the query changes. This is used,
for example, by the Locations program to monitor a given area.

A final efficiency trade-off that LocationBrokers can be provide is to implement
access control on behalf of an object. This amounts to selectively returning a
tuple, or portions of its association list, in the results of a query according
to a policy specified by the object when it registers itself. An object using a
region's LocationBroker thus has the choice of (1) registering minimal informa
tion (location, type, and anonymous RPC handle) with the LocationBroker and
implementing access control entirely on its own, (2) using (and thus trusting)
the access control functionality of the region's LocationBroker, or (3) any com-

^ Object type is used indicate which RPC interface to use with the RPC handle.
"̂ In a similar way, a client can hide its identity by issuing its queries from an anonymous

RPC handle.

406 CHAPTER 15

bination of the previous two."̂ Note that for regions where most User Agents
are willing to entrust their access controls to the region's LocationBroker, that
region's LQS has essentially become a centralized design, with all the efficiency
benefits and privacy risks that implies«

The last piece of our architecture concerns I/O devices. There is one Terminal
Agent for each "terminal", or cluster of I/O devices that operate together (for
example, a workstation's keyboard, mouse, screen, and sound card comprise
one terminal). As with the User Agent, the Terminal Agent consists of several
modules, some infrastructure and some application-specific. The agent pro
vides access through a device-independent interface, and manages the multiple
demands on the terminal.

Because terminals have owners, and are dedicated (in some cases) to specified
uses, there are also policy decisions to be made by Terminal Agents. Agents
for non-mobile terminals register in the LocationBroker, so that they can be
found by location. A mobile terminal may be dedicated to a particular user
and might communicate directly with that user's agent instead.

2.3 Application Examples

To illustrate how applications make use of our system, we describe how two
representative applications are implemented: UMD and the Locations program.
Someone wishing to send a message for ubiquitous delivery to a user can invoke
the SendMsg program to submit a message to the user's User Agent. The User
Agent keeps track of which (personal) portable computing devices its user is
currently using as well as what "public" terminals and people are near the
user's current location. The latter is achieved by registering for callbacks with
the LQS for the user's current location. When a message is submitted to the
User Agent for delivery, it checks to see if the user's current situation allows
delivery of the message (for example, the user's policy profile may specify that
only priority messages should be delivered when the user is in the presence of
other people) and if a suitable terminal is currently available. If so, it sends the
message to the terminal's Terminal Agent; otherwise it waits until the user's
circumstances and/or location change and then tries again.

More than one terminal may be available—for example, if the intended recip
ient is in their office, they might have access to both their workstation and a

^Since our interest is in exploring what happens when servers are not trusted, we have
not implemented access controls in our LocationBroker.

Providing Location Information 407

portable paging device, if they are carrying one. In this case the User Agent
picks the most appropriate one, where appropriateness depends on terminal
characteristics as well as whether the message to deliver is marked private—
and hence shouldn't be delivered to terminals whose display might be publicly
visible (as is the case with workstations). Terminal characteristics are exported
in the association-list that a Terminal Agent includes when it registers with the
LocationBroker (or User Agent if it is dedicated to a particular user).

In a system with many users, the Locations program needs to be told which
users to display information for. One way is to provide an explicit list of user
names. In this case the Locations program contacts those users' agents and
requests to be kept appraised of any changes in their users' locations (assuming
they consent).

Another way to limit things is to have the Locations program show all users
within a specified physical area. Consider what happens when the area fits
entirely within an LQS region. The program issues a callback registration to
the region's LocationBroker, asking to be notified of any changes in the area
due to User Agents. All User Agents currently registered in the area with the
LocationBroker will have their registrations returned in the LocationBroker's
initial response to the callback registration. Any User Agents whose users
enter the LQS region at some future point in time and register themselves
in the area with the LocationBroker will have their registrations returned to
the Locations program via callback notifications. Similarly, whenever a User
Agent leaves the area or changes location within it, a callback will be made to
notify the Locations program. An area that intersects multiple LQS regions
can be handled by performing the above operations in each region.

3 DESIGN CONSIDERATIONS

3.1 Design Principles

As discussed in the previous section, perfect privacy guarantees are difficult to
provide. Consequently we have designed a system that allows users to trade
off increasing levels of privacy risks for increasing levels of location-based func
tionality and efficiency. The following three implementation principles guided
our work:

408 CHAPTER 15

Structure the system so that users have both the ability and the choice to
not be visible to the various sensor networks and servers in the system.

Avoid requiring personal information to be placed in servers (which may
be in untrusted administrative domains).

Use encryption and anonymous handles to limit the kind of information
being revealed.

Ideally, sensing systems such as active badges and activity-monitoring OS ser
vices would establish secret and authenticated communications channels with
their users' agents. Unfortunately the technologies we currently use (Olivetti
active badges and the SunOS r u s e r s daemons) do not allow us to achieve
this goal. Our active badges are simple fixed-signal, infra-red beacons whose
emissions must be gathered by a centralized polling server. Querying ru se r s
daemons suffers from the same problem and, even worse, from the fact that
Unix makes this information available indiscriminately.

Use of these facilities is acceptable in a friendly environment, but would not be
if we extended our system to a larger, more heterogeneous setting. Only the
ability to remain silent—for example, by not wearing one's active badge—can
ensure that corrupted servers and traffic analyzers will not be able to determine
the identities of persons entering their domains.

An interesting unsolved problem is the question of knowing which sensor sys
tems are actually present at a given location. For example, most people in our
lab were originally unaware that the rusers daemon runs on their worksta
tion by default. Similarly, most people do not think about the fact that many
of their monetary transactions implicitly reveal their current locations to the
merchants and banking agencies that are party to each transaction.

The potential for inadvertently revealing one's identity and location can be re
duced by employing anonymity. Examples include the use of multiple, anony
mous login ids and facilities such as anonymous electronic cash [2]. Similarly,
applications such as Scoreboard only need profile information; they do not need
explicit identity information. In our design we rely on anonymity to bridge the
gap between wanting to keep location information hidden in a decentralized
collection of User Agents and needing to provide some means of performing lo
cation queries. User Agents can also use anonymous handles to exercise control
over which callers can discover any given piece of information (by choosing how
to answer based on the caller's identity).

Providing Location Information 409

Queriers, which may themselves be User Agents, can also use anonymity. If
both the querier and the responder are initially anonymous and unwilling to
reveal themselves without further identification from the other then some ad
ditional mechanism is needed to negotiate what to do. We have not explored
this topic yet.

3.2 Tradeoffs

Anonymity is not always suflScient to preserve privacy. Simply keeping track of
how many people are at each location over time can reveal some strong hints
about who has been where. The use of multiple, changing anonymous handles
and background noise can obscure this information, but there is a long chain of
measures and countermeasures that can be taken. One could even be concerned
with detection of minute analog differences between individual devices.

A user must keep in mind is that there are actually several different ways that
the privacy of his location can be compromised:

Application-level operations (such as giving a message to a Terminal Agent
for delivery) with untrustworthy parties can reveal location information.

Location information directly published through the LQS is available to
any querier.

A LocationBroker might not faithfully implement the access controls it
offers.

The intermediaries used to implement anonymity might be corrupt, or not
competent enough to foil the attacker.

Traffic analysis of LQS queries or results might reveal the identity of
otherwise anonymous queriers of, or objects in, the LQS.

The various location sensing systems that gather location information
might deliberately give it to other parties.

The communications between the location sensing systems and the User
Agent might not be secret and authenticated.

The communications between the person's portable computers and his
processes running at fixed locations (e.g., a User Agent) might not be
secret and authenticated.

410 CHAPTER 15

Our architecture gives users choices to limit which of the above potential ex
posures apply. Different potential exposures involve trusting different system
services to different degrees. We must allow users to opt out at whatever level
their trust is exceeded. Thus, (1) a User Agent might register a single anony
mous tuple in the LocationBroker; (2) a User Agent might register multiple
anonymous tuples in the LocationBroker; (3) a User Agent might not register
in the LocationBroker at all; and (4) a user might disable transmissions from
his portable devices (i.e., receive only—or turn them off if he's concerned about
noise emissions) and refrain from identifying himself to fixed devices. Thus it
is important for the system—including applications—to be tolerant of miss
ing or inaccurate information. Uncertainty of location information (and other
personal information) is now fundamentally a part of the system at every level.

It would not make sense (in a real system) for a user to give up a lot of efficiency
or functionality protecting against one potential exposure while not protecting
against another that applies in the same situation. For example, in a completely
untrusted administrative domain, one has to assume that any of the domain's
services (LocationBroker, Terminal Agents, location sensing units) could be
corrupted. The unfortunate consequence of all this is that the users of a system
must stay aware of who controls which aspects of the system they are currently
using and must act in an accordingly consistent fashion.

Our architecture is not dependent on the exact nature of the location sensing
technologies, nor the communications media, employed. For example, while
the experimental system we've built to explore our design extends an incon
sistent level of trust—it uses anonymous registrations in the LocationBroker,
even though our active badges and Unix workstations reveal location informa
tion indiscriminantly—we were willing to accept this because known techniques
could be used to provide more secure location sensing facilities.

As one possible replacement, consider using portables that have a GPS receiver
and a cellular telephone. The portable could get GPS-resolution information
to the User Agent, while exposing only cell-resolution location information to
only the phone companies involved (if the user assumes nobody is going to use
analog techniques to locate his transmitter more precisely). As another possible
replacement, consider putting location beacons in each room, and having an
active badge that relays a received location to its User Agent by sending an
encrypted message through a chain of intermediaries. In this case the User
Agent gets room-resolution location information, trusting the intermediaries to
hide the link between location and identity, and revealing that someone is in
the room to anyone that can see such an agent-bound message and discover its
room of origin.

Providing Location Information 411

A User Agent trades privacy against functionality when choosing how much
information to reveal to which other parties. A completely mistrustful User
Agent cannot be found by FindNearest or Note Distribution, cannot customize
a Scoreboard or a Responsive Environment, and cannot ubiquitously deliver a
message or participate in a Media Call.

In addition to allowing trade-offs between privacy and functionality, our sys
tem allows users to make trade-offs between privacy and efficiency. The LQS
offers a User Agent three choices in this regard. The first choice is how much
information to include in the association list describing the agent. When all
the information needed by an information-seeking application is found in the
association list, the application need not contact the agent to complete its
job; including this information thus increases efficiency, at the privacy cost of
perhaps indiscriminately revealing that information.

The second choice offered by the LQS is between registering one or several
tuples for a located object. Use of several tuples will cause the User Agent to
appear in more query results and hence have to answer more follow-up questions
from potentially interested clients.

The third choice offered by the LQS pertains to the use of access controls within
the LocationBroker. If most User Agents participating in the LQS of a region
are willing to completely trust the region's LocationBroker then certain kinds
of queries can be made much more efficient. In particular, queries where the
set of User Agents that will appear in the result cannot be well approximated
on the basis of location alone will benefit from this optimization. For example,
consider querying for the k users in some set of locations whose names are
alphabetically nearest one given name (such as might appear in the middle
of a scrolling list). Before the final k can be chosen, all agents registered
anonymously at those locations must be queried individually for their names.

3.3 Alternatives
An interesting addition to our architecture to consider is the use of multicast.
One could imagine having a multicast group instead of a LocationBroker for
each LQS region and having clients of the LQS multicast their location queries
to all members of a region's multicast group. Interested parties, such as the
User Agents of all users currently in a region, would anonymously listen to the
region's multicast group to hear location queries. They would answer a query
if they matched it and if their current privacy policy allowed it.

412 CHAPTER 15

The advantage of using multicast is that it only reveals the association be
tween an RPC handle and the region, and that only to the multicast routing
infrastructure. In contrast, using the LocationBroker reveals the association
between an RPC handle and a specific location. The disadvantage of multicast
is increased computation and communication: location queries go to, and must
be processed by, all listening objects in the region instead of just the Location-
Broker, and the cost of multicasting to User Agents located somewhere on the
Internet may be substantially more than the cost of communicating just with
the LocationBroker. Note also that we require reliable multicast for the design
just described.

One way to address the inefficiency problems of multicast is to offer it as an
option, in addition to the option of using a LocationBroker. Thus, each LQS
region could maintain both a multicast group and a LocationBroker, with the
LocationBroker listening to its region's multicast group and processing all lo
cation queries against the objects that are registered in it. User Agents would
thus have a choice between listening to a region's multicast group for greater
privacy or registering with a region's LocationBroker for greater efficiency.

Unfortunately, if multicast is unavailable then clients have no choice but to
register with the LocationBroker (if they wish to be findable) and accept the
increased risk that implies. Note also that a User Agent wishing to listen
to a region's multicast group must be able to register in the multicast group
from whatever address it (or the last intermediary of its anonymous indirection
chain) has. Such functionality is not yet widely available in the Internet.

There are other, radically different, architectures one could design to protect
one's privacy, but these do not support all the applications we are interested in.
For example, if all we cared about were visitor guidance then a simple scheme
whereby each location contains a broadcast location beacon that could be re
ceived by nearby portable devices would suffice. Such a scheme would provide
strong privacy guarantees as long as no portable device tried to communicate
with the rest of the world. Another alternative design could be constructed
around "proximity-based" communications and sensing facilities. These could
be used to enable communications and presence detection among objects at a
particular location without requiring more wide-ranging communications that
would be easier to monitor by external parties. Such facilities, combined with
portable computer devices, could be used to implement things like Scoreboard,
in-room note distribution, and in-room window migration. However, find
ing out about things beyond one's immediate proximity—as is needed by the
FindNearest and Locations applications would not be possible.

Providing Location Information 413

4 STATUS AND EXPERIENCE

Our location infrastructure is built and currently deployed within part of our
lab with 12 User Agents, 21 Terminal Agents, and one LocationBroker run
ning. The active badge system includes about 120 infra-red sensors that are
deployed in about 70 offices, 10 common areas and lab rooms, and the corridors
interconnecting them."^ This represents about 10% of the entire floor plan of
our building. Thus, the people participating in our system are still outside the
system a considerable amount of time; both during the work day and outside
of it.

As mentioned in the introduction, the two applications currently in use in
our system are the Locations program and UMD. The more popular one is
the Locations program, which people tend to keep running all the time in
a background window on their workstations. Its primary use seems to be as
a quick "hint" reference source to know if someone is currently in or where
they might currently be. When run with the -map option, the program also
provides a convenient map of the lab instead of just an alphabetically sorted
list of (name, location) pairs. However, the map output option also takes up
more screen space, making it less popular as a permanent background facility.

The UMD application manages to successfully deliver about 63% of all submitted
messages to their intended recipients within one minute and about 73% within
five minutes.^ Unfortunately, these statistics are not very informative because
they are dominated by the fact that our users are not always near a display
terminal and are frequently outside the range of our system altogether. As a
consequence, messages may require a considerable time before being delivered,
even when the basic location tracking system is functioning perfectly.

Our experience with UMD verified our expectation that recipient context is very
important. Originally, we silently popped up a window when a message was
delivered to someone. However, because our terminals run screen savers when
they aren't in active use, many offered messages didn't get noticed. Unfortu
nately, when we added an audio beep to announce message delivery, we found
that message delivery was perceived as being intrusive if the recipient was with
other people. This was especially the case if an unimportant message was deliv
ered to the electronic whiteboard of one of our conference rooms during a meet
ing. Although UMD provides mechanism for implementing context-sensitivity, it

'^Our infrastructure is a follow-on to an earlier and simpler, but more widely deployed one.
^Successful delivery means that the recipient explicitly acknowledged receipt of the

message.

414 CHAPTER 15

is still unclear what policies are desirable to effect ubiquitous message delivery
in both an effective and a socially desirable manner.

In the remainder of this section we describe the data we have gathered con
cerning how well our system is able to track people.

4.1 Active Badge Tracking System

Our badge system consists of strings of infra-red sensors, mounted in the ceilings
of rooms and corridors, that are periodically polled by programs running on
workstations. Offices and corridors typically have one sensor installed in them,
while common areas and lab rooms have between two and four sensors installed.
Our installation includes three separate strings of sensors; each attached to a
different workstation. Each of the three poller programs feeds its raw data
into the Badge Server, which then forwards the appropriate parts to each User
Agent that has registered with it.

Our badges emit a fixed-id signal every 15 seconds and it takes roughly 2 to
3 seconds for each poller program to interrogate all the sensors on the sensor
string it is responsible for; this implies that the minimum temporal resolution
of our system is about 15 to 18 seconds. In order to get a handle on how reliably
the infra-red sensors manage to detect badge emissions, we have structured the
data presented in this section around the notion of a "sighting interval", which
is the time between subsequent sightings of the same badge (or a person's input
activity in the case of the ru se r s data presented later on). If badge emissions
are reliably detected by the sensor system then the average sighting interval for
a person, while they are in the area covered by the sensors, should be around
15 to 20 seconds. Longer sighting intervals will occur when a badge's emissions
are missed by the sensor system.

Because people are frequently not within the area that the badge sensor system
covers, we have applied two heuristics in this paper to account for absences.
To approximate the working day, we only consider badge sighting intervals
between the first sighting of a day and the last sighting, with days considered
to end at 2AM. While this heuristic does the wrong thing for people who work
at 2AM, none of our subjects fall into that category. We have also tried to
filter out periods when someone leaves the badge sensor area to go to another
part of the building or to leave the building during the "work day". This is
done by excluding from consideration intervals longer than an upper bound;

Providing Location Information 415

100

90

80

6 70

^ 60

50

40

30

y

>̂
B-

•

y

>»^ '̂

^

^ ^ -

• - ' '

: ^

"

"-'

-H

^ — T

_ , _ •

Intervals < 10 min

Intervals < 30 min

Intervals < 1 hr

- ^ Intervals < 2 hrs

Intervals < 4 hrs

All intervals

100 200 300
sees

400 500 600

100

90

80

70

60

50

40

30
0.001 0.01

y\ / All in

y\ \
^r

izZn:
4

0.1
hrs

10

F i g u r e 3 C u m u l a t i v e g r a p h s of b a d g e s igh t ing in te rva l s by in te rva l l eng th ,
w i t h var ious u p p e r b o u n d s on in te rva l l eng th cons ide red .

we consider several different values for this upper bound because other effects
(such as obstructing a badge's emissions) can also produce long intervals.

Figure 3 shows cumulative time graphs of badge sighting intervals by interval
length, with various upper bounds on interval length considered. The curve
for all intervals (within a "working day") is shown extended out to 10 hours
in the side plot. Each point on a curve represents the total amount of time
spent in intervals shorter in length than that point's x axis time value as a
fraction of the time spent in all intervals considered for the curve. Note that
over the region shown by the main figure, the curves are actually just scaled
versions of each other because the sum of the interval values used for any x
axis point is the same for each curve. The purpose of showing multiple curves
is to give the reader some idea of how the (same) data looks as we apply ever
more-aggressive versions of our heuristic for filtering out intervals during which
a person is outside the system.

When all intervals during the "working day" are included then short sighting
intervals account for a distressingly small percentage of the time. Accounting
for likely absences improves the numbers but still leaves significant periods of
time during which a user is sighted only after a lengthy interval.

416 CHAPTER 15

Intervals < 10 min

Intervals < 30 min

Intervals < 1 hr

- •• Intervals < 2 hrs

- f Intervals < 4 hrs

All intervals

0 1(K) 200 300 400 500 600

100

80

60

40

20
0.01 0.1 1

hrs

Figure 4 Cumulative graphs of computer input sighting intervals by interval
length, with various upper bounds on interval length considered.

When the badge sighting data is broken down by person, considerable variation
is seen between people. For example, the percentage of time spent in intervals
less than 20 seconds long varied from 9% to 63% for the "all intervals" cases.
When intervals greater than 1 hour are thrown out then the time spent in
intervals of less than 20 seconds varied from 12% to 78%. These variations
seem to be due to a variety of factors, such as time spent outside the badge
system area during the day, whether or not a person wears their badge all the
time, and how "visible" their badge is to sensors. The latter issue is problematic
for several reasons:

Both natural light and some of our ceiling lighting interfere with the sen
sitivity of our IR sensors.

Many people prefer wearing their badge on their belt rather than pinned
to their chest. Unfortunately a belt-worn badge is frequently obscured by
a person's arms or other objects; especially when they are seated.

Our offices typically have only one sensor in them, yet people tend to
face different directions when performing different activities. A common
example is working at a computer versus talking with a colleague.

Providing Location Information 417

One of the questions we had with using an infra-red-based badge system was
how often multiple sensors would see a badge at the same time. This can occur
in large rooms containing multiple sensors, at corridor intersections, and for
glass-walled offices that happen to have a corridor sensor outside them. Our
system has multiple-location sightings about 0.2% of the time; with the bulk
of them occurring in our meeting rooms and lab rooms containing multiple
sensors. Note that multiple sightings are not a problem for our architecture
since uncertainty is part of the system in any case.

4.2 Computer Input Tracking System

The basic design of the Unix Location Service is the same as that of the Badge
Server: the Unix Location Server polls the rusers daemon on each workstation
in our lab once every 60 seconds to find out when the most recent input activity
occurred and which user login id it occurred for. The results are then forwarded
to the appropriate User Agents. Figure 4 describes the data we have gathered
for this service.

The ru se r s data displays similar characteristics to that of the badge system.
That is, the time spent in intervals of small size represents only a small fraction
of the total time spent in all sighting intervals, with the fraction significantly
improving as larger intervals are excluded from the data. The breakdown by
person again yields significant differences due to different people's work pat
terns.

4.3 Overlap Between Tracking Systems

One of the most interesting things we observed about our two tracking systems
is that they tend to complement rather than overlap each other. Table 1 lists
how often only a person's badge was seen, only a person's computer input
activity was seen, both were seen, and neither were seen, as a fraction of the
total time that the person is in the system. A person is considered to be "in the
system" when they are not absent from the badge data and not absent from
the input activity data. As before, we define a person to be absent from sensor
data during intervals longer than various bounds. We define the notion of a
person being "seen" during a sighting interval as meaning that the length of
the interval is less than some cut-off value. The table gives overlap statistics for
several different absence bounds and "seen interval" cut-off values, the smallest
cut-off value being set at a value slightly larger than the minimum sighting

418 CHAPTER 15

Seen interval cut-ofF size: 75 sec. 150 sec. 5 min. 10 min7|

All working-day intervals:
Only badge seen:
Only input activity seen:
Both seen:
Neither seen:

19%
17%
7%
57%

20%
20%
9%
51%

21%
21%
10%
48%

21%
23%
13%
43%

Only intervals less than 1 hr. considered:
Only badge seen:
Only input activity seen:
Both seen:
Neither seen:

Only intervals less than IC
Only badge seen:
Only input activity seen:
Both seen:
Neither seen:

26%
23%
9%
42%

26%
28%
12%
34%

1 min. considered:
32%
31%
11%
26%

33%
36%
15%
16%

28%
29%
14%
29%

35%
38%
17%
10%

29%
32%
17%
22%

36%
43%
21%
0%

Table 1
tics.

Table of badge and computer input activity sighting overlap statis-

interval of either tracking system. The important thing to note is that the
fraction of time during which both badge and input activity are seen is quite
small, both in absolute terms and relative to the fractions of time during which
only one or the other was seen.

We attribute this phenomenon to primarily two things: (1) people working
at home will be seen by their computer input activity and not by the badge
system, and (2) people who wear their badge on their belt and are typing
at their workstation will tend to obscure their badge's emissions while having
clearly visible computer input activity.

4.4 Tracking Moving Persons

People sitting within their office provide a different sighting profile to the active
badge system than do people who are moving around. To get a handle on how
well our active badge system could track moving persons—such as visitors—we
performed several "walk-about" experiments to see how well the badge system
could follow us.

Providing Location Information 419

As mentioned earlier, the basic badge sighting interval is 15 seconds; which is
enough time to walk past about a half dozen offices and perhaps a corridor
or two in our lab. We found that a person who randomly walked about our
corridors was seen, on average, every 22 seconds, with a standard deviation of
17 seconds. We also tried the same experiment with the badge emission period
changed to 10 seconds and obtained an average sighting interval of 17 seconds,
with a standard deviation of 13 seconds.

Note that 17 seconds is still enough time to add noticeable inaccuracy to an
application such as V i s i t o r Guidance. Decreasing the badge emission interval
to 5 seconds would presumably give us an average interval length somewhere
between 5 and 10 seconds; but would cut the battery lifetime of our badges
from its current value of about 3 months to about 1 month.

We did not have much trouble with people being sighted in offices while walking
past, even though roughly half, on average, of the front wall of each office
in our lab is open to IR. Only about 11% of the sightings from hall-walking
experiments were in offices. While we recognize that the exact placement of a
badge sensor within a room can greatly affect this result, we mention it because
our sensors were placed in a fashion to optimize office coverage, without much
concern about the hall "cross-talk".

We infer from this that message delivery "chase" effects while people move
about should probably not disturb the denizens of every office a person walks
by. Anecdotal evidence has corroborated this — only one person has reported
seeing an attempt at ubiquitous message delivery in his office for someone not
present.

5 CONCLUSIONS

We have designed and built an infrastructure for providing location informa
tion and various applications that use that information. The architecture we
advocate is a user-centric one in which the personal information for each user—
including location information—is managed and controlled by that user's User
Agent. A Location Query Service consisting of a LocationBroker per region is
provided to facilitate queries by location.

The principle assumptions behind our design were two-fold:

420 CHAPTER 15

• The design should scale to use in multiple administrative domains.

• We did not rule out the existence of untrustworthy servers and sophisti
cated traffic analysis attacks in some domains.

The consequences of these assumptions were that we could not use strictly
centralized designs that rely on trusted location databases and we had to accept
the fact that strict privacy guarantees are in general difficult and expensive to
provide.

The hybrid decentralized architecture we designed gives each user a range of
privacy options that they may dynamically choose from. At one extreme is
the ability to simply "opt out" of the system, exchanging any participation
in (and benefit from) the system for a fairly strong guarantee of privacy. At
the other extreme is the ability to convert any trusted region into an efficient
centralized design by simply having everyone register themselves in that region's
LocationBroker with the appropriate access control specifications. In between,
are two levels of anonymity that users can choose to assume, depending on the
trust they place in a region's servers and the level of risk aversion they wish to
employ.

The price we paid for the decentralized nature of our architecture is increased
communications and processing overhead. The worst case occurs for appUca-
tions like the FindNearest and Locations programs, which cannot narrow
the set of people they are interested in until after they have received query
responses from many potential candidates. We believe that in practice the ad
ditional overhead will rarely be a problem: applications that are continually
interested in changing location information can use the callback facilities to ob
tain incremental updates and "one-shot" applications, like FindNearest, are
typically not run so frequently as to overwhelm the system's resources. Our
personal experience, to date, has borne this out.

Two important qualitative implications of our architecture are the following:

• Uncertainty is a fundamental aspect of our system that is visible at the
applications level.

• Only certain kinds of location sensing technology can be deployed if users
are to be able to hide from the system at will.

Uncertainty has strong implications for a variety of our appUcations. For
context-sensitive applications, such as UMD and Media Call , it means that they

Providing Location Information 421

must always assume the possibility that invisible people are at any given lo
cation unless explicitly told otherwise. For applications such as FindNearest
and Locations, uncertainty means that they must be viewed as "hint" ser
vices. Despite this, we have still found location information to be quite useful;
with the Locations program being the most popular application in our running
system.

Our requirement that users be able to completely hide from the system has
strong implications for which sensing technologies may be deployed. Users can
hide from our active badge system by simply taking off their badge. If cameras
were deployed throughout our lab then it would be almost impossible to allow
some people to hide from the system while still being able to track others. In
general, any technology that can track some unremovable, unhidable aspect of
people must be avoided if we wish to allow people to remain hidden from the
system.

Our quantitative experience with providing location information has primarily
covered the efficacy of the location sensing systems we deployed. We found that
both our infra-red-based badge system and our r u se r s computer input mon
itoring service gave only partial coverage, even when time spent outside the
system was taken into account. While we suspect that substantially greater
numbers of badge sensors—probably several per office—could significantly im
prove our badge tracking performance, this would also substantially increase
the cost of deployment of the system.

Interestingly, our two sensing systems tended to complement each other rather
than being redundant; thus we obtained a real benefit from employing more
than one tracking system. An informative extension to our system would be the
introduction of radio-based nano-cells[10], which would suffer from a different
set of problems than infra-red. It is unclear whether it would be more econom
ical to improve tracking performance by beefing up one of our sensing systems
or by trying to deploy additional different ones. We are currently deploying
portable notebook computers using nano-cell radio communication, personal
communication devices using more advanced infra-red communication, and ad
ditional pubHc display devices. These should improve both the coverage and
variety of our location information, as well as giving us a greater number of
devices through which our applications can interact.

In addition to the question of what accuracy of location information is attain
able, there are a variety of open issues that remain to be addressed by future
work. Perhaps most important of these is the question of how accurate loca
tion information needs to be, given the fundamental uncertainty introduced by

422 CHAPTER 15

peoples' desire for privacy. Our current coverage is sufficient to enable useful,
though imperfect, versions of all our applications to be implemented. Until we
have further actual usage experience with our system it will be difficult to tell
how much users actually value various levels of privacy versus functionality and
how important either accuracy or efficiency considerations will turn out to be.

We are also curious to see what kinds of privacy policies users actually deploy.
Our architecture is designed to provide users with a great deal of flexibility and
control, but it is not at all clear how much users will actually take advantage
of all the options offered them. We suspect that in the long run most users will
settle into a small number of usage "modes" that reflect common situations,
such as maximum trust and functionality (e.g. being at home), a fair amount
of trust and lots of functionality (e.g. most of the time at work), less trust
and less functionality (e.g. being at a shopping mall), and no trust with no
functionality (e.g. when privately negotiating with someone).

A related policy question to examine is that of how many intrusions users are
willing to tolerate in order to improve application performance. For example,
applications such as UMD and Media Call can initiate a preliminary dialogue
with a user to verify the social context the user is in. Similarly, an application
such as note distribution can employ external feedback mechanisms to verify
its successful execution. Active participation by users allows an application
to overcome inaccurate and incomplete location information by having users
modify their behavior. The result is a system that may provide greater privacy
safeguards, but is also more intrusive and less automated than it might be.

In addition to these policy issues there are at least two other infrastructure
questions that deserve mention for future work. We listed the addition of mul
ticast to our system as an interesting extension to consider. However, whereas
the properties of local-area multicast are fairly well understood, it is unclear
what the behavior and scaling properties of reliable Internet multicast are.
Consequently, it is unclear what would happen if a large-scale deployment of a
multicast-based location infrastructure ever happened.

The second infrastructure problem we mention is that of how two anonymous
parties can agree to conditionally reveal information to each other. Although
special cases of this problem are easy to solve and may represent the common
usage case, it is unclear if there is a general solution that will be satisfactory
in all cases.

Providing Location Information 423

Acknowledgements

We thank our collegues with whom we have discussed many of the ideas in
this paper, especially Dan Greene and David Nichols, who provided valuable
insights and feedback to us in the early phases of the design.

REFERENCES

[1] N. Ackroyd and R. Lorimer. Global Navigation: A GPS User's Guide.
Lloyd's of London Press, 1990.

[2] D. Chaum. Security without identification: transaction systems to make
big brother obsolete. CACM, 28(10):1030-1044, October 1985.

[3] S. Elrod, G. Hall, R. Costanza, M. Dixon, and J. desRivieres. The re
sponsive environment: Using ubiquitous computing for office comfort and
energy management. Technical Report CSL-93-5, Xerox Palo Alto Re
search Center, 1993.

[4] B.N. Schilit, M.M. Theimer, and B.B. Welch. Customizing mobile ap
plication. In Proceedings USENIX Symposium on Mobile & Location-
Independent Computing, pages 129-138. USENIX Association, August
1993.

[5] M. Spreitzer and M.M. Theimer. Scalable, secure, mobile computing with
location information. CACM, 36(7):27, July 1993.

[6] ruser manual entry of the SUNOS UNIX manual.

[7] R. Want and A. Hopper. Active badges and personal interactive computing
objects. Transactions on Consumer Electronics, 38(1), February 1992.

[8] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location
system. Transactions on Information Systems, 10(1), January 1992.

[9] M. Weiser. The computer for the twenty-first century. Scientific American,
pages 94-104, September 1992.

[10] M. Weiser. Some computer science problems in ubiquitous computing.
CACM, 36(7):74-83, July 1993.

16
UNIX FOR NOMADS: MAKING

UNIX SUPPORT MOBILE
COMPUTING

Michael Bender, Alexander Davidson,
Clark Dong, Steven Drach, Anthony Glenning,
Karl Jacob, Jack Jia, James Kempf, Nachiap-
pan Periakaruppan, Gale Snow, Becky Wong

Sun Microsystems, Inc.
Mountain View, California.

A B S T R A C T

Traditionally, the Unix operating system^ has been associated with deskbound ma
chines tethered to the wall by a power cord and an Ethernet cable. Making Unix
support a more nomadic model of computing requires changes in the entire system,
from the kernel level through the user command set of applications. In this paper, we
present the results of an experimental prototype development effort targeted at sup
porting a nomadic computing model in Sun's Solaris 2 SVR4-based platform^. The
development involved enhancements in four primary areas: kernel changes to support
power management and checkpointing of system state, drivers and other kernel sup
port for the new PCMCIA bus standard, support for serial line networking, and a
new electronic mail application designed specifically for accessing mail over slow serial
connections. The paper discusses enhancements and modifications to the design of
standard Solaris system components in each of these areas.

Permission has been granted by the USENIX Association to reprint this paper. This
paper was originally published in the First USENIX Symposium on Location Dependent
Computing, 1993. Copyright ©USENIX Association, 1993.

^ Unix is a registered trademark of Unix System Laboratory
^In this paper, SunOS 5.x refers to SunSoft's implementation of Unix System V Release

4 (SVR4). Solaris 2.x refers to SunSoft's SunOS 5.x-based application development and de
livery environment, which includes the Open Windows window environment and the Tooltalk
application integration environment.

426 CHAPTER 16

1 INTRODUCTION

An implicit assumption in the design of many Unix platform software com
ponents is that the workstation or server will remain tethered to a particular
physical location by its need for power and an Ethernet connection. Newer, low
power chip and system designs have enabled the manufacture of small form-
factor, battery-powered portable computers. These computers are much more
mobile than the machines on which Unix traditionally runs. Such machines
may be used both in an office setting and while on the road, so that they be
come the primary machine for some users. A nomadic computing model, where
users set up their computer and work somewhere then move the machine to
a different physical location and continue working, is fundamentally different
from the traditional deskbound model which Unix currently supports. Design
modifications to a Unix platform for supporting nomadic computing require a
system approach, since the nomadic usage model affects everything from the
kernel through user applications.

The main factor driving kernel changes for nomadic use is power. Mobile
computers tend to have tighter constraints on power consumption than desktop
machines. These constraints derive primarily from the limited performance of
existing batteries. Since battery technology is improving slowly relative to
processor and memory technology, hardware and software for saving power in
nomadic computers is essential to increasing the available compute time with
limited battery life. In addition, nomadic usage patterns involve frequent power
cycling, so that long start up and shut down times are less tolerable than in
desktop machines. Mobile users want the ability to simply shut the machine off
and later start it up again, having it restored to exactly the same state as they
left off so they can begin work immediately, because their work is frequently
interrupted by movement. While similar functionality has been added to MS-
DOS^ and SunOS 4.1 [12], to our knowledge, our work is the first attempt to
add power management and checkpoint/resume to a version of SVR4.

Nomadic users may have limited access to the standard Ethernet connections
which many deskbound machines require. A wide variety of connectivity op
tions, such as FAX/modem, ISDN, wired/wireless LAN/WAN, etc., may be
available at the location where the user is working. In addition, the higher
power requirements and large form factor of standard desktop bus extension
peripherals are often inappropriate for mobile machines. A new bus standard
for low power, small form factor (credit-card sized) hardware devices, called
PCMCIA, has been designed specifically for portable computers [6]. Support

•^MS-DOS is a trademark of Microsoft, Inc.

Unix for Nomads: Making Unix Support Mobile Computing 427

in the Unix operating system for PCMCIA is needed to make PCMCIA de
vices available for Unix nomads. In addition, since many of the connectivity
options open to nomadic users are likely be serial lines with relatively low band
width and high latency, transparent access to an efficient serial line protocol is
required.

Perhaps the canonical application for mobile users is electronic mail. A variety
of new connectivity technologies, including mobile cellular and packet radio
networks, are enabling wide area access to electronic mail beyond the desktop.
A critical factor in providing mobile users with electronic mail service is the
communication protocols used between the client and servers. Currently, they
are optimized for high bandwidth, low latency connections. Most of the newer,
wide area connectivity options are low bandwidth, high latency, with a rela
tively high cost per packet. New application level protocols are required to deal
with the different characteristics of these connections.

This paper presents an overview of changes in various Solaris 2.x system compo
nents necessary to support nomadic computing. We discuss adding support for
power management, kernel and appUcation checkpointing, PCMCIA, serial line
connectivity, and mobile electronic mail. The next section describes the power
management framework. Section 3. discusses the design of checkpointing, and
how it interacts with power management to provide the user with "instant
on" capability. In Section 4. , we discuss the implementation of PCMCIA on
SunOS 5.x. Section 5. provides an overview of the serial connectivity and the
asynchronous serial line link manager. In Section 6. , we discuss electronic
mail as an example of what changes may be required in applications to support
mobile users. Finally, Section 7. summarizes the paper.

2 THE POWER MANAGEMENT
FRAMEWORK

Limited power availability is the primary constraint on nomadic computer op
eration. Since a portable computer consists of a variety of hardware devices,
conservation of power can be achieved by matching the power consumed to the
activity level of each device. The objective of the power management frame
work is to match the power consumed by a device to its activity level. In its
simplest form, the power management framework can turn devices off when
they are idle and turn them on again when they are needed. If the device has
special power management hardware, the power management framework can

428 CHAPTER 16

match the power consumption of the device to its activity level in a more fine
grained manner. The result is increased battery life, and therefore increased
operating time.

The goals of the power management design are the following:

• Provide a generic, portable power management framework within the SVR4
system design,

• Operate transparently to the user, but include user tunable parameters.

In pursuit of these goals, the framework is divided into three basic parts:

• The device driver mechanisms to support power management,

• The pseudo device driver, pm-driver, providing supervisory kernel mech
anisms and policies,

• The DDI/DKI [11] changes required to support the framework.

Figure 1 contains a diagram of the power management framework, showing
the architectural relationship between the parts, and the parts themselves are
described in a separate subsection. In the figure, a light grey arrow indicates
that the function is optional, a solid arrow indicates it is required, and a striped
arrow indicates the functionality is provided by an implementation dependent
mechanism.

2.1 Device Driver Mechanisms

Device drivers are really the key to power management. Device drivers control
when a device is physically accessed, whether a device can be suspended, and
whether any special power management hardware components are available to
the kernel. The power management framework depends on the device drivers
to manage the individual devices they control, which is the bulk of the power
management. To remain compatible with existing drivers, the framework as
sumes that it should not try to power manage a device if the driver provides
no power management.

Unix for Nomads: Making Unix Support Mobile Computing 429

* Adjust threshold time scan frequency
* Change threshold values
* Add device dependency
* Delete device dependency
* Obtain current power management status

i o c t l ()

pin-driver

D K I

acx_det:acli (SUSPEND)!

XX power(OPP)

DDI/ja<ai_dov_is_noodod(3|

aoc_at:t:acli (RESUME)

aac__powor (ON)

^ d i p o w e r ()

Kernel

User Land
Kernel Land

Device Driver

main component|_|_
power_level = 5
component
power_level = 0

component
power_level = 7

3*

Figure 1 Power M a n a g e m e n t Framework

The design of the power management framework required adding a new state to
device drivers, and rethinking how device driver software relates to the hard
ware it controls. The new state is device suspension. Suspension involves
bringing the device to a state where there is no activity, although the power is
still on. Prom a software point of view, suspending the device requires saving
hardware registers and driver state to memory. Device suspension is clearly
separated from power off, and new driver entry points were added for both sus
pension and power off. Powering a device off usually involves a writing specific
value to a hardware register or issuing a device-specific command to the device.

Prom the power management point of view, hardware devices can consist of a
variety of parts having differing power management capabilities. The extreme
example is the entire computer itself, which consists of disk, CPU, display,
etc. The power management frameworks models this structure by specifying
that a device consists of a number of power manageable hardware units, called
components. Each component is separately power controllable and has its own
set of power parameters. One component is defined to be the main component
and is logically where the state of the device is kept. The main component
requires the driver to be suspended to save the hardware state before it can be
turned off. The driver must also be resumed to restore state when the main

430 CHAPTER 16

component is turned on. The other components must be stateless and do not
require the driver to be suspended or resumed to be power managed.

Components collect together state and functionality relevant for power man
aging a device. Each component has a power level associated with it. A zero
power level indicates that the device is turned off, while a device at a nonzero
power level is on. The component is responsible for mapping between power
states and integer power levels provided by clients to control power. Each
component has two basic functions:

It must export its last access time. A component indicates that it is busy
by exporting a zero access time, allowing the framework to detect when
the component does not need power management.

It must notify the power management framework before it is used, if power
has been reduced below the level needed for the operation. The compo
nent need not notify the framework if the power level is sufficient for the
operation.

In some cases, power management within a driver could conflict with efficient
device access. The granularity of power control is entirely up to the device
driver writer. Each component of a device may be tuned differently, depending
on where in the driver the timestamps are updated. Tuning of a component
can assure that critical paths within drivers avoid any overhead at the possible
expense of some power management granularity. The framework allows the
driver writer to make the necessary trade-offs between device access efficiency
and power manageability.

2.2 Power Management Pseudo Driver

The power management pseudo driver pm-driver is responsible for managing
power reduction in the system. The pm-driver periodically scans all devices,
querying each power manageable device about its usage, and informing the de
vice to shut off if the device has been idle longer than a set amount of time.
Additionally, a power manager interface is provided through i o c t l O opera
tions within the driver. The i o c t l O operations allow the user to tune the
parameters of the pm-driver's power management policies. The pm-driver
does not power manage any devices not exporting the correct power manage
ment information. The pm-driver initiates powering down of a component

Unix for Nomads: Making Unix Support Mobile Computing 431

due to inactivity, and powering up of a component through a request from the
device driver. If a driver is in a state such that it cannot save all the necessary
information, it may return failure. In that case, the pm-driver does not turn
the main component off immediately, but it may try again later.

Through pm-driver, the power management framework recognizes two types
of dependencies between devices: logical and physical. A power manageable
device has a physical dependency if it has one or more devices attached be
low it on a set of interconnected buses. A device has a logical dependency if
no physical interconnection exists, but a power management constraint exists
nevertheless. For example, a graphics card driver that relies on keyboard and
mouse inactivity to determine if the display can be turned off has a logical
dependency. Prior to power removal, all dependent devices must be properly
suspended and powered down before the dependee can be shut down. Physical
dependency between devices is implicitly defined in the kernel device tree. The
pm-driver must be informed of logical dependencies either through a driver
configuration file or through an i o c t l O call. If either a physical or logical
dependency exists, then no component of the device is powered down unless
the dependency is satisfied.

In order to decide if a device component is idle, the pm-driver obtains the
time that the component was last accessed, which has been exported by the
component. If the last access time is zero, the device is busy. If the difference
between the last access time and the current time exceeds the management
policy threshold time for the component, the component is deemed idle. If all
logical dependents of the device are also idle, the pm-driver attempts to turn
off the device. If an error occurs, the power down fails and the component is
left on.

The pm-driver provides all kernel mechanisms and implements power man
agement policy. It is accessed by the user through i o c t l O operations. These
operations allow the user to adjust the frequency of device scans, change com
ponent threshold values, or add and delete dependencies, and to obtain the
current power management status of a device or of the pm-driver itself. The
pm-driver only controls devices that have been configured (i.e. have at least
their threshold time(s) set). Typically, at boot time, a script runs a configu
ration program that reads a system file and configures all power manageable
devices.

432 CHAPTER 16

2.3 DDI / DKI Changes

As shown in Figure 1, two standard operations in the DDI/DKI [11] have been
changed to recognize two additional command parameters and three operations
have been added experimentally to the DDI/DKI. The changes allow drivers to
interact indirectly with the pm-driver, so different power management pseudo
drivers can be provided for different hardware platforms, or no pseudo driver if
power management is not desired. The changes also permit the implementation
of other platform specific power management modules to provide ad-hoc power
control for devices which were not initially designed with power control.

The standard DDI/DKI operations xx_detach() and xx_resume() have two
additional command parameters added to their command set, SUSPEND and
RESUME. The SUSPEND command parameter requests that the driver save its
state, block any further 10, and allow all outstanding 10 requests to complete.
When it returns, there should be no outstanding requests for 10 so that nothing
is lost when the device is power cycled. The RESUME command parameter
restores the driver's state for a power on. As indicated by the grey arrows in
the figure, recognition of these commands by the driver is optional.

ddi_dev_isjieeded() is a new operation called by the device driver when a
component of a device is needed at a certain power level. It returns when
the component is at the requested level. xx_power() is a new operation that is
implemented by the device driver. It takes one command parameter, indicating
whether the power should be turned on (ON) or off (OFF), and is called by pm-
driver to request that the device driver turn the power on or off. ddi_power()
is a new operation that is called by a device driver which doesn't want to handle
power management itself to request that the kernel handle power management
with the system default. The black arrows in Figure 1 indicate that the driver
is required to implement these.

3 SYSTEM STATE CHECKPOINT AND
RESUME

A major component of the nomadic enhancements is system checkpoint/resume
(CPR). A system checkpoint saves the state of the entire system, including user-
level processes, to nonvolatile storage. A system resume restores the system to
the checkpointed state at a later time. The primary benefit of CPR for nomadic
computing is its role in power conservation. Automatic checkpointing when the

Unix for Nomads: Making Unix Support Mobile Computing 433

battery is low protects the user from undesirable state loss. CPR also matches
the people's expectations about how a nomadic machine should be used. With
CPR, a machine can be moved from one place to another without going through
the time-consuming bootstrap process. Resume times are typically on the order
of a minute or less.

CPR has been available in MS-DOS and on a few portable Unix machines
running SunOS 4.1 for some time. However, the SVR4 system is considerably
more complex than MS-DOS or SunOS 4.1, so the design issues involved are
somewhat more challenging. The design goals for CPR in SunOS 5.x are the
following:

• CPR should provide extremely reliable service,

• System administration and maintenance should be as simple as possible,

• The design should remain flexible and extensible so it will easily work with
new releases of SunOS 5.x,

• The checkpoint and resume times should be as short as possible, to en
courage people to use the facility.

There are two possible design strategies for CPR:

• Forcefully shut off all subsystems and take a snapshot of all kernel and
user-level process memory images,

• Ask each subsystem to stop and allow the system to save itself.

Most existing implementations of CPR take the first approach [12]. The first
approach is faster but the outcome is less deterministic. For example, an Eth
ernet controller might be right in the middle of accepting a packet, and forcing
it to shut off causes that packet to drop. For this reason, our design uses the
second approach. Figure 2 schematically illustrates the checkpoint process, and
the next two subsections examine CPR in more detail.

3.1 System Checkpointing

User processes are the first system component to be checkpointed. When a
checkpoint is initiated, all user processes are requested to stop. This is accom-

434 CHAPTER 16

user processes

^ / \^A/ \A/
' SIGFREEZE

kernel
checkpoint
file

kernel daemons kernel subsystems
device drivers

Figure 2 System Checkpoint Process

plished by sending a new user signal, SIGFREEZE, to each process. The default
action of SIGFREEZE is to stop the process. Applications that need a chance
to perform certain housekeeping tasks prior to the checkpoint (e.g. close down
network connections, notify servers or clients of impending unavailability) can
catch the signal. Once the user processes are frozen, all modified pages with
backing store are paged out, and all such pages are invalidated and purged from
the page cache. User-level processes are restored from these pages on resume.

After all user processes are stopped and their pages are pushed out to the
swap device, the kernel daemons are requested to stop. Since each daemon is
unique, it needs to stop at a different location. A callback mechanism allows
each daemon to specify where it should be stopped. A callback handler can
be registered with the CPR callback mechanism by the daemon at thread ini
tialization time if the daemon requires special action prior to checkpointing.
The installed handler is part of the daemon and uses the same synchronization
mechanisms to stop the daemon.

After all the user processes and kernel daemons are stopped, no further base
level activity is possible. The next step is to give all interested subsystems
(e. g. VM, callout processing) a chance to prepare themselves for checkpoint.
This is accomplished via the same callback mechanism used for stopping the
kernel daemons. Only those subsystems that require special processing prior
to checkpointing need register callbacks.

Finally, all device drivers are suspended. Although theoretically it would have
been possible to design checkpointing so that 10 in progress need not complete.

Unix for Nomads: Making Unix Support Mobile Computing 435

the probability that a restarted 10 request would succeed on resume is rather
low. Therefore, the checkpoint subsystem blocks all new requests and the ker
nel waits for all outstanding 10 requests to complete. After the 10 queue is
empty, the driver saves the device hardware and software state to data struc
tures in memory using the same suspension mechanisms as power management
suspension. Once all the device drivers are stopped, interrupts are turned off
and the system enters a completely dormant state. All valid kernel pages are
written out to the kernel state file on the root device (e.g. disk or network)
and the checkpoint process is complete.

3.2 System Resume

On the resume side, the kernel loading program started by the PROM detects
a resumable system by an implementation dependent mechanism and loads
in a special resume module. This resume module reads the kernel state file,
and restores the kernel memory image and the MMU back to the checkpointed
state. Control is then transferred back to the kernel, and the reverse of the
checkpoint sequence is executed. When user level processes are ready to run, a
SIGTHAW signal is sent, in case they need to initialize before beginning normal
execution.

4 P C M C I A ON UNIX

Unlike desktop machines, portable computers have a limited amount of cab
inet space for expansion slots and a limited amount of power for peripheral
devices. In response to the need for a smaller form factor and a lower power
bus, portable computer manufacturers formed the Portable Computer Man
ufacturers' Card Interface Association (PCMCIA), and developed a new bus
standard, having the same name [6]. The PCMCIA standard defines the phys
ical form factor, electrical bus interface (8 or 16 bit), and a software API for
small, credit-card-sized devices. The standard allows mass storage, lO and
memory peripherals to be used on multiple different hardware system architec
tures and operating systems. Although the software interface in the standard
was developed specifically with implementation on the Intel x86 architecture
and the MS-DOS operating system in mind, any computer which implements
a bus interface conforming to the PCMCIA mechanical and electrical speci
fications can utilize a PCMCIA card. Since the existence of the standard is
catalyzing volume manufacture, implementing software support for PCMCIA

436 CHAPTER 16

on Unix would provide the Unix user with access to a wide variety of previously
unavailable low power peripherals.

The goals of the PCMCIA implementation are the following:

Provide a software architecture and API that adheres closely to the PCM
CIA standard without violating the architectural assumptions of the SVR4
device driver architecture,

Supply enhancements in areas where the standard is currently underspec-
ified or lacking,

Assure that the implementation supports maximum portability of PCM
CIA card drivers between SunOS on different hardware platforms (e.g.
SPARC and Intel x86).

Feed the results back into the PCMCIA standards process to grow the
current software interface beyond its focus on MS-DOS.

In the following subsections, we describe the implementation of the PCMCIA
2.01 standard API on SunOS 5.x.

4.1 The Card and Socket Services Design in
Unix

The PCMCIA standard specifies the Card Services API as an interface between
a device driver for a card and the system software layer managing the PCMCIA
bus controller hardware, or adapter. The adaptor provides the physical slot, or
socket, for the PCMCIA card and a hardware interface between the PCMCIA
bus and the system bus. The Card Services API allows a card device driver
to control the adapter independently from the specific adapter hardware. The
Socket Services API is a hardware-independent interface between Card Services
and the software layer that controls a particular adapter. It is possible to have
multiple Socket Services layers to support multiple different types of adapter
hardware.

Figure 3 illustrates the PCMCIA software driver architecture in SunOS 5.x
and its mapping onto the hardware. In the figure, grey rectangles are hardware
modules and grey arrows indicate interaction between software components and

Unix for Nomads: Making Unix Support Mobile Computing 437

system bus syst:em bus nexus

adapt^ez- neacus
(Socket: Sezrvlces)

^ ^ __ parent-child relationship

Caz-d
Services

Figure 3 PCMCIA Hardware and Driver Software Architecture

hardware. Black arrows indicate interaction between software components. In
the SVR4 architecture, device drivers for bus controllers such as a PCMCIA
adaptor are called nexus drivers [11]. Drivers for devices on the bus are children
of the nexus. Figure 3 indicates parent-child relationships with a striped line.
The Socket Services layer corresponds to a nexus driver in the SVR4 architec
ture, with a separate nexus driver required for each different type of adapter
hardware. A particular PCMCIA nexus driver is the parent of all card drivers
for cards in that adapter's sockets, and, in turn, the PCMCIA nexus is the
child of the system bus nexus. Unlike other device drivers, a PCMCIA card
driver does not interact directly with its parent nexus. Rather, as specified by
the standard, the card driver calls into the Card Services layer, and the Card
Services layer deals with the nexus.

The PCMCIA standard also specifies calls in the Card Services API allowing
a device driver to load and unload a Socket Services implementation. The
mapping of Socket Services to a parent nexus driver in SunOS 5.x means that
this feature cannot be provided on the SunOS 5.x implementation of PCMCIA.
Allowing a child to replace its parent nexus is not permitted in the SVR4 device
driver architecture.

438 CHAPTER 16

The SunOS 5.x implementation of Card Services is a collection of function
entry points in the kernel. These functions are located in a miscellaneous
kernel module that is not part of the device driver hierarchy. The module
handles all Card Services requests from all PCMCIA device drivers and makes
the calls into the appropriate parent nexus. The Card Services functions require
the driver to pass a client handle that uniquely identifies the requesting driver
instance. SunOS 5.x Card Services implements this client handle as a pointer
to a structure containing the driver's perinstance information. Card Services
uses this handle to locate the appropriate parent nexus in an implementation
specific way. In the PCMCIA standard, the interface between the parent and
the child is publicly specified in the Socket Services interface. In the SunOS 5.x
implementation of PCMCIA, this interface is private and not available for use
by the device driver itself. However, the interface is available for developers of
PCMCIA bus adapter hardware who need to develop a custom nexus.

4.2 Modifications to the Card Services
Interface

The specification of the current PCMCIA Card Services API is highly tuned
for the MS-DOS operating system. The standard specifies that Card Services
has a single function entry point through which all Card Services requests are
vectored. This single entry point is specified to require the same number of
arguments no matter which Card Services function is being requested. The
arguments specified in the standard are of fixed type, and different type argu
ments for different Card Services calls must be packed as untyped bytes into
a variable length byte array. In the current PCMCIA standard, each proces
sor type, processor mode (protected, real, etc.,), subroutine call method (near,
far) and operating system, on which Card Services is implemented specifies an
implementation-specific binding that dictates the details required to make the
call. The model is very similar to an MS-DOS INT 21 function call.

This design hinders driver portability for operating systems, such as SunOS
5.x, that run on multiple system architectures and multiple processors. As
part of Sun's efforts in the PCMCIA standard process, a C language calling
convention is being proposed. The proposal implements a single Card Services
function entry point with a variable argument list of pointers to function-specific
structures and/or opaque data types, somewhat like an i o c t l O . Details such
as the sizes of various address and data types, byte ordering for shared structure
members, and generic system resources managed by the kernel are kept hidden
from the driver developer. Selective data hiding allows a device driver to be

Unix for Nomads: Making Unix Support Mobile Computing 439

source compatible between SunOS 5.x on the SPARC architecture and SunOS
5.x on the Intel x86 architecture. Certain differences between the SPARC
and Intel x86 architectures, such as card 10 port accesses, are hidden using
register access macros supplied by the PCMCIA header files. On SPARC,
card 10 registers are mapped into the device driver's virtual memory address
space, while on the Intel x86, the registers are accessed using privileged I/O
instructions, but the macros hide this detail from the driver writer.

4.3 The Card Information Structure (CIS)
Interface

One of the most important features of the PCMCIA standard is the speci
fication of a mechanism making every PCMCIA card selfidentifying. Every
PCMCIA card has an area in which card information is stored, called the Card
Information Structure (CIS). The CIS is a singly-linked-list of variable-length
tuples. Each tuple has a one byte code describing the tuple type, and a one
byte link which is the offset to the start of the next tuple in the list. The
CIS provides a wide variety of information about the PC card. Each tuple can
contain subtuples that elaborate on the information provided by the parent tu
ple. Although the PCMCIA standard originally only specified enough bits for
256 tuples, as the standard grew, the need for more arose. Since no standard
extension mechanism has been proposed, extensions have arisen in an ad-hoc
manner.

The only method specified by the PCMCIA standard for dealing with CIS
structures is a set of Card Services functions that return the raw contents of a
tuple. The device driver is required to take care of tuple parsing itself, even for
tuples whose structure is fixed by the standard. The SunOS 5.x Card Services
implementation provides the standard Card Services functions, however, it also
includes a tuple parser that parses all tuples specified by the standard into
structures defined in the PCMCIA header files. A device driver need not include
any tuple parsing code itself unless information from a nonstandard tuple is
required.

PCMCIA CIS structures are also used by the PROM during booting to build
the kernel device tree on SPARC systems. SPARC systems contain a rudimen
tary CIS interpreter and tuple parser in the body of the boot PROM. This CIS
interpreter knows about certain common tuples that provide device identifica
tion and configuration information, and the interpreter and parser build simple
nodes in the kernel device tree for each card found at boot time. In addition.

440 CHAPTER 16

card developers can include Fcode, the programming language used by Sun's
boot PROM for selfidentifying devices, in the CIS of their cards, allowing the
boot PROM to configure PCMCIA cards just as Sbus cards are configured cur
rently. For cards that appear to the system as mass storage or network devices,
the PROM can load boot images or establish network connections, allowing the
PROM to boot the SunOS 5.x kernel from files read off PCMCIA mass stor
age or network devices. In SunOS 5.x for Intel x86 systems, using a PCMCIA
card as a boot device is not yet supported, since the boot PROM on Intel x86
machines is not programmable.

5 SERIAL WIDE-AREA CONNECTIVITY
AND LINK MANAGEMENT

Traditionally on the desktop, the primary connectivity option available to users
has been 10 Mbps Ethernet. The most common form of network connectivity
available to nomadic users currently is a simple serial modem connection (2400
to 14.4K bps, faster with compression) via an analog telephone line. More re
cent innovations in mobile connectivity have made alternate options available,
such as spread-spectrum and packet radio, cellular, and satellite. One char
acteristic common to most nomadic connectivity options regardless of their
bandwidth and latency characteristics is point to point serial transfer. Support
for eflScient serial connectivity is therefore essential for nomadic users.

The goals of the serial connectivity design are the following:

The serial connectivity protocol should slip easily in at the ISO data link
layer, and use standard higher level and lower level interfaces.

Performance of the protocol over low bandwidth, high latency serial net
works, such as analog telephone, should be adequate.

The serial protocol should be accommodated by existing network infras
tructure (e.g. routers).

Connection management should optimize connection time, so that expen
sive or unreliable connections need not remain active when they are not in
use,

The protocol should contain proper support for security.

Unix for Nomads: Making Unix Support Mobile Computing 441

These goals lead to the incorporation of the Point to Point Protocol (PPP)
[9] [10] [5] [4] into SunOS 5.x, and the development of the asynchronous link
manager. The next two subsections describe these new system components.

5.1 Point to Point Protocol (PPP)

Most network applications built for the desktop environment have been engi
neered for the Ethernet, and specifically for the TCP/IP or UDP/IP protocols.
For nomadic users to be able to employ standard network applications, like the
Network File System (NFS) over a serial line, the same kind of higher level
services available on Ethernet, e.g. TCP/ IP and UDP/IP, are required over a
serial connection. PPP is a standard protocol developed by the Internet En
gineering Task Force Network Working Group for point-to-point links such as
dial-up modem servers [9] [10] [5] [4]. With PPP, applications can access the
wide-area serial connection through the same system interfaces and higher level
protocols used for the local area network.

The PPP protocol consists of three components:

• An encapsulation method for datagrams over serial links,

• A Link Control Protocol (LCP) for the establishment and configuration
phases of starting a connection, and for testing,

• A family of Network Control Protocols (NCP's) for connecting over differ
ent network layer protocols.

The PPP design specifies an encapsulation protocol over bit-oriented syn
chronous links and asynchronous links with 8 bits of data and no parity. The
links must be full duplex, but can be either dedicated or circuit-switched. An
escape mechanism is specified to allow control data such as software flow control
(XON/XOFF) to be sent transparently, and to remove control data interjected
by intervening software or hardware. Only 8 additional octets are necessary for
encapsulation, and the encapsulation can be shortened to 2 octets if bandwidth
is at a premium, supporting lower bandwidth connections. The encapsulation
scheme provides for multiplexing different network layer protocols over the link
at the same time. As a result, PPP can provide a common solution for easy
connection with a wide variety of existing bridges and routers. Finally, P P P
provides two protocols for authentication: a password authentication protocol
and a challenge-handshake authentication protocol.

442 CHAPTER 16

5.2 The Link Manager

The asynchronous serial line link manager is a user level daemon that takes care
of maintaining serial line connections. It automates the process of connecting
to a remote host when PPP service is established. The connection can be
initiated either by simply sending a IP datagram to a disconnected host, or
by receiving notification from a remote host that a connection is desired. In
this way, network services such as NFS can be provided without requiring a
continuous, physical connection. In Figure 4, the position of the hnk manager in
an experimental serial line architecture is shown. The link manager is normally
started at boot time by i n i t . It reads a configuration file, builds internal data
structures, opens up a connection to the kernel IP-Dialup module (ipdcm in the
figure), creates and opens the FIFO on which it listens for incoming (dial-in)
requests, and then enters an idle state waiting until a message appears on either
of the opened connections.

An outbound connection is initiated when the link manager receives a con
nection request message from IP-Dialup. It checks to see if the connection
request corresponds to a configured " path", consults the UUCP data base files
for modem and destination system information, and then places a phone call to
the destination host. After the physical link is established (i.e. the two hosts
are connected over the phone line), the link manager configures and initiates
PPP. Once the data Unk layer is established and the P P P modules on the peer
hosts are communicating with each other, the link manager starts IP and, if
specified, modifies the local route table to indicate that the newly created path
is to be used as the default route. The link manager then passively monitors
the connection until an event such as idle time out, line disconnect, or an error
condition occurs. When this happens, it will disconnect from the peer, clean
up external data structures like the route table, and return to the idle state.

An inbound connection is initiated when the link manager receives a notification
that the login service has opened the named pipe FIFO. The login service is a
separate process that is invoked by the login program. When the login service
is invoked, it opens the named pipe FIFO and passes the login name and the
file descriptor for its standard input to the link manager listening on the other
end of the named pipe. It then waits until the pipe between it and the link
manager is closed, indicating a disconnect, then exits. This allows login to
regain control over the serial port again and display the login prompts. When
the link manager is notified that the login service has connected to the named
pipe FIFO, it reads the information written to the pipe, checks to see if the login

Unix for Nomads: Making Unix Support Mobile Computing 443

2:^ Locr f ± i o f-—-]
Coiif ±firuz-a.tz ± o n

UUCP Dat:a B a s o

F i g u r e 4 Components and Interfaces in the Link Manager

name corresponds to a configured path, and then configures and initiates PPP.
The rest of the scenario is the same as that described for outbound connections.

6 NOMADIC ELECTRONIC MAIL

Electronic mail is the canonical example of an attractive mobile application.
The asynchronous nature of electronic mail allows a mobile user to send email
from one location and get the reply at another. Mobile users require the same
level of electronic mail service as their deskbound counterparts. In addition,
since a wide variety of wide-area and local-area connectivity options of varying
cost and performance are likely to be available to a mobile user, nomadic access
to electronic mail should reduce the need for connectivity unless it is absolutely
required, and allow good access even over high latency, low bandwidth connec
tions. For many nomadic users, remote mail may be the single most convenient
way of maintaining electronic connectivity, supplanting terminal emulators and
file transfer which are the current most widely used options.

444 CHAPTER 16

Based on these considerations, the following goals for the nomadic electronic
mail application were defined:

Access to electronic mail should be possible over any wide-area or local-
area connection,

It should be possible to manipulate mail state while disconnected from the
network, so a user can read mail without requiring a potentially costly
wide-area network connection.

The mail application should be usable even after an unanticipated discon
nection from the network or a server failure,

A user should be able to indicate that they need a certain level of func
tionality when they are disconnected and the mail application should ac
commodate this request.

The nomadic electronic mail application's user interface should differ from
the standard desktop UI only in those areas where specific nomadic prob
lems must be addressed.

The following two subsections describe design solutions for these goals.

6.1 IMAP Mail Protocol

The underlying mail protocol used by the electronic mail system plays an im
portant part in determining the connectivity characteristics of the electronic
mail application. A variety of currently popular mail protocols and other ways
of remotely viewing mail (POP [7], PCMail [3], remote X [8]) were examined
and the Interactive Mail Access Protocol (IMAP) [1] [2] was selected. The
primary reason for selecting IMAP is because it was designed as a interactive
protocol rather than a protocol for simply moving messages from one message
store to another. The IMAP protocol makes efficient use of the underlying con
nection bandwidth by breaking the message into logical chunks, allowing the
mail reader to request only the parts of the mail message that the user really
wishes to see. For example, if a mail message is in a multimedia format such
as MIME, an IMAP-based mail reader could only request the text of the mail
message and allow the user to make a choice as to whether or not they wanted
to wait for a multimedia attachment to be downloaded.

Unix for Nomads: Making Unix Support Mobile Computing 445

Although IMAP was a good starting point, its main use to date has been
over standard Ethernet and thus its implementation and definition required
improvement to support mobility. For example, IMAP sends an envelope struc
ture over the connection for each message, even though the envelope structure
is unneeded unless the user actually indicates a desire to reply. To increase the
efficiency of IMAP over low bandwidth, high latency wide-area connections,
the protocol was modified to reduce the amount of such unnecessary data sent
across the connection. In addition, IMAP originally did not support discon
nection. Disconnected operation is handled by calculating a checksum on the
server to determine if some other mail reader has modified the section of the
remotely cached file. Although the checksum should be updated every time an
operation affecting mail state is executed, transmitting the checksum separately
could cause much higher packet traffic. By piggybacking the checksum on the
completion reply packet, the update information is sent as part of the stan
dard request/reply protocol, eliminating the need for a separate request/reply
to handle the checksum. At the moment, the mobile IMAP does not support
full functionaUty while disconnected, however. For example, full support of
searches for text in the body of a message is impossible unless the body of the
message is local or the connection is up.

6.2 Nomadic User Interface Enhancements

For the most part, the user interface of a nomadic mail reader application need
differ little from one for desktop use. Indeed, close user interface compatibility
between the mail reader for nomads and for the deskbound means that users
need not learn a new command interface when they take their machine on the
road. ROAM is a prototype nomadic mail reader similar in basic function to
the standard Sun reader Mailtool but with a Motif interface. Besides those
places where Motif and OpenLook differ, the command set is almost the same
as Mailtool

The exceptions are where additional command support for remote or discon
nected operation is required. A command interface allows messages to be down
loaded for caching on the local machine, so that users can view mail while dis
connected. Users may also want to know which messages are local and which
are remote, to avoid an unpleasant surprise while disconnected when they at
tempt to read a message which is not there. Headers of messages that are not
locally cached appear differently from those that are only available over the
network, and message bodies that are not local are displayed as half full icons.
Locally cached messages have their headers displayed in roman font, while re-

446 CHAPTER 16

mote messages are in italic. Another user command allows the mail queue to
be manipulated, so that unsent messages can be deleted if desired. Finally,
users who are connected over wide area serial links need the abiUty to specify
more stringent searches to reduce the amount of traffic and number of misses
when trying to find a particular message. Detailed search capability was added
including search by dates, text in message body, status of messages and many
others. Using this search capability, a user could search for a message received
this week concerning a certain topic eliminating the large number of messages
that would appear if all messages received for this topic were searched. The
search is then run on the server, rather than downloading all message bodies
to the client and running the search locally.

7 SUMMARY

Fostering a more nomadic usage model in Unix requires changes throughout
the entire system, from the kernel to the commands of user applications. The
primary and most important change in the kernel is automation of power mon
itoring and control, to reduce the drain on batteries. Power management in
creases battery life, allowing users to work longer without having to plug into
wall power or change batteries. System checkpoint/resume provides ease of use
in such areas as quick start and reliability. With system checkpoint/resume, a
mobile user can quickly shut down operation at one physical location and start
up at another without requiring a lengthy initialization.

The new PCMCIA standard presents an opportunity for Unix-based machines
to leverage off of a wide variety of new communication, 10, and storage devices.
Implementing the standard in Unix has required a variety of changes, since
PCMCIA was originally developed for MS-DOS. The changes map concepts
such as Socket Services onto components of the existing SVR4 device system
design. Mostly, however, the PCMCIA Card Services layer has been maintained
intact, providing high fidelity to the standard in the part of the API which
matters most to device driver writers.

Serial line connectivity is and will remain the primary means for nomadic users
to tap into the Internet. The PPP protocol, developed by the Internet Engi
neering Task Force, is an efficient serial line protocol allowing connection with
existing network infrastructure. Since serial connections are generally more
expensive and less reliable than Ethernet, connection management is required.
The asynchronous serial line link manager hides the details of making serial

Unix for Nomads: Making Unix Support Mobile Computing 447

connections, so that a serial connection looks exactly like a standard TCP/ IP
connection to an application.

While many existing network applications can be used unchanged in the no
madic environment, others may require modification. Electronic mail is an
example of the canonical nomadic application, since email is so useful to no
madic users. The IMAP interactive mail protocol, modified for nomadic use,
provides the basis for efficient support of email over a serial line and for dis
connected operation. The changes made to IMAP are a useful prototype for
how application-specific protocols can be changed to support a nomadic model.
In addition, modifications to the user interface allow users to specify caching
upon disconnection, and provide a variety of other command features specific
to the nomadic environment.

REFERENCES

[1] Crispin, M. "Interactive Mail Access Protocol - Version 2," Internet Engi
neering Task Force RFC 1176, 1990.

[2] Crispin, M., "IMAP2BIS - Extensions to the IMAP2 Protocol," Internet
Engineering Task Force RFC 1176, 1992.

[3] Lambert, M., "PCMail," Internet Engineering Task Force RFC 1056,1988.

[4] Lloyd, B., and Simpson, W., "PPP Authentication Protocols," Internet
Engineering Task Force RFC 1334, 1992.

[5] McGregor, G., "The PPP Internet Control Protocol (IPCP)," Internet
Engineering Task Force RFC 1332, 1992.

[6] PCMCIA Standard Release 2.01, Portable Computer Manufacturers' Card
Interface Association, 1993.

[7] Rose, M., "Post Ofiice Protocol - Version 3," Internet Engineering Task
Force RFC 1081, 1991.

[8] Scheifler, R.W., and Gettys, J., "X Window System", Digital Press, 1992.

[9] Simpson, W., "The Point-to-Point Protocol (PPP) for the Transmission of
Multi-protocol Datagrams over Point-to-Point Links," Internet Engineer
ing Task Force RFC 1331, 1992.

448 CHAPTER 16

[10] Simpson, W., "PPP Link Quality Monitoring," Internet Engineering Task
Force RFC 1333, 1992.

[11] SunOS 5.1 Writing Device Drivers, SunSoft, Part No. 801-2871-10, 1992.

[12] "The Nomadic Computing Environment", Tadpole Corp., 1993.

17
SCHEDULING FOR R E D U C E D C P U

E N E R G Y
Mark Weiser,

Brent Welch*, Alan Demers , and Scott Shenker

Xerox Palo Alto Research Center,
3333 Coyote Hill Road

Palo Alto, CA 94304

*Sun Microsystems Laboratory
2600 Garcia Ave

Mountain View, CA 94043

A B S T R A C T

The energy usage of computer systems is becoming more important, especially for
battery operated systems. Displays, disks, and cpus, in that order, use the most
energy. Reducing the energy used by displays and disks has been studied elsewhere;
this paper considers a new method for reducing the energy used by the cpu. We
introduce a new metric for cpu energy performance, millions-of-instructions-per-joule
(MIPJ). We examine a class of methods to reduce MIPJ that are characterized by
dynamic control of system clock speed by the operating system scheduler. Reducing
clock speed alone does not reduce MIPJ, since to do the same work the system must
run longer. However, a number of methods are available for reducing energy with
reduced clock-speed, such as reducing the voltage [2] [5] or using reversible [7] or
adiabatic logic [1].

What are the right scheduling algorithms for taking advantage of reduced clock-
speed, especially in the presence of applications demanding ever more instructions-
per-second? We consider several methods for varying the clock speed dynamically
under control of the operating system, and examine the performance of these meth
ods against workstation traces. The primary result is that by adjusting the clock
speed at a fine grain, substantial CPU energy can be saved with a limited impact on
performance.

Permission has been granted by the USENIX Association to reprint this paper. This
paper was originally pubUshed in the USENIX Association Conference Proceedings, 1994.
Copyright ©USENIX Association, 1994.

450 CHAPTER 17

1 INTRODUCTION

The energy use of a typical laptop computer is dominated by the backlight and
display, and secondarily by the disk. Laptops use a number of techniques to
reduce the energy consumed by disk and display, primarily by turning them off
after a period of no use [6] [4]. We expect slow but steady progress in the energy
consumption of these devices. Smaller computing devices often have no disk
at all, and eliminate the display backlight that consumes much of the display-
related power. Power consumed by the CPU is significant; the Apple Newton
designers sought to maximize MIPS per WATT [3]. This paper considers some
methods of reducing the energy used for executing instructions. Our results go
beyond the simple power-down-when-idle techniques used in today's laptops.

We consider the opportunities for dynamically varying chip speed and so energy
consumption. One would like to give users the appearance of a lOOMIPS cpu
at peak moments, while drawing much less than lOOMIPS energy when users
are active but would not notice a reduction in clock rate. Knowing when to
use full power and when not requires the cooperation of the operating system
scheduler. We consider a number of algorithms by which the operating system
scheduler could attempt to optimize system power by monitoring idle time and
reducing clock speed to reduce idle time to a minimum. We simulate their
performance on some traces of process scheduling and compare these results to
the theoretical optimum schedules.

2 AN ENERGY METRIC FOR CPUS

In this paper we use as our measure of the energy performance of a computer
system the MIPJ, or millions of instructions per joule. MIPS/WATTS = MIPJ.
(Of course MIPS have been superseded by better metrics, such as Specmark:
we are using MIPS to stand for any such workload-per-time benchmark). MIPJ
is not improving that much for high-end processors. For example, a 1984 2-
MIPS 68020 consumed 2.0 watts (at 12.5Mhz), for a MIPJ of 1, and a 1994
200-MIPS Alpha chip consumes 40 watts, so has a MIPJ of 5. However, more
recently lower speed processors used in laptops have been optimized to run at
low power. For example, the Motorola 68349 is rated at 6 MIPS and consumes
300 mW for 20 MIPJ.

Other things being equal, MIPJ is unchanged by changes in clock speed. Re
ducing the clock speed causes a linear reduction in energy consumption, but a

Scheduling for Reduced CPU Energy 451

similar reduction in MIPS. The two effects cancel. Similarly, turning the com
puter off, or reducing the clock to zero in the "idle-loop", does not effect MIPJ,
since no instructions are being executed. However, a reduced clock speed cre
ates the opportunity for quadratic energy savings; as the clock speed is reduced
by n, energy per cycle can be reduced by n^. Three methods that achieve this
are voltage reduction, reversible logic, and adiabatic switching. Our simula
tions assume n^ savings, although it is really only important that the energy
savings be greater than the amount by which the clock rate is reduced in order
to achieve an increase in MIPJ.

Voltage reduction is currently the most promising way to save energy. Already
chips are being manufactured to run at 3.3 or 2.2 volts instead of the 5.0 voltage
levels commonly used. The intuition behind the power savings comes from the
basic energy equation that is proportional to the square of the voltage.

E/clock oc V'^ (17.1)

The settHng time for a gate is proportional to the voltage; the lower the voltage
drop across the gate, the longer the gate takes to stabilize. To lower the voltage
and still operate correctly, the cycle time must be lowered first. When raising
the clock rate, the voltage must be increased first. Given that the voltage and
the cycle time of a chip could be adjusted together, it should be clear now
that the lower-volt age, slower-clock chip will dissipate less energy per cycle. If
the voltage level can be reduced linearly as the clock rate is reduced, then the
energy savings per instruction will be proportional to the square of the voltage
reduction. Of course, for a real chip it may not be possible to reduce the voltage
linear with the clock reduction. However, if it is possible to reduce the voltage
at all by running slower, then there will be a net energy savings per cycle.

Currently manufacturers do not test and rate their chips across a smooth range
of voltages. However, some data is available for chips at a set of voltage lev
els. For example, a Motorola CMOS 6805 microcontroller (cloned by SGS-
Thomson) is rated at 6 Mhz at 5.0 Volts, 4.5 Mhz at 3.3 Volts, and 3 Mhz at
2.2 Volts. This is a close to linear relationship between voltage and clock rate.

The other important factor is the time it takes to change the voltage. The
frequency for voltage regulators is on the order of 200 KHz, so we speculate
that it will take a few tens of microseconds to boost the voltage on the chip.

Finally, why run slower? Suppose a task has a deadline in 100 milliseconds,
but it will only take 50 milliseconds of CPU time when running at full speed
to complete. A normal system would run at full speed for 50 milliseconds,
and then idle for 50 milliseconds (assuming there were no other ready tasks).

452 CHAPTER 17

During the idle time the CPU can be stopped altogether by putting it into a
mode that wakes up upon an interrupt, such as from a periodic clock or from an
I/O completion. Now, compare this to a system that runs the task at half speed
so that it completes just before its deadline. If it can also reduce the voltage
by half, then the task will consume 1/4 the energy of the normal system, even
taking into account stopping the CPU during the idle time. This is because the
same number of cycles are executed in both systems, but the modified system
reduces energy use by reducing the operating voltage. Another way to view
this is that idle time represents wasted energy, even if the CPU is stopped!

3 APPROACH OF THIS PAPER

This paper evaluates the fine grain control of CPU clock speed and its effect
on energy use by means of trace-driven simulation. The trace data shows the
context switching activity of the scheduler and the time spent in the idle loop.
The goals of the simulation are to evaluate the energy savings possible by
running slower (and at reduced voltage), and to measure the adverse affects
of running too slow to meet the supplied demand. No simulation is perfect,
however, and a true evaluation will require experiments with real hardware.

Trace data was taken from UNIX workstations over many hours of use by a
variety of users. The trace data is described in Section 4 of the paper. The
assumptions made by the simulations are described in Section 5. The speed
adjustment algorithms are presented in Section 6. Section 7 evaluates the
different algorithms on the basis of energy savings and a delay penalty function.
Section 8 discusses future work, including some things we traced but did not
fully utilize in our simulations. Finally, Section 9 provides our conclusions.

4 TRACE DATA

Trace data from the UNIX scheduler was taken from a number of workstations
over periods of up to several hours during the working day. During these
times the workloads included software development, documentation, e-mail,
simulation, and other typical activities of engineering workstations. In addition,
a few short traces were taken during specific workloads such as typing and
scrolling through documents. Appendix I has a summary of the different traces
we used.

Scheduling for Reduced CPU Energy 453

Trace Points

SCHED
IDLEON
IDLEOFF
FORK
EXEC
EXIT
SLEEP
WAKEUP

Description

Context switch away from a process
Enter the idle loop
Leave idle loop to run a process
Create a new process
Overlay a (new) process with another program
Process termination
Wait on an event
Notify a sleeping process

Table 1 These trace points were used to generate the trace data.

The trace points we took are summarized in Table 1. The idle loop events
provide a view on how busy the machine is. The process information is used
to classify different programs into foreground and background types. The sleep
and wakeup events are used to deduce job ordering constraints.

In addition, the program counter of the call to sleep was recorded and kernel
sources were examined to determine the nature of the sleep. The sleep events
were classified into waits on "hard" and "soft" events. A hard event is some
thing like a disk wait, in which a sleep is done in the kernel's biowait() routine.
A soft event is something like a select that is done awaiting user input or a
network request packet. The goal of this classification is to distinguish between
idle time that can be eliminated by rescheduling (soft idle) and idle that is
mandated by a wait on a device (hard idle).

Each trace record has a microsecond resolution time stamp. The trace buffer
is periodically copied out of the kernel, compressed, and sent over the network
to a central collection site. We used the trace data to measure the tracing
overhead, and found it to range from 1.5% to 7% of the traced machine.

5 ASSUMPTIONS OF THE SIMULATIONS

The basic approach of the simulations was to lengthen the runtime of indi
vidually scheduled segments of the trace in order to eliminate idle time. The
trace period was divided into intervals of various lengths, and the runtime and
idletime during that interval were used to make a speed adjustment decision.

454 CHAPTER 17

If there were excess cycles left over at the end of an interval because the speed
was too slow, they were carried over into the next interval. This carry-over is
used as a measure of the penalty from using the speed adjustment.

The ability to stretch runtime into idle periods was refined by classifying sleep
events into "hard" and "soft" events. The point of the classification is to be fair
about what idle time can be squeezed out of the simulated schedule by slowing
down the processor. Obviously, running slower should not allow a disk request
to be postponed until just before the request completes in the trace. However,
it is reasonable to slow down the response to a keystroke in an editor such that
the processing of one keystroke finishes just before the next.

Our simulations did not reorder trace data events. We justify this by noting that
only if the offered load is far beyond the capacity of the CPU will speed changes
affect job ordering significantly. Furthermore, the CPU speed is ramped up to
full speed as the offered load increases, so in times of high demand the CPU is
running at the speed that matches the trace data.

In addition, we made the following assumptions:

• The machine was considered to use no energy when idle, and to use en
ergy/instruction in proportion to n^ when running at a speed n, where n
varies between 1.0 and a minimum relative speed. This is a bit optimistic
because a chip will draw a small amount of power while in standby mode,
and we might not get a one-to-one reduction in voltage to clock speed.
However, the baseline power usages from running at full speed (reported
as 1.0 in the graphs) also assume that the CPU is off during idle times.

• It takes no time to switch speeds. This is also optimistic. In practice,
raising the speed will require a delay to wait for the voltage to rise first,
although we speculate that the delay is on the order of 10s of instructions
(not 1000s).

• After any 30 second period of greater than 90% idle we assumed that any
laptop would have been turned off, and skipped simulating until the next
30 second period with less than 90% idle. This models the typical power
saving features already present in portables. The energy savings reported
below does not count these off periods.

• There was assumed to be a lower bound to practical speed, either 0.2,
0.44 or 0.66, where 1.0 represents full speed. In 5V logic using voltage
reduction for power savings, these correspond to 1.0 V, 2.2 V and 3.3V

Scheduling for Reduced CPU Energy 455

minimum voltage levels, respectively. The 1.0 V level is optimistic, while
the 2.2 V and 3.3V levels are based on several existing low power chips.
In the graphs presented in section 7, the minimum voltage of the system
is indicated, meaning that the voltage can vary between 5.0 V and the
minimum, and the speed will be adjusted linearly with voltage.

6 SCHEDULING ALGORITHMS

We simulated three types of scheduling algorithms: unbounded-delay perfect-
future (OPT), bounded-delay limited-future (FUTURE), and bounded-delay
limited-past (PAST). Each of these algorithms adjust the CPU clock speed at
the same time that scheduling decisions are made, with the goal of decreasing
time wasted in the idle loop while retaining interactive response.

OPT takes the entire trace, and stretches all the run times to fill all the idle
times. Periods when the machine was "off' (more than 90% idle over 30 sec
onds) were not considered available for stretching runtimes into. This is a kind
of batch approach to the work seen in the trace period: as long as all that
work is done in that period, any piece can take arbitrarily long. OPT power
savings were almost always limited by the minimum speed, achieving the max
imum possible savings over the period. This algorithm is both impractical and
undesirable. It is impractical because it requires perfect future knowledge of
the work to be done over the interval. It also assumes that all idle time can be
filled by stretching runlengths and reordering jobs. It is undesirable because
it produces large delays in runtimes of individual jobs without regard to the
need for effective response to real-time events like user keystrokes or network
packets.

FUTURE is like OPT, except it peers into the future only a small window, and
optimizes energy over that window, while never delaying work past the window.
Again, it is assumed that all idle time in the next interval can be eliminated,
unless the minimum speed of the CPU is reached. We simulated windows as
small as 1 millisecond, where savings are usually small, and as large as 400
seconds, where FUTURE generally approaches OPT in energy savings. FU
TURE is impractical, because it uses future knowledge, but desirable, because
no realtime response is ever delayed longer than the window.

By setting a window of 10 to 50 milliseconds, user interactive response will
remain high. In addition, a window this size will not substantially reduce a

456 CHAPTER 17

very long idle time, one that would trigger the spin down of a disk or the
blanking of a display. Those decisions are based on idle times of many seconds
or a few minutes, so stretching a computation out by a few tens of milliseconds
will not affect them.

PAST is a practical version of FUTURE. Instead of looking a fixed window into
the future it looks a fixed window into the past, and assumes the next window
will be like the previous one. The PAST speed setting algorithm is shown in
Figure 1.

IdleCycles = Hardldle 4- Softldle;

RunCycles + = ExcessCycles;

RunPercent = RunCycles / (IdleCycles -I- RunCycles);

NextExcess = RunCycles -

Speed * (RunCycles + Softldle)

IF ExcessCycles < 0. THEN

ExcessCycles = 0.

Energy = (RunCycles - ExcessCycles) * Speed * Speed;

IF ExcessCycles > IdleCycles THEN

NewSpeed = 1.0;

ELSEIF RunPercent > 0.7 THEN

NewSpeed = Speed -h 0.2;

ELSEIF RunPercent < 0.5 THEN

NewSpeed = Speed - (0.6 - RunPercent);

IF NewSpeed > 1.0 THEN

NewSpeed = 1.0;

IF NewSpeed < MinSpeed THEN

NewSpeed = MinSpeed;

Speed = NewSpeed;

ExcessCycles = NextExcess;

Figure 1 Speed Setting Algorithm (PAST). RunCycles is the number of non-
idle CPU cycles in the last interval. IdleCycles is the idle CPU cycles, split
between hard and soft idle time. ExcessCycles is the cycles left over from the
previous interval because we ran too slow. All these cycles are mezisured in
time units.

There are four parts to the code. The first part computes the percent of time
during the interval when the CPU was running. The RunCycles come from two

Scheduling for Reduced CPU Energy 457

sources, the runtime in the trace data for the interval, and the ExcessCycles
from the simulation of the previous interval.

The ExcessCycles represents a carry over from the previous interval because
the CPU speed was set too slow to accommodate all the load that was supplied
during the interval. Consider:

Next Excess = RunCycles — speed * {RunCycles + Softldle) (17.2)

The RunCycles is the sum of the cycles presented by the trace data and the
previous value of ExcessCycles. This initial value is reduced by the soft idle
time and the number of cycles actually performed at the current speed. This
calculation represents the ability to squeeze out idle time by lengthening the
runtimes in the interval. Only "soft" idle, such as waiting for keyboard events,
is available for elimination of idle. As the soft idle time during an interval
approaches zero, the excess cycles approach:

RunCycles * (1 - OldSpeed) (17.3)

The energy used during the interval is computed based on an n^ relationship
between speed and power consumption per cycle. The cycles that could not
be serviced during the interval have to be subtracted out first. They will be
accounted for in the next interval, probably at a higher CPU speed.

The last section represents the speed setting policy. The adjustment of the
clock rate is a simple heuristic that attempts to smooth the transitions from
fast to slow processing. If the system was more busy than idle, then the speed
is ramped up. If it was mostly idle, then it is slowed down. We simulated
several variations on the code shown here to come up with the constants shown
here.

7 EVALUATING THE ALGORITHMS

Figure 2 on page 459 compares the results of these three algorithms on a single
trace (Kestrel March 1) as the adjustment interval is varied. The OPT energy
is unaffected by the interval, but is shown for comparison. The vertical access
shows relative power used by the scheduling algorithms, with 1.0 being full
power. Three sets of three lines are shown, corresponding to three voltage
levels which determine the minimum speed, and the three algorithms, OPT,
FUTURE, and PAST. The PAST and FUTURE algorithms approach OPT as
the interval is lengthened. (Note that the log scale for the X axis.) For the

458 CHAPTER 17

same interval PAST actually does better than FUTURE because it is allowed
to defer excess cycles into the next interval, effectively lengthening the interval.
The intervals from 10 msec to 50 msec are considered in more detail in other
figures.

Figure 3 on page 460 shows the excess cycles that result from setting the speed
too slow in PAST when using a 20 msec adjustment interval and the same trace
data as Figure 2. Note that the graph uses log-log scales. Cycles are measured
in the time it would take to execute them at full speed. The data was taken as
a histogram, so a given point counts all the excess cycles that were less than or
equal that point on the X axis, but greater than the previous bucket value in
the histogram. Lines are used to connect the points so that the spike at zero
is evident. The large spike at zero indicates that most intervals have no excess
cycles at all. There is a smaller peak near the interval length, and then the
values drop off.

As the minimum speed is lowered, there are more cases where excess cycles
build up, and they can accumulate in longer intervals. This is evident Figure 3
where the points for 1.0 V are above the others, which indicates more frequent
intervals with excess cycles, and the peak extends to the right, which indicates
longer excess cycle intervals.

Figure 4 on 461 shows the relationship between the interval length and the peak
in excess cycle length. It compares the excess cycles with the same minimum
voltage (2.2 V) while the interval length varies. This is from the same trace
data as Figures 2 and 3. The main result here is that the peak in excess cycle
lengths shifts right as the interval length increases. All this means is that as a
longer scheduling interval is chosen, there can be more excess cycles built up.

Figure 5 on page 463 compares the energy savings for the bounded delay limited
past (PAST) algorithm with a 20 msec adjustment interval and with three
different minimum voltage limits. In this plot each position on the X access
represents a different set of trace data. The position corresponding to the trace
data used in Figures 2 to 4 is indicated with the arrow.

While there is a lot of information in the graph, there are two overall points to
get from the figure: the relative savings for picking different minimum voltages,
and the overall possible savings across all traces.

The first thing to look for in Figure 5 is that for any given trace the three
points show the relative possible energy savings for picking the three different
minimum voltages. Interestingly, the 1.0 V minimum does not always result in

Scheduling for Reduced CPU Energy 459

£

o

<
<

x:

CO

2
9̂

o

1

| < | i) | (| < 4 > j c - f < i x

- > > > > > > > > >
- CO CO CO csj <\j c\j q q q
- CO CO CO cvi cvi c\i ^ T-̂ 1-^

|_DL l -Q- h-Cl-
3 3 3
U. U. LL

•

/ ;2iV / '' /
/ ^ 1''

/ ^ ''/
/ ^ , 1

/ ^ ' 1
/ ^ '' 1 / ^ .' 1 / ^ ' 1 / ^ ,' 1

/ • , ' /
/ ^ .'' 1 / ^ ' 1

/ ^ ''' 1
'. 1

/ / / /
/ /

If

<i

1

/ /
X X

J

1f
1

it

/
/ < -/ / /

1

' 1

1

1 •

>(x-
/ / / » / ' / / / , / . / •

/ /

1 / '
1 /

y

I

1 —

^ t
' !

' 1
1 \ \

n
II.

/ 1 •' \
' ' ' ' / I

/ /'-' • i /)k< X +

>̂ x' +
' , 1

1
1
1
1

t
1
1

1

j
1

1

1

1

+
1

<>< t H
' •' ' 1

<a'x j

t \
\]
! \
i \

j J

t \

t \

t

+ H
1

o

I
CD

4—•

_c

<

O

o
o
d

00

d
CO

d d
CM

d

Power used

Figure 2 All algorithms compared with three different minimum voltages.
As the adjustment interval lengthens, more power is saved in the FUTURE
and PAST algorithms. The savings is always the same with OPT, which is
shown for comparison.

460 CHAPTER 17

8
E
o CJ

CO

^̂
CO
c 0
Q-

"̂ sz
o
^ CO
:E

%
"w 0
i>̂

1 1 1

' ¥ ^ 1
> > >
COCVJO
COCJT^

-
-

"

Z^HtfT 1

[I f 1 1 ' ' ' 1 ' ' ' 1 ' ' '

,..'
. . ' • • ' ' ' '

<«l- - ' ' * V - — -
^ ^ ~ ~ -y

y' ^̂ ^
,'' ^^ ,' y"

>*' sx ra r /^ y^ ' ^ y^

/ / y

4'""""/r-^^'^
' ^ /
' ^ X
' ^^y

K\ \ ^
A ^
\\ \̂ >\ \
W
, \.\
\ \
'< ^
<a -m
' ' 1

<̂ ')<^ 4
' ^ \ < \ \

> \\

\ \ \
\ \ \ \ \ \

' \ ̂

\ V\

I I I 1 I I I 1 — * • • • 1 1 1 1

--""

•]
J
J

J

J
•j

^ J

-̂
-1

J

H

J
-̂

j

U 1 1 1

\ o

T - W

CO

O
CO
CO
(1) o
X

LU

o o

CO

o + 0

8
O o o

8
o
o
T—

o o
o

o o
^

o o o

Frequency

Figure 3 Excess cycle penalty at 20 msec for three different minimum volt
ages. The frequency is the number of occurrences of the penalty during the
simulation.

Scheduling for Reduced CPU Energy 461

>
CM
oj

CO
c
(D

CL
T -

CO

"55

n—• ' — n ~

t T ^ 1 "̂
o o o o

1 (D O 0 O
1 (/)(/) CO (0

E E E E

r oooo
. i-c\jcoin - to w w w

CO CO CO CO
D - O L O - C L

;

^ - - ^ r : ^ ? ^ ^ U^̂ ^̂ '.

T 1 1 ' ' '

.+•''5^'

T A i
/ '• ^

/ \ ' ^
/ \ '1 i

EJ V ^ \
\ ^ '• \

\ ^ * ' ••.

1 ' ''

\ ^̂ N

" T I I 1 1 ' ' '

a. ^ j jo
,7| v^ —^jfcj

%
\

' ' I I I 1 _JU • ' I I I •

1 T " T 1

J
]

J
-̂

-j

J
•j

H

j
J

.1 i i • • 1 — 1

T - CO

CO

O
CO
CO
CD

LJJ

O
O

CD
O +
CD

O
O
O
O
O

8
O
O

o o o
o o

o
d

Frequency

Figure 4 Excess cycle penalty at 2.2 minimum volts for different scheduling
intervals. The frequency is the number of occurrences of the penalty during
the simulation.

462 CHAPTER 17

the minimum energy. This is because it has more of a tendency to fall behind
(more excess cycles), so its speed varies more and the power consumption is
less efficient. Even when 1.0 V does provide the minimum energy, the 2.2 V
minimum is almost as good.

The other main point conveyed by Figure 5 is that in most of the traces the
potential for energy savings is good. The savings range from about 5% to about
75%, with most data points falling between 25% to 65% savings.

Figure 6 on page 464 fixes the minimum voltage at 2.2 V and shows the effect
of changing the interval length. The OPT energy savings for 2.2 V is plotted
for comparision. Again, each position on the X axis represents a different trace.
The position corresponding to the trace data used in Figures 2 to 4 is indicated
with the arrow.

In this figure the main message to get is the difference in relative savings for
a given trace a^ the interval is varied. This is represented by the spread in
the points plotted for each trace. A longer adjustment period results in more
savings, which is consistent with Figure 2.

Figures 7 and 8 on pages 465 and 466 show the average excess cycles for all trace
runs. These averages do not count intervals with zero excess cycles. Figure 7
shows the excess cycles at a given adjustment interval (20 msec) and different
minimum voltages. Figure 8 shows the excess cycles at a given minimum voltage
(2.2 V) and different intervals. Again, the lower minimum voltage results show
more excess cycles, and the longer intervals accumulate more excess cycles.

There is a trade off between the excess cycles penalty and the energy savings
that is a function of the interval size. As the interval decreases, the CPU speed
is adjusted at a finer grain and so it matches the offered load better. This
results in fewer excess cycles, but it also does not save as much energy. This
is consistent with the motivating observation that it is better to execute at an
average speed than to alternate between full speed and full idle.

8 DISCUSSION AND FUTURE W^ORK

The primary source of feedback we used for the speed adjustment was the
percent idle time of the system. Another approach is to classify jobs into
background, periodic, and foreground classes. This is similar to what Wilkes

Scheduling for Reduced CPU Energy 463

o
0
(/) E
o
CM
H
CO <
CL

tn

"o
>
c
2
*o
c
o
0) 'i—
CO
Q.
E
o
O

-

o +

1 1

D

> > >
COOJO o
cocvi

<o-

^ • O
o

Q +

O • +
o

o

oa+

o
•o

O GJ-

O D +

D O

oa+

O Dl-

O D +

O Dl-

O • +

<3> D +

[3H-

HQ

+

O

Q

<ffl

• +
+
O

+

o
0

o

o

o

+n

o

__̂ l 1

+ •

+ D

+ •
+ •

-CD

+ D

+ D

+ D

+ •

- J 1

-J

J

—1

H

in
CO

o
CO

in
CM

O
CO

Q .
(/)

O Q>
CM O

>»
o
c

to o
^ O (/)

c/f
O

2 ^

H lo

H o

CO
CD

CO
CD CD

CM
C D

Power used

Figure 5 A comparison of energy savings in all traces with a 20 msec schedul
ing interface and three different minimum voltages.

464 CHAPTER 17

CO

0

>
CM cvi
'o
c o
ui •c
CO
Q .
E
o
o

1

< + D X O

0 0 0 O Q ^

E E E E O
" o o o o

T-cvjcoin
w "55 o5 o5 ^ „ _
CO CO CO CO <I + D X
Q-Q.CLQ-

< + • X

< HQX

< HBX

1

< + • X

< +n X

< + D X

<i +

<s<

< + D

<3K

< + D X

I- <HEX

<
<HEX

<d

< + D

<1

< +

1

9<]

+ D X

0

+ n X

<
<

X

<
<

HB X

<1

D

X

<

<

• X

o
1

"1

+ Q X

X

o

+ D

< + D X

< +nx

+ • X
+ D X

-El X

+ • X

+ D

<

J

X

0

o

X

+

o

o
0

o
o
o
o

o
o
o

o
o

o
o
o
o

o
o
o

o
o
o
o

GXO

o

A

A

-\

H

J

-\

CO

o
CO

in
CM o o

CO

o
CL
(fi

O <1>
CM O

c
D
V .

>>
• D

LO O

^ O
(/i

CO
o o
CO

2 ^

ID

H o

CO
CD

CD
CD d

CM

c>

Power used

Figure 6 A comparison of energy savings in all traces with a 2.2 V minimum
voltage and different scheduling intervals.

Scheduling for Reduced CPU Energy 465

CO

o

o
0

£
o
CM

o
0)

o

LU
0

2
0 >
<

_

-

-

1 1 1

+ D

1 1 1

X

> > >
COCMO
cocvii-̂

l—J 1— 1 1 1

X

X

>•

X

• '

X D

X

1 1 1 1 1

EIX +

X

+
X

X D +

• +
X D +

D

•

+

X

X

xn
X

X

X

X D

•

EIX +

X D

+
+

X +

X D +

X D +

X +

•

+
•

• +
• +

xm
X •

+
X D

XD

+
X •

X

X •
• +

X D

1—1 1 1 1

1 1 1

+ •

•

+

•
+

+

+

+
+

+
+

+
—1 1 1

1

+

1

J

J

A

A

CO

o
CO

IT)
CM

0

E
c

CO
• » - *

o
>>

JD
T3
0

^ CO

co"
0
O
CO

J o

o
d

o o
CD

Excess Cycles (sees)

Figure 7 A comparison of excess cycle penalty in all traces with a 20 msec
scheduling interval and different minimum voltages.

466 CHAPTER 17

>
cvi
CO

O
(/)
0)
o
X

LU

(D

(D >
<

-

— 1

+ D X <
o o o o
O <D 0) (D (/)(/)(/>(/>
E E £ E
o o o o

1 — i _ _ j _

<

<
<

X

<

1

<

<
<

<

X E

<1

X

X •

<1

X a

•
X D +

<
<

X D

X D

•

<
<1

<

<

•

<

X

+
+

X D +

X

+
+
<

<1 X D

< X D

+

<
X

X D

<
X

<
<

X D

<
<

X D

<
< X

<

<
X n
D

+
X

•

X

•

X

+
+

+
+

•

+

X + •

D

+

+ •

>4- D

+

D +
X D

+
X

X

<
X

•
X

1 '

D

xn
D

+
•

' •

+

+

+

+
I I I 1

+

-\

-J

H

CO

o
CO

in

0

£

CM J :

S
o

• D
(D

^ </)
(0
(D

J O

O
d

o o

Excess Cycles (sees)

Figure 8 A comparison of excess cycle penalty in all traces with a 2.2 V
minimum voltage and different scheduling intervals.

Scheduling for Reduced CPU Energy 467

proposes in his schemes to utilize idle time [8]. With this sort of classification
the speed need not be ramped up when executing background tasks. Periodic
tasks impose a constant, measurable load. They typically run for a short burst
and then sleep for a relatively long time. With these tasks there is a well defined
notion of "fast enough", and the CPU speed can be adjusted to finish these
tasks just in time. When there is a combination of background, periodic, and
foreground tasks, then the standard approach is to schedule the periodic tasks
first, then fit in the foreground tasks, and lastly fit in the background tasks.
In this case there would be a minimum speed that would always execute the
periodic tasks on time, and the system would increase the speed in response to
the presence of foreground and background tasks.

The simulations we performed are simplified by not reordering scheduling e-
vents. In a real rate-adjusting scheduler, the change in processing rates will
have an effect on when jobs are preempted due to time slicing and the order that
ready jobs are scheduled. We argue that unless there is a large job mix, then
the reordering will not be that significant. Our speed adjustment algorithm will
ramp up to full speed during heavy loads, and during light loads the reordering
should not have a significant effect on energy.

In order to evaluate more realistic scheduling algorithms, it would be interesting
to generate an abstract load for the simulation. This load includes CPU runs
with preemption points eliminated, pause times due to I /O delays preserved,
and causal ordering among jobs preserved. Given an abstract load, it would be
possible to simulate a scheduler in more detail, giving us the ability to reorder
preemption events while still preserving the semantics of I /O delays and IPC
dependencies.

We have attempted to model the I/O waits by classifying idle time into "hard"
and "soft" idle. We think this approximation is valid, but it would be good to
verify it with a much more detailed simulation.

9 CONCLUSIONS

This paper presents preliminary results on CPU scheduling to reduce CPU
energy usage, beyond the simple approaches taken by today's laptops. The
metric of interest is how many instructions are executed for a given amount
of energy, or MIPJ. The observation that motivates the work is that reducing
the cycle time of the CPU allows for power savings, primarily by allowing the

468 CHAPTER 17

CPU to use a lower voltage. We examine the potential for saving power by
scheduling jobs at different clock rates.

Trace driven simulation is used to compare three classes of schedules: OPT
that spreads computation over the whole trace period to eliminate all idle time
(regardless of deadlines), FUTURE that uses a limited future look ahead to
determine the minimum clock rate, and PAST that uses the recent past as a
predictor of the future. A PAST scheduler with a 50 msec window shows power
savings of up to 50% for conservative circuit design assumptions (e.g., 3.3 V),
and up to 70% for more aggressive assumptions (2.2 V). These savings are in
addition to the obvious savings that come from stopping the processor in the
idle loop, and powering off the machine all together after extended idle periods.

The energy savings depends on the interval between speed adjustments. If it
is adjusted at too fine a grain, then less power is saved because CPU usage is
bursty. If it is adjusted at too coarse a grain, then the excess cycles built up
during a slow interval will adversely affect interactive response. An adjustment
interval of 20 or 30 milliseconds seems to represent a good compromise between
power savings and interactive response.

Interestingly, having too low a minimum speed results in less efficient schedules
because there is more of a tendency to have excess cycles and therefore the need
to speed up to catch up. In particular, a minimum voltage of 2.2 V seems to
provide most of the savings of a minimum voltage of 1.0 V. The 1.0 V system,
however, tends to have a larger delay penalty as measured by excess cycles.

In general, scheduling algorithms have the potential to provide significant power
savings while respecting deadlines that arise from human factors considerations.
If an effective way of predicting workload can be found, then significant power
can be saved by adjusting the processor speed at a fine grain so it is just
fast enough to accommodate the workload. Put simply, the tortoise is more
efficient than the hare: it is better to spread work out by reducing cycle time
(and voltage) than to run the CPU at full speed for short bursts and then idle.
This stems from the non-linear relationship between CPU speed and power
consumption.

Scheduling for Reduced CPU Energy 469

Acknowledgements

This work was supported in part by Xerox, and by ARPA under contract
DABT63-91-C-0027; funding does not imply endorsement. David Wood of the
University of Wisconsin helped us get started in this research, and provided
substantial assistance in understanding CPU architecture. The authors bene
fited from the stimulating and open environment of the Computer Science Lab
at Xerox PARC.

R E F E R E N C E S

[1] William C. Athas, Jeffrey G. KoUer, and Lars "J." Svensson. "An Energy-
Efficient CMOS Line Driver Using Adiabatic Switching", 1994 IEEE
Fourth Great Lakes Symposium on VLSI, pp. 196-199, March 1994.

[2] A. P. Chandrakasan and S. Sheng and R. W. Brodersen. "Low-Power
CMOS Digital Design". JSSC, V27, N4, April 1992, pp 473-484.

[3] Michael Culbert, "Low Power Hardware for a High Performance PDA", to
appear Proc. of the 1994 Computer Conference, San Francisco.

[4] Fred Douglis, P. Krishnan, Brian Marsh, "Thwarting the Power-Hungry
Disk", Proc. of Winter 1994 USENIX Conference, January 1994, pp 293-
306

[5] Mark A. Horowitz. "Self-Clocked Structures for Low Power Systems".
ARPA semi-annual report, December 1993. Computer Systems Labora
tory, Stanford University.

[6] Kester Li, Roger Kumpf, Paul Horton, Thomas Anderson, "A Quantitative
Analysis of Disk Drive Power Management in Portable Computers", Proc.
of Winter 1994 USENIX Conference, January 1994, pp 279-292.

[7] S. Younis and T. Knight. "Practical Implementation of Charge Recover
ing Asymptotically Zero Power CMOS." 1993 Symposium on Integrated
Systems (C. Ebeling and G. Borriello, eds.), Univ. of Washington, 1993.

[8] Wilkes, John "Idleness is not Sloth", to appear, proc. of the 1995 Winter
USENIX Conf

470 CHAPTER 17

APPENDIX A

A. l DESCRIPTION OF TRACE DATA

Table A.l on page 471 lists the characteristics of the 32 traces runs that are
reported in the figures. The table is sorted from shortest to longest runtime to
match the ordering in Figures 5 through 8. The elapsed time of each trace is
broken down into time spent running the CPU on behalf of a process (Runtime),
time spent in the idle loop (IdleTime), and time when the machine is considered
so idle that it would be turned off by a typical laptop power manager (Offtime).
The short traces labeled mx, emacs, and fm are of typing (runs 1 and 2) and
scrolling (run 3) in various editors. The remaining runs are taken over several
hours of everyday use.

Scheduling for Reduced CPU Energy 471

fT"
r~o~

1
2
3
4
5
6
7
8

1 ^
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Trace

feb28klono
idlel
heurl
emacs2
emacsl
mx2
mxl
fml
em3
fm2
mx3
feb28dekanore
fm3
marlklono
feb28mezzo
marlcleonie
feb28kestrel
feb28corvina
marlmezzo
marlegeus
feb28ptarmigan
feb28fandango
feb28zwilnik
marlzwilnik
marlkestrel
feb28siria
marlsiria
feb28egeus
marlcorvina
marlptarmigan
marlfandango
marldekanore

Runtime

0.906
1.509
7.043
7.585
8.060
8.362
9.508
9.544
11.669
16.679
20.738
30.548
30.626
41.822
61.940
214.656
510.259
524.248
686.340
695.409
1497.908
1703.037
4414.429
4914.787
5135.297
6714.109
8873.114
9065.477
10898.545
12416.924
20101.182
25614.651

Idle

29.094
28.653
3.103
31.719
32.273
30.916
30.871
10.594
27.580
23.770
18.642
541.045
9.942
1011.251
449.717
1321.591
3362.222
768.857
673.204
4774.911
2207.005
3489.760
29448.058
30823.917
30599.364
27146.678
26868.738
13500.028
24648.883
23319.178
15638.594
14168.562

Elapsed

9H 24M 20S
39S
lOS
40S
40S
39S
41S
20S
40S
41S
39S
9H 24M 40S
41S
9H 55M 46S
9H 24M 20S
9H50S
IH 4M 33S
9H 24M 41S
9H 55M 36S
9H 55M 35S
IH IM 41S
9H 24M 17S
9H 24M 21S
9H 55M 38S
9H 55M 34S
9H 24M 20S
9H 55M 37S
6H 16M 6S
9H 55M 57S
9H 55M 34S
9H 55M 38S
9H 55M 58S

Offtime

33828.9
9.05
0
0
0
0
0
0
0
0
0
33307.8
0
34690.6
33346.1
30913.0
0
32588.0
34375.7
30263.6
0
28665.0
0
0
0
0
0
0
210.202
0
0
7191.81

T a b l e A . l Summary of the Trace Data.

18
Storage Alternatives for Mobile

Computers
Fred Douglis , Ramon Caceres*,

M. Frans Kaashoek**, P. Krishnan*,
Kai Li***, Brian Marsh****,

and Joshua Tauber**

AT&T Bell Laboratories
600 Mountain Ave., Room 2B-105

Murray Hill, NJ 07974

* AT&T Bell Laboratories, Holmdel, NJ
** Laboratory of Computer Science,

Massachusetts Institute of Technology, Cambridge, MA
*** Computer Science Department, Princeton University, Princeton, NJ

**** D.E. Shaw & Co., New York, NY

A B S T R A C T

Mobile compute r s such as no tebooks , subnotebooks , and pa lmtops require low weight,
low power consumpt ion , and good interact ive performance. These requi rements im
pose m a n y challenges on archi tectures and opera t ing sys tems. This chapte r investi
gates th ree a l ternat ive s torage devices for mobile compute r s : magne t ic h a rd disks,
flash m e m o r y disk emula tors , and flash m e m o r y cards .

We have used ha rdware measu remen t s and t race-dr iven s imulat ion t o evaluate each of
t he a l te rna t ive s torage devices and their re la ted design s t ra tegies . Hardware measure
men t s on an H P OmniBook 300 highlight differences in t h e performance of t h e th ree
devices as used on t h e Omnibook , especially t h e poor per formance of version 2.00
of t h e Microsoft F lash File Sys tem [12] when accessing large flies. T h e t races used

Permission has been granted by the USENIX Association to reprint the above paper.
An earlier version of this appeared in the Proceedings of the First Symposium on Operat
ing Systems Design and Implementation, USENIX Association, November, 1994, Copyright
©USENIX Association, 1994. Unlike that version, this chapter considers an SRAM buffer
cache in addition to flash memory. It also uses updated parameters for one of the devices, and
measures response time differently. A detailed description of the changes appears at the end
of the chapter on page 503. This work was performed in part at the Matsushita Information
Technology Laboratory of Panasonic Technologies, Inc.

474 CHAPTER 18

in our study came from different environments, including mobile computers (Mac
intosh PowerBooks) and desktop computers (running Windows or HP-UX), as well
as synthetic workloads. Our simulation study shows that flash memory can reduce
energy consumption and mean read response time by up to two orders of magnitude,
compared to magnetic disk, while providing acceptable write performance. These
energy savings can translate into a 25-115% extension of battery life. We also find
that the amount of unused memory in a flash memory card has a substantial impact
on energy consumption, performance, and endurance: compared to low storage uti
lizations (40% full), running flash memory near its capacity (95% full) can increase
energy consumption by 50-165%, degrade write response time by 24%, and decrease
the lifetime of the memory card by up to 70%. For flash disks, asynchronous erasure
can improve write response time by a factor of 2.5.

1 INTRODUCTION

Mobile computer environments are different from traditional workstations be
cause they require light-weight, low-cost, and low-power components, while still
needing to provide good interactive performance. A principal design challenge
is to make the storage system meet these conflicting requirements.

Current storage technologies offer two alternatives for file storage on mobile
computers: magnetic hard disks and flash memory. Hard disks provide large
capacity at low cost, and have high throughput for large transfers. The main
disadvantage of disks is that they consume a lot of energy and take seconds to
spin up and down. Flash memory consumes relatively little energy, and has
low latency and high throughput for read accesses. The main disadvantages
of flash memory are that it costs more than disks—$30-50/Mbyte, compared
to $l-5/Mbyte for magnetic disks—and that it requires erasing before it can
be overwritten. It comes in two forms: flash memory cards (accessed as main
memory) and flash disk emulators (accessed through a disk block interface).^
These devices behave diflferently, having varying access times and band widths.

This chapter investigates three storage systems: magnetic disk, flash disk em
ulator, and directly accessed flash memory. All of these systems include a
DRAM file cache and SRAM write buffer. Our study is based on both hardware
measurements and trace-driven simulation. The measurements are "micro-

^In this chapter, we use flash disk to refer to block-accessed flash disk emulators. We use
flash (memory) card to refer to byte-accessible flash devices. When we wish to refer to the
generic memory device or either of the above devices built with it, we refer to flash memory
or a flash device. Note that the flcish disk is actually a flash memory card as well, but with
a diff^erent interface.

Storage Alternatives for Mobile Computers 475

benchmarks" that compare the raw performance of three different devices: a
typical mobile disk drive (Western Digital Caviar Ultralite CU140), a flash
disk (SunDisk 10-Mbyte SDPlO PCMCIA flash disk [22], sold as the Hewlett-
Packard F1013A lO-Mbyte/12-V Flash Disk Card [7]), and a flash memory card
(Intel 10-Mbyte Series-2 flash memory card [9]). The measurements provide a
baseline comparison of the diff'erent architectures and are used as device speci
fications within the simulator. They also point out specific performance issues,
particularly with the Microsoft Flash File System (MFFS) version 2.00 [12].

Flash memory is significantly more expensive than magnetic disks, but our
simulation results show that flash memory can off'er energy reduction by an
order of magnitude over disks—even with aggressive disk spin-down policies
that save energy at the cost of performance [6, 14]. Since the storage subsystem
can consume 20-54% of total system energy [14,16], these energy savings can as
much as double battery lifetime. Flash provides better read performance than
disk, but worse average write performance. The maximum delay for magnetic
disk reads or writes, however, is much higher than maximum flash latency due
to the overhead of occasional disk spin-ups.

We also show that the key to file system support using fiash memory is erasure
management. With a flash card, keeping a significant portion of flash memory
free is essential to energy conservation and performance. With a flash disk,
decoupling write and erase latency can improve average write response by a
factor of 2.5.

In total, our research uses both hardware measurements and simulation to
contribute two key results: a quantitative comparison of the alternatives for
storage on mobile computers, taking both energy and performance into account,
and an analysis of techniques that improve on existing systems.

The rest of this chapter is organized as follows. The next section discusses the
three storage architectures in greater detail. Section 3 describes the hardware
micro-benchmarks. Section 4 describes our traces and the simulator used to
perform additional studies. After that come the results of the simulations.
Section 6 discusses related work, and Section 7 concludes. Appendix 8 compares
this chapter to the results reported previously [5].

476 CHAPTER 18

2 ARCHITECTURAL ALTERNATIVES

The three basic storage architectures we studied are magnetic disks, flash disk
emulators, and flash memory cards. Their power consumption, cost, and per
formance are a function of the workload and the organization of the storage
components. Each storage device is used in conjunction with a DRAM buff̂ er
cache. Though the buffer cache can in principle be write-back, in this chapter
we consider a write-through buff̂ er cache: this models the behavior of the Mac
intosh operating system and until recently the DOS file system. In most cases
there is a nonvolatile SRAM buffer cache between DRAM and flash or disk,
which reduces write latency dramatically.

An idle disk can consume 20-54% or more of total system energy [14, 16], so
the file system must spin down the disk whenever it is idle. Misses in the buffer
cache will cause a spun-down disk to spin up again, resulting in delays of up
to a few seconds [6, 14]. Writes to the disk can be buffered in battery-backed
SRAM, not only improving performance, but also allowing small writes to a
spun-down disk to proceed without spinning it up. The Quantum Daytona
is an example of a drive with this sort of buffering. In this chapter, we give
magnetic disks the benefit of the doubt by simulating this deferred spin-up
policy.

The flash disk organization replaces the hard disk with a flash memory card that
has a conventional disk interface. With the SunDisk SDP series, one example
of this type of device, transfers are in multiples of a sector (512 bytes). In
contrast, the flash card organization removes the disk interface so that the
memory can be accessed at byte-level. The flash card performs reads faster
than the flash disk, so although the instantaneous power consumption of the
two devices during a read is comparable, the flash card consumes less energy
to perform the operation. Both flash devices can be used with an SRAM write
buffer to reduce write latency and cleaning costs in most circumstances.

A fundamental problem introduced by flash memory is the need to erase an
area before it can be overwritten. The flash memory manufacturer determines
how much memory is erased in a single operation. The SunDisk devices erase a
single 512-byte sector at a time, while the Intel Series-2 flash card erases one or
two 64-Kbyte "segments." There are two important aspects to erasure: flash
cleaning and performance. When the segment size is larger than the transfer
unit (i.e., for the flash card), any data in the segment that are still needed
must be copied elsewhere. Cleaning flash memory is thus analogous to segment
cleaning in Sprite LFS [20]. The cost and frequency of segment cleaning is

Storage Alternatives for Mobile Computers 477

related in part to the cost of erasure, and in part to the segment size. The larger
the segment, the more data that will likely have to be moved before erasure can
take place. The system must define a policy for selecting the next segment for
reclamation. One obvious discrimination metric is segment utilization: picking
the next segment by finding the one with the lowest utilization (i.e., the highest
amount of memory that is reusable). MFFS uses this approach [4]. More
complicated metrics are possible; for example, eNVy considers both utilization
and locality when cleaning flash memory [25].

The second aspect to erasure is performance. The SunDisk SDP5 flash disk
couples erasure with writes, achieving a write bandwidth of 75 Kbytes/s. The
time to erase and write a block is dominated by the erasure cost. The Intel
flash card separates erasure from writing, and achieves a write bandwidth of
214 Kbytes/s—but only after a segment has been erased. Because erasure
takes a large fixed time period (1.6s) regardless of the amount of data being
erased [9], the cost of erasure is amortized over large erasure units. (The newer
16-Mbit Intel Series 2+ Flash Memory Cards erase blocks in 300ms [10], but
these were not available to us during this study.) The two types of flash memory
have comparable erasure bandwidth; to avoid delaying writes for erasure it is
important to keep a pool of erased memory available. It becomes harder to
meet this goal as more of the flash card is occupied by useful data, as discussed
in Section 5.2.

Another fundamental problem with flash memory is its limited endurance.
Manufacturers guarantee that a particular area within flash may be erased up
to a certain number of times before defects are expected. The limit is 100,000
cycles for the devices we studied; the Intel Series 24- Flash Memory Cards
guarantee one million erasures per block [10]. While it is possible to spread the
load over the flash memory to avoid "burning out" particular areas, it is still
important to avoid unnecessary writes or situations that erase the same area
repeatedly.

3 HARDWARE MEASUREMENTS

We measured the performance of the three storage organizations of interest on
a Hewlett-Packard OmniBook 300. The OmniBook 300 is a 2.9-pound subnote-
book computer that runs MS-DOS 5.0 and contains a 25-MHz 386SXLV pro
cessor and 2 Mbytes of DRAM. The system is equipped with several PCMCIA
slots, one of which normally holds a removable ROM card containing Windows

478 CHAPTER 18

Device

Caviar Ultralite
CU140

SunDisk SDPlO

Intel flash card

Operation

Read
Write
Read
Write
Read
Write

Throughput
(KBytes/s)

Uncompressed
4-KB file 1-MB file

116 543
76 231

280 410
39 40

645 37
43 21

Throughput
(KBytes/s)
Compressed

4-KB file 1-MB file

64 543
289 146
218 246
225 35
345 34

83 27

Table 1: Measured performance of three storage devices on an HP OmniBook
300. The test read or wrote sequentially in units of 4 Kbytes, to either 4-Kbyte or
1-Mbyte files. For the CUl40 and SDPlO, we measured throughput with and without
compression enabled; for the Intel card, compression was always enabled, but we
distinguished between completely random data and compressible data.

and several applications. We used a 40-Mbyte Western Digital Caviar Ultralite
CU140 and a 10-Mbyte SunDisk SDPlO flash disk, both of which are standard
with the OmniBook, and a PCMCIA 10-Mbyte Intel Series 2 Flash Memory
Card running the Microsoft Flash File System (MFFS) version 2.0 [12]. The
Caviar Ultralite CU140 is compatible with PCMCIA Type III specifications,
and weighs 2.7 ounces, while the flash devices are PCMCIA Type II cards
weighing 1.3 ounces. Finally, the CU140 and SDPlO could be used directly or
with compression, using DoubleSpace and Stacker, respectively. Compression
is built into MFFS 2.00.

We constructed software benchmarks to measure the performance of the three
storage devices. The benchmarks repeatedly read and wrote a sequence of files,
and measured the throughput obtained. Both sequential and random accesses
were performed, the former to measure maximum throughput and the latter
to measure the overhead of seeks. For the CU140 and SDPlO, we measured
throughput with and without compression enabled; for the Intel card, compres
sion was always enabled, but we distinguished between completely random data
and compressible data. The compressible data consisted of the first 2 Kbytes
of Herman Melville's well-known novel, Moby-Dick^ repeated throughout each
file (obtaining compression ratios around 50%). The Intel flash card was com
pletely erased prior to each benchmark to ensure that writes from previous runs
would not cause excess cleaning.

Storage Alternatives for Mobile Computers 479

Caviar CU140 uncompressed
Caviar CU140 compressed
SunDisk SDPIO uncompressed
SunDisk SDPIO compressed

- Intel FlashCard compressed

S 150

XXX XJ^XXXji j j j^xXXXXXXXXXx X+

•••••••••••••••"•• ••••••••••••-
••••••••••••••• •••••••••••••••

256 512 768
Cumulative Kbytes Written

Caviar CU140 uncompressed
Caviar CU140 compressed
SunDisk SDPIO uncompressed
SunDisk SDPIO compressed

- Intel FlashCard compressed
Intel FlashCard average for 1 Mbyte

Cumulative Kbytes Written

(a) W r i t e la tency . (b) W r i t e t h r o u g h p u t .

Figure 1: Measured latency and instantaneous throughput for 4-Kbyte writes to a
1-Mbyte file. To smooth the latency when writing via DoubleSpace or Stacker, points
were taken by averaging across 32-Kbytes of writes. Latency for an Intel flash card
running the Microsoft Flash File System, as a function of cumulative data written,
increases linearly. Though writes to the first part of the file are faster for the flash
card than for the flash disk, the average throughput across the entire 1-Mbyte write is
slightly worse for the flash card. The flash card was erased prior to each experiment.
Also, because the CUl40 was continuously accessed, the disk spun throughout the
experiment.

Table 1 summarizes the measured performance for sequential 4-Kbyte reads
and writes to 4-Kbyte and 1-Mbyte files, while Figure 1 graphs the average
latency and instantaneous throughput for sequential 4-Kbyte writes to a 1-
Mbyte file. These numbers all include DOS file system overhead. There are
several interesting points to this data:

480 CHAPTER 18

• Without compression, throughput for the magnetic disk increases with file
size, as expected. With compression, small writes go quickly, because they
are buffered and written to disk in batches. Large writes are compressed
and then written synchronously.

• Compression similarly helps the performance of small file writes on the
fiash disk, resulting in write throughput greater than the theoretical limit
of the SunDisk SDPlO.

• Read throughput of the flash card is much better than the other devices
for small files, with reads of uncompressible data obtaining about twice the
bandwidth of reads of compressible data (since the software decompression
step is avoided). Throughput is unexpectedly poor for reading or writing
large files. This is due to an anomaly in MFFS 2.00 [12], whose perfor
mance degrades with file size. The latency of each write (Figure 1(a))
increases linearly as the file grows, apparently because data already writ
ten to the flash card are written again, even in the absence of cleaning.
This results in the throughput curve in Figure 1(b).

Comparing the different devices, we see that the Caviar Ultralite CU140 pro
vides the best sequential write throughput, since the disk is constantly spinning.
Excluding the effects of compression, the flash card provides better performance
than the flash disk for small flies on an otherwise empty card, while its read and
write performance are both worse than the flash disk for larger files. Finally,
for 4-Kbyte uncompressed random I/Os (not shown), compared to sequential
I/Os, the performance of the Caviar Ultralite CU140 drops substantially: it is
reduced by a factor of 6 for reads and a factor of 3 for writes.

In Table 2 we include the raw performance of the devices, and power consumed,
according to datasheets supplied by the manufacturers. As shown, the hard disk
offers the best throughput of the three technologies, but consumes many times
the power of the fla^h-based technologies. With regard to the two flash-based
devices, the flash card offers better performance than the flash disk, while both
devices offer comparable power consumption.

4 TRACE-DRIVEN SIMULATION

We used traces from several environments to do trace-driven simulation, in or
der to evaluate the performance and energy consumption of different storage

Storage Alternatives for Mobile Computers 481

Device

Caviar Ultralite
CU140

SunDisk SDPlO

Intel flash card

Operation

Read/Write
Idle
Spin up
Read
Write
Read
Write
Erase

Latency (ms)

25.7

1000.0
1.5
1.5
0
0

1600

Throughput
(Kbyte s / s)

2125

600
50

9765
214
70

Power (W)

1.75
0.7
3.0
0.36
0.36
0.47
0.47
0.47

Table 2: Manufacturers' specifications for three storage devices. Latency for
read/write operations indicates the overhead from a random operation, excluding
the transfer itself (i.e., controller overhead, seeking, or rotational latency). The Intel
erasure cost refers to a separate operation that takes 1.6s to erase 64 or 128 Kbytes
(in this case latency and throughput are analogous).

organizations and different storage management policies under realistic work
loads. This section describes the traces and the simulator, while Section 5
describes the simulation results.

4.1 Traces

We used four workloads, MAC, DOS, HP, and SYNTH. For the MAC trace, we
instrumented an Apple Macintosh PowerBook Duo 230 to capture a file system
workload from a mobile computing environment. The trace is file-level: it
reports which file is accessed, whether the operation is a read or write, the
location within the file, the size of the transfer, and the time of the access.
This trace did not record deletions. The trace was preprocessed to convert file-
level accesses into disk-level operations, by associating a unique disk location
with each file.

An interesting aspect of the MAC trace is the locality of write accesses: 36% of
writes go to just one 1-Kbyte block and 24% of writes go to another.

We used a DOS trace collected by Kester Li at U.C. Berkeley [13], on IBM
desktop PCs running Windows 3.1, also at file-level. It includes deletions. The
trace was similarly preprocessed.

482 CHAPTER 18

We used a disk-level trace collected by Ruemmler and Wilkes on an HP personal
workstation running HP-UX [21]. This trace include metadata operations,
which the file-level traces do not, but they are below the level of the buffer
cache, so simulating a buffer cache would give misleading results (locality within
the original trace has already been largely eliminated). Thus the buffer cache
size was set to 0 for simulations of HP. The trace includes no deletions.

Finally, we created a synthetic workload, called SYNTH, based loosely on the
hot-and'Cold workload used in the evaluation of Sprite LFS cleaning poli
cies [20]. The purpose of the synthetic workload was to provide both a "stress
test" for the experimental testbed on the OmniBook, and a series of operations
that could be executed against both the testbed and the simulator. (Unfor
tunately, none of our other traces accessed a small enough dataset to fit on
a 10-Mbyte flash device.) The comparison between measured and simulated
results appears in Section 5.1. The trace consists of 6 Mbytes of 32-Kbyte
files, where | of the accesses go to | of the data. Operations are divided 60%
reads, 35% writes, 5% erases. An erase operation deletes an entire file; the next
write to the file writes an entire 32-Kbyte unit. Otherwise 40% of accesses are
0.5 Kbytes in size, 40% are between .5 Kbytes and 16 Kbytes, and 20% are
between 16 Kbytes and 32 Kbytes. The interarrival time between operations
was modeled as a bimodal distribution with 90% of accesses having a uniform
distribution with a mean of 10ms and the remaining accesses taking 20ms plus
a value that is exponentially distributed with a mean of 3s.

Though only the MAC trace comes from a mobile environment, the two desktop
traces represent workloads similar to what would be used on mobile computers,
and have been used in simulations of mobile computers in the past [13, 14, 15].
Table 3 lists additional statistics for the nonsynthetic traces.

4.2 Simulator

Our simulator models a storage hierarchy containing a buffer cache and non
volatile storage. The buffer cache is the first level searched on a read and is
the target of all write operations. The cache is write-through to non-volatile
storage, which is typical of Macintosh and some DOS environments^. A write
back cache might avoid some erasures at the cost of occasional data loss. In
addition, the buff'er cache can have zero size, in which case reads and writes

^DOS supports a write-back cache, but after users complained about losing data, they
were given a choice of write-through or write-back caching.

Storage Alternatives for Mobile Computers 483

Applications

1 Duration
Number of distinct
Kbytes accessed

1 Fraction of reads |
1 Block size (Kbytes) |

Mean read size
(blocks)
Mean write size
(blocks)

Inter-arrival time (s)

1 MAC

1 Finder, Excel,
Newton Toolkit

1 3.5 hours

22000

0.50
1

1.3

1.2

Mean
0.078

Max
90.8

a 1
0.57 1

1 DOS [

] Framemaker, [
PowerPoint, Word

1 1.5 hours 1

16300 1

0.24
0.5

3.8 1

3.4

Mean
0.528

Max
713.0

a II
10.8 1

1 Applications j
1 Duration

Number of distinct
Kbytes accessed

1 Fraction of reads j
1 Block size (Kbytes)

Mean read size
(blocks)
Mean write size
(blocks)

Inter-arrival time (s)

1 ^ P II
email, editing |]

4.4 days |

32000 1

0.38
1

4.3 1

6.2 1
1 Mean
1 11.1

Max
30min

a 1
112.3 1

Table 3: Summary of (non-synthetic) trace characteristics. The statistics apply to
the 90% of each trace that is actually simulated after the warm start. Note that it
is not appropriate to compare performance or energy consumption of simulations of
different traces, because of the different mean transfer sizes and durations of each
trace.

484 CHAPTER 18

go directly to non-volatile storage. The HP-UX trace is simulated with a zero
buffer cache, as the traces include the effects of a buffer cache.

An intermediate level containing battery-backed SRAM is used to buffer writes.
The purpose of SRAM is primarily to hide the latency of the mass-storage
devices (disk or flash) when doing a synchronous write. As mentioned above, it
also serves to buffer small intermittent writes to a spun-down disk. Similarly,
if there are "hot spots" that are repeatedly written, SRAM can reduce the
number of operations that ultimately go to disk or flash. In addition, misses in
DRAM may be satisfied by data in SRAM, though this scenario is unlikely if
the size of DRAM is large relative to the SRAM buffer. SRAM is an integral
part of many magnetic disk systems and is also a major component of the eNVy
main-memory storage system [25].

We simulated the disk, flash disk, and flash card devices with parameters for
existing hard disk, flash memory disk emulator, and flash memory card prod
ucts, respectively. Each device is described by a set of parameters that include
the power consumed in each operating mode (reading, writing, idle, or sleeping)
and the time to perform an operation or switch modes. The power specifica
tions came from datasheets; two different set of performance specifications were
used, one from the measured performance and one from datasheets.

In addition to the products described in Section 3, we used the datasheet for the
NEC //PD4216160/L 16-Mbit DRAM chip and /iPD43256B 32Kx8-bit SRAM
chip [18]. In the case of the SunDisk device, the simulation using raw (nonmea-
sured) performance numbers is based upon the SunDisk SDP5 and SDP5A de
vices, which are newer 5-volt devices [3]. Lastly, we also simulated the Hewlett-
Packard Kittyhawk 20-Mbyte hard disk, which we refer to as KH, based on its
datasheet [8]. In order to manage all the traces, we simulated flash devices
larger than the 10-Mbyte PCMCIA flash devices we had for the OmniBook.
Based on the characteristics of different-sized Intel flash cards, the variation in
power and performance among flash cards of different size are insignificant.

For each trace, 10% of the trace was processed in order to "warm" the buffer
cache, and statistics were generated based on the remainder of the trace.

The simulator accepts a number of additional parameters. Those relevant to
this study are:

Flash size The total amount of flash memory available.

Storage Alternatives for Mobile Computers 485

Flash segment The size of an erasure unit,
size

Flash The amount of data stored, relative to flash size. The data
utilization are preallocated in flash at the start of the simulation, and

the amount of data accessed during the simulation must be no
greater than this bound.

Cleaning On-demand cleaning, as with the SunDisk SDP5, and asynch-
policy ronous cleaning, as with the Flash File System running on the

Intel flash card. Flash cleaning is discussed in greater detail
below.

Disk spin-downA set of parameters control how the disk spins down when idle
policy and how it spins up again when the disk is accessed.

DRAM size The amount of DRAM available for caching.

SRAM size The amount of SRAM available for buffering writes.

We made a number of simplifying assumptions in the simulator:

• All operations and state transitions are assumed to take the average or
"typical" time, either measured by us or specified by the manufacturer.

• Repeated accesses to the same file are assumed never to require a seek
(if the transfer is large enough to require a seek even under optimal disk
layout, the cost of the seek will be amortized); otherwise, an access incurs
an average seek. Each transfer requires the average rotational latency
as well. These assumptions are necessary because file-level accesses are
converted to disk block numbers without the sophistication of a real file
system that tries to optimize block placement.

• For fiash file systems, while file data and metadata that would normally go
on disk are stored in fiash, the data structures for the fiash memory itself
are managed by the simulator but not explicitly stored in flash, DRAM,
or SRAM. In the case of the SunDisk SDP5 flash device, there is no need
for additional data structures beyond what the file system already main
tains for a magnetic disk and the flash disk maintains internally for block
remapping. For the Intel flash card, the flash metadata includes state that
must be frequently rewritten, such as linked lists. These would be stored
in SRAM in a real system; for comparison purposes, the SRAM needed
to maintain page tables for flash memory in eNVy increased total system
cost by 10% [25].

486 CHAPTER 18

For the flash card, the simulator attempts to keep at least one segment
erased at all times, unless erasures are done on an as-needed basis. One
segment is filled completely before data blocks are written to a new seg
ment. Erasures take place in parallel with reads and writes, being sus
pended during the actual I/O operations, unless a write occurs when no
segment has erased blocks.

In general, I/Os do not take place in parallel. This assumption simplifies
the simulator substantially, and is valid because we must assume that an
operation in the trace may depend on any preceding operation. Operations
such as SRAM or flash cleaning take place between operations dictated by
the trace, with the exception of flash cleaning, which is interrupted by any
other flash operations and subsequently resumed. Cleaning takes place
only when it can conclude before the next I/O occurs or when SRAM
or flash is full; in these latter cases, our simulated response-time results
overestimate the impact of cleaning because in some cases the simulator
will have missed an opportunity for parallelism.

5 RESULTS

We used the simulator to explore the architectural tradeoff's between disks,
flash disks, and flash cards. We focussed on four issues: the basic energy and
performance differences between the devices; the effect of storage utilization on
flash energy consumption, performance, and endurance; the effect of combined
writes and erasures on a flash disk; and the effect of buffer caches, both volatile
and nonvolatile, on energy and performance.

5.1 Basic Comparisons

Tables 4(a)-(c) show for three traces and each device the energy consumed,
and the average, mean, and standard deviations of the read and write response
times. As mentioned in Section 4.2, the input parameters for each simulation
were either based on measurements on the OmniBook (labeled "measured") or
manufacturers' specifications (labeled "datasheet"). Note that it is not appro
priate to compare response time numbers between the tables, because of the
different mean transfer sizes of each trace. Simulations of the magnetic disks
spun down the disk after 5s of inactivity, which is a good compromise between
energy consumption and response time [6, 14]. Simulations using the flash card
were done with the card 80% full.

Storage Alternatives for Mobile Computers 487

Device

1 CU140 (M)
CU140 (D)
KH (D)
SDPlO (M)
SDP5 (D)
Intel (M)

1 Intel (D)

Energy

1 7,287
6,177
5,295

306
247
198
84

Read Response
Mean

3.10
2.51
3.33
0.48
0.34
0.33
0.11

Max

3535.3
3519.5
1673.1
1001.7
619.9
665.6
95.8

a

55.1
52.9
58.6

7.0
4.3
4.6
0.7

Write Response |
Mean

6.50
6.35
8.83
3.64
2.24
3.72
0.86

Max

3548.5
3505.2
1726.5
566.7
340.0
568.7
117.0

a 1
" 9 0 7 ^
88.5

115.3
42.3
25.5
43.8
9.0 1

(a) MAC trace

Device

1 CU140 (M)
CU140 (D)
KH (D)
SDPlO (M)
SDP5 (D)
Intel (M)

1 Intel (D)

Energy

4,556
3,323
1,698

616
522
550
339

Read Response
Mean

15.37
12.23
16.41
2.94
1.98
1.96
0.51

Max

2743.8
2712.3
1559.3

120.2
77.5
80.8
17.0

a

97.2
95.6

128.1
5.6
3.6
3.8
0.8

Write Response |
Mean

3.72
3.82
5.74

25.97
15.53
26.32

5.39

Max

1004.5
1005.0
1536.8
264.5
160.2
310.6

65.9

a 1
53.4 1
53.4
81.9
19.6
11.8
21.1
4.2 1

(b) DOS trace

Device

1 CU140 (M)
CU140 (D)
KH (D)
SDPlO (M)
SDP5 (D)
Intel (M)

1 Intel (D)

Energy

93,478
63,285
21,785

3,315
2,942
1,869

1 1,028

Read Response
Mean

106.87
83.23

106.48
10.69
6.55
6.67
0.43

Max

3537.6
3499.2
1620.9

40.4
24.9
24.8

1.6

a

256.9
255.3
325.6

7.0
4.2
4.5
0.3

Write Response |
Mean

74.89
64.70
87.29

100.80
60.30

100.65
19.88

Max

3581.1
3514.8
1667.3
5763.2
3441.3
6044.8
1226.9

a 1
237.3 1
233.8
315.1
116.9
69.8

121.0
24.5 1

(c) HP trace

Table 4: Comparison of energy consumption and response time for different devices,
using the MAC, DOS, and HP traces. There was a 2-Mbyte DRAM buffer for MAC and
DOS but no DRAM buffer cache in the HP simulations; each simulation had a 32-Kbyte
SRAM write buffer. Disk simulations spun down the disk after 5s of inactivity. Flash
simulations were done with flash memory 80% utilized. Measured (M) devices refer
to performance characteristics that were derived from microbenchmarks using the de
vices, while datasheet (D) devices came directly from manufacturers' specifications.
The datasheet parameters tend to underestimate overhead, but provide a more con
sistent base for comparison.

488 CHAPTER 18

Based solely on the input parameters from the datasheets, one may conclude
that the Intel flash card consumes significantly less energy than either the
Caviar Ultralite cu l40 or the SunDisk SDP5. Its mean read response time is
1-2 orders of magnitude faster than the Caviar Ultralite CU140 and 3-15 times
faster than the SunDisk SDP5. The flash card's mean write performance is
about three times better than the SunDisk SDP5, and its write performance is
much better than the Caviar Ultralite CU140 or KH for the MAC and HP traces.
For the DOS trace, however, writing to the flash card is about 40% slower on
average than the Caviar Ultralite CU140, and is just 6% faster than the KH on
average.

When using the numbers for measured performance as input to the simulator,
the flash card does not outperform the flash disk nearly as dramatically. The
mean read performance of the flash card is 45-60% better than the flash disk,
compared to being 3-15 times faster based on the datasheets. The mean write
performance of the flash card is comparable to that of the flash disk.

We verifled the simulator by running a 6-Mbyte synthetic trace both through
the simulator and on the OmniBook, using each of the devices. The trace was
smaller than the ones described above, in order to fit on the 10-Mbyte flash
devices. We used the measured micro-benchmark performance to drive the
simulator and then compared against actual performance. All simulated per
formance numbers were within a few percent of measured performance, with
the exception of flash card reads, which was four times worse than the simu
lated performance. We believe this is due to overhead from cleaning and from
decompression, which are more severe in practice than during the controlled
experiments described in Section 3.

5.2 Flash Storage Utilization

For the Intel flash card, there is a substantial interaction between the storage
utilization of flash memory and the behavior of the flash when the flash is fre
quently written. To examine this behavior, we simulated each trace with 40%
to 95% of flash memory occupied by useful data. To do this, we set the size
of the flash to be large relative to the size of the trace, then filled the flash
with extra data blocks that reduced the amount of free space by an appropri
ate amount. Under low utilization, energy consumption and performance are
fairly constant, but as the flash fills the system must copy increasing amounts
of "live" data from one erasure unit to another to free up an entire erasure
unit. Eventually flash cleaning consumes enough time that it can no longer be

Storage Alternatives for Mobile Computers 489

2500

^ 2000

i
0« 1500

r
1000

—«•• HP
—•-- MAC
- • - D O S

0 I I I I I I I I I t I
0 10 20 30 40 50 60 70 80 90 100

Flash Card Utilization (%)

^ 2000

Flash Card Utilization (%)

(a) SRAM=0 Kbytes. (b) SRAM=32 Kbytes.

F i g u r e 2: Energy consumption as a function of flash storage utilization, simulated
based on the datasheet for the Intel flash card, with a segment size of 128 Kbytes.
The SRAM buffer was 0 or 32 Kbytes. Energy consumption increases steadily for
each of the traces, due to increased cleaning overhead, but the energy consumed by
the HP trace increases the most dramatically with high utilization. The size of the
DRAM buffer cache was 2 Mbytes for MAC and DOS and no DRAM was used for HP.

done asynchronously with respect to new writes. Eventually the behavior of
the flash degrades with increasing utilization, resulting in much greater energy
consumption, worse performance, and more erasures per unit time (thus affect
ing flash endurance). By comparison, the flash disk is unaffected by utilization
because it does not copy data within the flash.

Figures 2 and 3 graph simulated energy consumption and write response time
as a function of storage utilization for each trace, using the specifications from
the Intel flash card datasheet and a 2-Mbyte DRAM cache (no DRAM cache
for the HP trace), and either no SRAM or 32 Kbytes of SRAM. With either
amount of SRAM, at a utilization of 95%, compared to 40% utilization, the
energy consumption rises by up to 165%. SRAM has a greater effect on write
response time: without an SRAM write buffer, the average write time increases
by up to 24%, but with a small buffer the mean write response time increases
negligibly for the MAC and HP traces and by about 20% for the DOS trace. For

490 CHAPTER 18

40-1

I
1 3 0 -

H

IG 2 0 -

1
<

0-

-•*•• HP 1
- ^ D O S
- ^ - MAC

.y*

• 1^ • • • 1

r " " l |l"TfT»»..l, , 1 1 |1T,»»TTTT»T,
) 10 20 30 40 50 60 70 80 90 100

Flash Card UtilizaUon (%) |

40q

1 :

I20-

& 10-

0-

•••«•• HP
- • - D O S
—•-- MAC

^

•—•»— > •-— • • •
1 1 1 1 1 T 1 1 1 1 1
) 10 20 30 40 50 60 70 80 90 100

Flash Card UUIization (%)

(a) SRAM=0 Kbytes. (b) SRAM=32 Kbytes.

F i g u r e 3: Mean write response time as a function of flash storage utilization, simu
lated based on the datasheet for the Intel flash card, with a segment size of 128 Kbytes.
The SRAM buffer was 0 or 32 Kbytes. Performance holds steady until utilization is
high enough for writes to be deferred while waiting for a clean segment; even so, the
MAC trace has constant mean write response. It rewrites some blocks repeatedly, so
the cleaner keeps up with writes more easily. The size of the DRAM buffer cache was
2 Mbytes for MAC and DOS and no DRAM was used for HP.

the HP trace (which writes the most data), even with the SRAM buffer, the
mean number of times any given segment was erased increased from 0.7 to 2.5
(a 260% increase) and the maximum number of erasures for any one segment
over the course of the simulation increased from 10 to 39. This effect was
less dramatic for the other traces, especially with an SRAM buffer to absorb
multiple writes to the same location. Still, higher storage utilizations can result
in "burning out" the flash two to three times faster under a UNIX workload.

In addition, experiments on the OmniBook demonstrated significant reductions
in write throughput as flash memory was increasingly full. Figure 4 graphs in
stantaneous throughput as a function of cumulative data written, with three
amounts of "live" data in the file system: 1 Mbyte, 9 Mbytes, and 9.5 Mbytes.
Each data point corresponds to 1 Mbyte of data being overwritten, randomly
selected within the total amount of live data. The flash card was erased com-

Storage Alternatives for Mobile Computers 491

Figure 4: Measured throughput on an OmniBook using a 10-Mbyte Intel flash card,
for each of 20 1-Mbyte writes (4 Kbytes at a time). Different curves show varying
amounts of live data. Throughput drops both with more cumulative data and with
more storage consumed.

pletely prior to each experiment, so that any cleaning overhead would be due
only to writes from the current experiment and the experiments would not
interfere with each other. The drop in throughput over the course of the exper
iment is apparent for all three configurations, even the one with only 10% space
utilization, presumably because of MFFS 2.00 overhead. However, throughput
decreased much faster with increased space utilization.

5.3 Asynchronous Cleaning

The next generation^ of SunDisk flash products, the SDP5A, has the ability to
erase blocks prior to writing them, in order to get higher bandwidth during
the write [3]. Erasure bandwidth is 150 Kbytes/s regardless of whether new
data are written to the location being erased; however, if an area has been
pre-erased, it can be written at 400 Kbytes/s (i.e., write latency is reduced by
62.5%).

We simulated to compare the SDP5A with and without asynchronous cleaning.
Asynchronous cleaning has minimal impact on energy consumption, but it de-

^This device was not available when the majority of this study was performed. Therefore
we generally consider the SunDisk SDP5 except in this context.

492 CHAPTER 18

creases the mean write response time for each of the traces by 55-65%. This
reduction applies both to cases where there is no SRAM buffer and to con
figurations with a small (32-Kbyte) buffer, indicating that a small amount of
SRAM is not sufficient to hide the latency of cleaning. In fact, a larger SRAM
buffer of 1 Mbyte results in asynchronous cleaning having an even greater ben
efit, reducing mean write latency by 80-90%. The difference in this case is the
result of writes coming into the SRAM buffer faster than they can be flushed
to the flash disk if the flash disk is erasing and writing each block in a single
operation. With a large SRAM buffer and asynchronous erasure, the flash disk
can keep up with the SRAM buffer.

The improvement experienced by asynchronous erasure on the SunDisk demon
strates the effect of small erasure units on performance. Considering again the
simulated write response of the SunDisk SDP5 and Intel flash card shown in
Tables 4(a)-(c), based on datasheets, if the SunDisk SDP5 write response de
creased by 60% it would be comparable to the flash card. But as storage
utilization increases, flash card write performance will degrade although the
performance of the flash disk will remain constant.

5.4 DRAM Caching

Since flash provides better read performance than disk, the dynamics of using
DRAM for caching file data change. DRAM provides better performance than
flash but requires more power and is volatile. Unlike flash memory, DRAM
consumes significant energy even when not being accessed. Thus, while ex
tremely "hot" read-only data should be kept in DRAM to get the best read
performance possible, other data can remain in flash rather than DRAM. One
may therefore ask whether it is better to spend money on additional DRAM
or additional flash. In order to evaluate these trade-offs, we simulated con
figurations with varying amounts of DRAM buffer cache and flash memory.
(As is the case with all our simulations, they do not take into account DRAM
that is used for other purposes such as program execution.) We began with
the premise that a system stored 32 Mbytes of data, not all of which necessar
ily would be accessed, and considered hypothetical flash devices storing from
34-38 Mbytes of data. (Thus total storage utilization ranged from 94% with
34 Mbytes of storage down to 84% with 38 Mbytes.) In addition, the system
could have from 0-4 Mbytes of DRAM for caching.

Figure 5 shows the results of these simulations, run against the DOS trace using
specifications from the datasheets, and 32 Kbytes of SRAM. For the Intel flash

Storage Alternatives for Mobile Computers 493

- ••- • Intel-34Mbyte (94.1 %)
-^-- Intel-35Mbyte (91.4%)
-H--. Intel-36Mbyte (88.9%)
- ••- • Intel-37Mbyte (86.5%)
-•K-- Intel-38Mbyte (84.2%)
— ^ SDP5 - 34Mbyte (94.1%)

DRAM Size (Kbytes)

(a) Energy consumption as a function
of DRAM size and flash size.

Intel-34Mbyte(94.1%)
Intel-35Mbyte(91.4%)
Intel-36Mbyte (88.9%)
Intel-37Mbyte (86.5%)
Intel-38Mbyte (84.2%)

•SDP5-34Mbyte (94.1%)

1024 2048

DRAM Size (Kbyte:

(b) Response time as a function of
DRAM size and flash size.

F i g u r e 5: Energy consumpt ion a n d average over-all response t i m e as a function of

D R A M size and flash size, s imula ted for t h e DOS t race wi th an S R A M buffer size of

32 Kbytes . We s imula ted mul t ip le flash sizes for t h e Intel flash card, which shows a

benefit once it gets below 90% uti l izat ion. Each line represents a 1-Mbyte differential

in flash card size, similar t o moving along t h e x-axis by 1 M b y t e of D R A M . Increasing

t h e D R A M buffer size has no benefit for t h e Intel card; t h e slight increase in response

t i m e when moving from no D R A M cache t o a 512-Kbyte cache comes from copying

d a t a mult iple t imes between med ia wi th similar access t imes . T h e SunDisk has no

benefit due t o increased flash size (not shown) , and here for th is t r ace it shows l i t t le

benefit from a larger buffer cache ei ther .

card, increasing the amount of flash available by 1 Mbyte, thereby decreasing
storage utilization from 94.1% to 91.4%, reduces energy consumption by 7%
and average over-all response time by 6%. (The differences are greater when
there is no SRAM cache [5].) The incremental benefit on energy consumption
of additional flash beyond the first Mbyte is minimal, though adding flash does

494 CHAPTER 18

help to reduce response time. Adding DRAM to the Intel flash card increases
the energy used for DRAM without any appreciable benefits: the time to read
a block from flash is barely more than the time to read it from DRAM.

Only one curve is shown for the SunDisk SDP5 because increasing the size of the
flash disk has minimal effect on energy consumption or performance. In fact,
for this trace, even a 500-Kbyte DRAM cache increases energy consumption
for the SunDisk SDP5 without improving performance. With the MAC trace,
which has a greater fraction of reads, a small DRAM cache improves energy
consumption and performance for the SunDisk SDP5, while the Intel flash card
utilization has a greater impact on energy consumption (a 17% reduction from
1 Mbyte of flash) and no impact at all on response time. Thus the trade-off
between DRAM and flash size is dependent both on execution characteristics
(read/write ratio) and hardware characteristics (any differences in performance
between DRAM and the flash device).

5.5 SRAM Buffering

So far we have generally assumed that a system has a small amount of SRAM,
specifically 32 Kbytes, to buffer writes to disk or fletsh. The quantity of SRAM is
a tradeoff between cost and performance. A 32-Kbyte SRAM write buffer costs
only a few dollars, which is a small part of the total cost of a storage system.
Under light load, this buffer can make a significant difference in the average
write response time, compared to a system that writes all data synchronously
to secondary store. Although SRAM consumes significant energy itself, by
reducing the number of times the disk spins up or flash memory is cleaned,
the SRAM buffer can potentially conserve energy. However, if writes are large
or are clustered in time, such that the write buffer frequently fills, then many
writes will be delayed as they wait for the slower device. In this case, a larger
SRAM buffer will be necessary to improve performance, and it will cost more
money and consume more energy.

In practice, small SRAM write buffers for magnetic disks are relatively com
monplace, though we are unaware of products other than the Quantum Daytona
that use the write buffer to avoid spinning up an idle disk. Here we examine
the impact of nonvolatile memory in a storage system. We base our results on
a NEC 32Kx8-bit SRAM chip, part ^PD43256B, with a 55ns access time [19].

Figures 6-9 graph normalized energy consumption and write response time
as a function of SRAM size for each of the traces and devices. The values are

Storage Alternatives for Mobile Computers 495

(a) Energy consumption. (b) Response time.

F i g u r e 6: Normal ized energy and wri te response t ime as a function of S R A M size

for each t race , for t h e C U 1 4 0 . Resul ts are normalized t o t h e value corresponding t o

no S R A M . T h e MAC t race shows t h e greates t benefit in energy consumpt ion , while all

t races benefit subs tant ia l ly from a 32-Kbyte S R A M and even more from larger wri te

buffers T h e disk was spun down after 5s of inactivity. T h e size of t h e D R A M buffer

cache was 2 Mbytes for MAC and DOS a n d a n d no D R A M was used for HP.

normalized to the case without an SRAM buffer. As with the other experiments,
DRAM was fixed at 2 Mbytes for MAC and DOS and not used for HP;^ the spin-
down threshold was fixed at 5s. The results may be summarized as follows:

CUI4O (Figure 6)

• Adding SRAM has minimal effect on energy consumption for the DOS and
HP traces but even a 32-Kbyte buffer reduces energy consumption for the
MAC trace by about half.

^For this experiment, one should discount the result from the HP trace by comparison to
the other two traces. This is because the HP simulation has no DRAM cache, so reads cause
the disk to spin up more than with the other simulations (except those reads that are serviced
from recent writes to SRAM). The effect of SRAM on energy and response time in the HP
environment bears further study.

496 CHAPTER 18

0 32 512 1024
SRAM Size (Kbytes)

(a) Energy consumption. (b) Response time.

Figure 7: Normalized energy and write response time as a function of SRAM size for
each trace, for the Intel flash card with a utilization of 80%. Results are normalized
to the value corresponding to no SRAM. The MAC trace shows the greatest benefit in
energy consumption and write response time, but all traces benefit in both respects
from increasing SRAM. The size of the DRAM buffer cache was 2 Mbytes for MAC
and DOS and and no DRAM was used for HP.

All the traces benefit with increasing amounts of SRAM as far as write
response is concerned; a 1-Mbyte SRAM write buffer decreases mean write
response time by about an order of magnitude for each trace, but even just
32 Kbytes has a large eflFect (30-80% reduction).

Intel flash card (Figure 7)

• A small write buffer reduces energy consumption for the MAC trace by
90%, and adding additional SRAM has no effect on energy consumption.
Increasing SRAM sizes are beneficial for the other two traces, with a 1-
Mbyte buffer reducing energy consumption by 50% for the DOS trace and
75% for the HP trace. By absorbing overwrites, SRAM reduces energy by
dramatically reducing the number of flash erasures; this can be seen for
example in Figure 8, which graphs normalized energy consumption and
normalized erasures for the HP trace.

Storage Alternatives for Mobile Computers 497

1 To^
0.9-

0.8-

g 0.7-

\> ce
l l 0.5-
r i
1 1 0.4-
Z 0.3 r

0.21

0.H

00 - u

1 B

li 1 L
0 32 512

SRAM Size (Kbytes)

H Energy

1 Erasure Count

AM L
1024

Figu r e 8: Normalized energy and erasure count as a function of SRAM size for the
HP trace running on the Intel flash card with a utilization of 80%, and no DRAM
cache. Results are normalized to the value corresponding to no SRAM. The two
values follow similar curves, suggesting that the reduction in erasures has a direct
impact on the reduction in overall energy consumption.

Similarly, a small buffer has the biggest impact on write response time for
the MAC trace. Again, a 1-Mbyte buffer shows reductions of about 80-95%
in mean write response.

SDP5 (Figure 9)

The results for the SDP5 are similar to those for the Intel flash card:

Energy consumption for the MAC trace with 32 Kbytes of SRAM drops
to 20% of the configuration without SRAM, without further improvement
from more SRAM. The HP trace shows less relative benefit than the DOS
trace, unlike the flash card configuration, but both improve somewhat with
increasing SRAM size.

The mean write response times for each trace decrease with increasing
SRAM size, up to a total reduction of about 75-95%.

498 CHAPTER 18

(a) Energy consumption. (b) Response time.

F i g u r e 9: Normalized energy and write response time as a function of SRAM size
for each trace, for the S D P 5 . Results are normalized to the value corresponding to
no SRAM. Conclusions are similar to the preceding figure. The size of the DRAM
buffer cache was 2 Mbytes for MAC and DOS and and no DRAM was used for HP.

It is not surprising that the DOS trace would show the least benefit from in
creasing SRAM size with respect to energy consumption, since it has a small
fraction of writes. The huge benefits from even a small SRAM buffer for the
MAC trace are indicative of the extent of write locality in the trace.

6 RELATED WORK

In addition to the specific work on flash file systems mentioned previously, the
research community has begun to explore the use of flash memory as a substi
tute for, or an addition to, magnetic disks. Caceres et al. proposed operating
system techniques for exploiting the superior read performance of flash memory
while hiding its poor write performance, particularly in a portable computer
where all of DRAM is battery-backed [2]. Wu and Zwaenepoel discussed how
to implement and manage a large non-volatile storage system, called eNVy,
composed of SRAM and flash memory for high-performance transaction pro
cessing. They simulated a system with Gbytes of flash memory and Mbytes

Storage Alternatives for Mobile Computers 499

of battery-backed SRAM, showing it could support the I/O corresponding to
30,000 transactions per second using the TPC-A database benchmark [24].
They found that at a utilization of 80%, 45% of the time is spent erasing or
copying data within flash, while performance was severely degraded at higher
utilizations [25]. Marsh et al. examined the use of flash memory as a cache
for disk blocks to avoid accessing the magnetic disk, thus allowing the disk to
be spun down more of the time [15]. SunDisk recently performed a compet
itive analysis of several types of flash memory on an HP Omnibook 300 and
found that the SunDisk SDP5-10 flash disk emulator was nearly an order of
magnitude faster than an Intel Flash card using version 2 of the Flash File Sys
tem [23]. They also found that performance of the Intel Flash card degraded
by 40% as it filled with data, with the most noticeable degradation between
95% and 99% storage utilization.

Other researchers have explored the idea of using non-volatile memory to reduce
write trafiic to disk. Baker et al. found that some 78% of blocks written to disk
were done so for reliability. They found that a small amount of battery-backed
SRAM on each client was able to reduce client-server file write trafl&c by half,
and SRAM on the file server could reduce writes to disk by 20% [1]. However,
the benefits of SRAM for workstation clients did not justify its additional cost,
which would be better applied toward additional DRAM. This contrasts with
our results for a mobile environment, in which larger amounts of DRAM are
not so cost eff'ective, but a small amount of SRAM helps energy consumption
and performance. Ruemmler and Wilkes also studied how well SRAM could
absorb write traflBc, finding that 4 Mbytes of SRAM was sufiicient to absorb
95% of all write trafiic in the systems they traced [21].

Segment cleaning in Rosenblum and Ousterhout's Log-Structured File System
(LFS) [20] has a number of similarities to flash cleaning when the flash segment
size is a large multiple of the smallest block size. The purpose of Sprite LFS
is to amortize write overhead by writing large amounts of data at once; to do
so requires that large amounts of contiguous disk space be emptied prior to a
write. However, cleaning in LFS is intended to amortize the cost of seeking
between segments anywhere on the disk, while flash cleaning is a requirement
of the hardware.

Finally, Kawaguchi et al. [11] recently designed a flash memory file system for
UNIX based on LFS, with performance comparable to the 4.4BSD Pageable
Memory based File System [17]. They found that at low utilizations cleaning
overhead did not significantly aff'ect performance, but the throughput of random
writes dropped from 222 Kbytes/s to 40 Kbytes/s when utilization increased
from 30% to 90%. A reduction of 82% in write throughput is comparable to

500 CHAPTER 18

the results we measured empirically with MFFS 2.00, but much worse than our
simulated mean write response time. This is because our traces did not place a
long sustained load on the system, instead allowing the flash cleaning process
to keep up at least some of the time.

7 CONCLUSIONS

In this chapter we have examined three alternatives for file storage on mobile
computers: a magnetic disk, a flash disk emulator, and a flash memory card.
We have shown that either form of flash memory is an attractive alternative
to magnetic disk for file storage on mobile computers. Flash offers low energy
consumption, good read performance, and acceptable write performance. In
addition, a nonvolatile SRAM write buffer is necessary with each configuration
to hide write latency. SRAM is especially important for magnetic disks, which
suffer delays due to spin-ups, and flash cards, which suffer delays due to cleaning
and erasure.

The main disadvantage of using magnetic disk for file storage on mobile com
puters is its great energy consumption. To extend battery life, the power man
agement of a disk file system spins down the disk when it is idle. But even
with power management, a disk file system can consume an order of magnitude
more energy than a file system using flash memory.

Our trace simulation results, using a SunDisk SDP5, a Caviar Ultralite cu l40 ,
and a 32-Kbyte SRAM write buffer, show that the flash disk file system can
save 84-96% of the energy of the disk file system. It is 6-13 times faster for
reads, while its mean write response varies from four times worse to three
times better. The differences in write response time arise from the rate at
which writes arrived in the traces: for the DOS trace, in which the SunDisk
SDP5 fared the worst, many more writes to SRAM had to wait for blocks to be
written to the flash disk than to the magnetic disk, because once the magnetic
disk was spinning it could process writes faster.

The flash memory file system (using the Intel flash card) has the most attrac
tive qualities with respect to energy and performance, though its price and
capacity limitations are still drawbacks. Even in the presence of disk power
management, the flash memory file system can reduce energy consumption by
nearly two orders of magnitude compared to the magnetic disk file system,
extending battery life by 25-115%. Furthermore, in theory the flash memory

Storage Alternatives for Mobile Computers 501

file system can provide mean read response time that is up to two orders of
magnitude faster than the disk file system. As with the SunDisk SDP5, the
mean write response of the Intel flash card varies significantly compared to the
Caviar Ultralite CU140: from just 14% of the disk's mean response using the
MAC trace to 41% more than the disk using the DOS trace. Again, the diff̂ er-
ences among the traces can be attributed to raw throughput to a spinning disk
versus waiting for a disk to spin up.

In practice, hardware measurements showed that there is a great discrepancy
between the rated performance of each of the storage media and their perfor
mance in practice under DOS. This is especially true with the flash card using
MFFS 2.00, whose write performance degrades linearly with the size of the file.
Some of the differences in performance can be reduced with new technologies,
in both hardware and software. One new technique is to separate the write
and erase operations on a flash disk emulator, as the next generation of the
SunDisk flash disk will allow. Another hardware technique is to allow erasure
of more of a flash memory card in parallel, as the newer 16-Mbit Intel flash
devices allow [10]. Newer versions of the Microsoft Flash File System should
address the degradation imposed by large files, and in order to take advantage
of asynchronous flash disk erasure, flle systems for mobile computers must treat
the flash disk more like a flash card than like a magnetic disk.

Finally, in our simulation study, we found that the erasure unit of flash memory,
which is fixed by the hardware manufacturer, can significantly influence file
system performance. Large erasure units require a low space utilization. At
90% utilization or above, an erasure unit that is much larger than the file
system block size will result in unnecessary copying, degrading performance,
wasting energy, and wearing out the flash device. In our simulations, energy
consumption rose by as much as 165%, the average write response increased up
to 20%, and the rate of erasure nearly tripled. Flash memory that is more like
the flash disk emulator, with small erasure units that are immune to storage
utilization effects, will likely grow in popularity despite being at a disadvantage
in basic power and performance.

Acknowledgments

We thank W. Sproule and B. Zenel for their efforts in gathering trace data
and/or hardware measurements. J. Wilkes at Hewlett-Packard and K. Li at
U.C. Berkeley graciously made their file system traces available. Thanks to R.

502 CHAPTER 18

Alonso, M. Dahlin, C. Dingman, B. Krishnamurthy, P. Krishnan, D. Miloji-
cic, C. Northrup, J. Sandberg, D. Stodolsky, B. Zenel, W. Zwaenepoel, and
anonymous reviewers for comments on previous drafts. We thank the following
persons for helpful information about their products: A. Elliott and C. Mayes
of Hewlett-Packard; B. Dipert and M. Levy of Intel; and J. Craig, S. Gross,
and L. Seva of SunDisk.

REFERENCES
[1] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo

Seltzer. Non-volatile memory for fast, reliable file systems. In Proceedings of the
Fifth International Conference on Architectural Support for Programming Lan
guages and Operating Systems, pages 10-22, Boston, MA, October 1992. ACM.

[2] Ramon Caceres, Fred Douglis, Kai Li, and Brian Marsh. Operating Systems Im
plications of Solid-State Mobile Computers. In Proceedings of the Fourth Work
shop on Workstation Operating Systems, pages 21-27, Napa, CA, October 1993.
IEEE.

[3] Jeff Craig, March 1994. Personal communication.

[4] Brian Dipert and Markus Levy. Designing with Flash Memory. Annabooks,
1993.

[5] Fred Douglis, Ramon Caceres, Brian Marsh, Frans Kaashoek, Kai Li, and Joshua
Tauber. Storage alternatives for mobile computers. In Proceedings of the First
Symposium on Operating Systems Design and Implementation, pages 25-37.
USENIX Association, November 1994.

[6] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the Power Hungry
Disk. In Proceedings of 1994 Winter USENIX Conference, pages 293-306, San
Francisco, CA, January 1994.

[7] Hewlett-Packard. HP 100 and OmniBook Flash Disk Card User's Guide, 1993.

[8] Hewlett-Packard. Kittyhawk HP C3013A/C30HA Personal Storage Modules
Technical Reference Manual, March 1993. HP Part No. 5961-4343.

[9] Intel. Mobile Computer Products, 1993.

[10] Intel. Flash Memory, 1994.

[11] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A flash-memory based
file system. In Proceedings of the USENIX 1995 Technical Conference on UNIX
and Advanced Computing Systems, pages 155-164, New Orleans, LA, January
1995.

[12] Markus Levy. Interfacing Microsoft's Flash File System. In Memory Products,
pages 4-318-4-325. Intel Corp., 1993.

Storage Alternatives for Mobile Computers 503

[13] Kester Li. Towards a low power file system. Technical Report UCB/CSD 94/814,
University of California, Berkeley, CA, May 1994. Masters Thesis.

[14] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A Quantitative
Analysis of Disk Drive Power Management in Portable Computers. In Proceedings
of the 1994 Winter USENIX, pages 279-291, San Francisco, CA, 1994.

[15] Brian Marsh, Fred Douglis, and P. Krishnan. Flash Memory File Caching for
Mobile Computers. In Proceedings of the 27th Hawaii Conference on Systems
Sciences, pages 451-460, Maui, HI, 1994. IEEE.

[16] Brian Marsh and Bruce Zenel. Power Measurements of Typical Notebook Com
puters. Technical Report 110-94, Matsushita Information Technology Labora
tory, May 1994.

[17] Marshall Kirk McKusick, Michael J. Karels, and Keith Bostic. A pageable mem
ory based file system. In USENIX Conference Proceedings, pages 137-144, Ana
heim, CA, Summer 1990. USENIX.

[18] NEC. Memory Products Data Book, Volume 1: DRAMS, DRAM Modules, Video
RAMS, 1993.

[19] NEC. Memory Products Data Book, Volume 2: SRAMS, ASMs, EEPROMs,
1993.

[20] Mendel Rosenblum and John Ousterhout. The design and implementation of a
log-structured file system. ACM Transactions on Computer Systems, 10(1):26-
52, February 1992. Also appears in Proceedings of the 13th Symposium on
Operating Systems Principles, October 1991.

[21] Chris Ruemmler and John Wilkes. UNIX disk access patterns. In Proceedings of
the Winter 1993 USENIX Conference, pages 405-420, San Diego, January 1993.

[22] SunDisk Corporation. SunDisk SDP Series OEM Manual, 1993.

[23] SunDisk Corporation, 3270 Jay Street, Santa Clara, CA 95054. Competitive
Analysis 80-40-00002 Rev. 1.0, 1994.

[24] Transaction Processing Performance Council. TPC Benchmark A Standard Spec
ification Rev 1.1.

[25] Michael Wu and Willy Zwaenepoel. eNVy: a Non-Volatile, main memory storage
system. In Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating System,s, pages 86-97, San
Jose, CA, October 1994.

8 DIFFERENCES FROM THE
PRECEDING VERSION

This chapter differs from the paper [5] that appeared in the Proceedings of the First
Symposium, on Operating Systems Design and Im,plementation in the following ways:

504 CHAPTER 18

S R A M for flash memory Here we simulate an SRAM write buffer for flash mem
ory as well as for disks. This greatly reduces write latency in many cases.

S R A M writes to a spun-down disk Although we attempted to buffer writes to a
spun-down disk rather than spin it up again, previously there were circumstances
when the disk would be spun up upon a write that fit in SRAM. The simulator
now buflPers writes in those cases. This results in lower energy consumption when
writes are small and infrequent or hit a "hot spot." However, more reads hit
a spun-down disk, so reads that miss in the DRAM buffer cache may suffer an
increased penalty due to disk spin-up. Furthermore, the effect of eliminating
some accesses to disk is especially profound if the disk spins down just before
the next operation: a read or write to a Caviar Ultralite CUl40 may have to wait
up to 3.5s in the worst case while the drive spins down and back up again.

Caviar Ultralite CU140 After the previous version appeared, we were told by a
technical support representative at Western Digital that their Caviar Ultralite
CU140 does not go into its low-power sleep mode unless the entire system is
asleep. The least power consumed is therefore 125mW rather than 1.5mW as
previously believed. Therefore, the total energy consumption for simulations
using the Caviar Ultralite CU140 increased in proportion to the duration of the
trace with long periods of inactivity. The HP trace was impacted by this change
the most, with its total energy consumption increasing by factors of 3-4.

Write response t ime Until recently, the response time for an operation was mea
sured from the time the operation started until the time it completed. The start
time was

max (start jjf ^previous.operation 4- interarrivaUime,

completion JO f .pending joperations).

Thus if flash cleaning caused a write to take 1.6s rather than 30ms, the response
time for that write would be 1.6s but the next write would be considered to start
upon the completion of the write that was delayed. Delays due to background
operation were similarly excluded, so if a background operation (such as writing
a block from SRAM to disk) completed after the time the next operation could
have started, the start time was delayed. Upon reflection, we now consider
background operations to have no effect on start time. As a result, and as one
would expect, the delay due to flushing a block from SRAM to disk if SRAM
fills up with modified data is more pronounced in small SRAM caches than in
larger ones.

Table 5 summarizes the effects of these changes.

Storage Alternatives for Mobile Computers 505

Change

SRAM for flash
SRAM writes to a
spun-down disk

Caviar Ultrahte CU140
specification

Write response time
treatment

Effect

Flash writes are much faster
Less energy is consumed. Response time
varies depending on the Ukehhood of the disk
spinning down between operations, especially
if the disk spins down just before the next
operation
The Caviar Ultralite CUl40 consumes sub
stantially more energy over a long trace than
before.
Mean write response increases when SRAM
or flash fills and must be flushed between
operations

Table 5: Summary of changes from [5].

19
DISCONNECTED OPERATION IN

THE CODA FILE SYSTEM
James J. Kistler and M. Satyanarayanan

School of Computer Science,
Carnegie Mellon University

ABSTRACT
Disconnected operation is a m o d e of opera t ion t h a t enables a client t o cont inue access

ing critical d a t a dur ing t e m p o r a r y failures of a shared d a t a repository. A n i m p o r t a n t ,

t h o u g h no t exclusive, appl icat ion of disconnected opera t ion is in suppor t ing po r t ab l e

compute r s . In th is paper , we show t h a t d isconnected opera t ion is feasible, efficient

and usable by describing its design and imp lemen ta t ion in t h e C o d a File Sys tem. T h e

central idea beh ind our work is t h a t caching of data, now widely used for performance,

can also be exploited t o improve availability.

1 INTRODUCTION

Every serious user of a distributed system has faced situations where critical
work has been impeded by a remote failure. His frustration is particularly
acute when his workstation is powerful enough to be used standalone, but has

Previously appeared in ACM Transactions on Computer Systems, Vol, 10, No. 1, Feb
1992. Copyright ©1992 by the Association for Computing Machinery, Inc. Reprinted by
permission. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax + 1 (212) 869-0481, or
(permissions@acm.org)

508 CHAPTER 19

been configured to be dependent on remote resources. An important instance
of such dependence is the use of data from a distributed file system.

Placing data in a distributed file system simplifies collaboration between users,
and allows them to delegate the administration of that data. The growing
popularity of distributed file systems such as NFS [15] and AFS [18] attests to
the compelling nature of these considerations. Unfortunately, the users of these
systems have to accept the fact that a remote failure at a critical juncture may
seriously inconvenience them.

How can we improve this state of affairs? Ideally, we would like to enjoy the
benefits of a shared data repository, but be able to continue critical work when
that repository is inaccessible. We call the latter mode of operation disconnected
operation, because it represents a temporary deviation from normal operation
as a client of a shared repository.

In this paper we show that disconnected operation in a file system is indeed
feasible, efficient and usable. The central idea behind our work is that caching
of data, now widely used to improve performance, can also be exploited to
enhance availability. We have implemented disconnected operation in the Coda
File System at Carnegie Mellon University.

Our initial experience with Coda confirms the viability of disconnected opera
tion. We have successfully operated disconnected for periods lasting four to five
hours. For a disconnection of this duration, the process of reconnecting and
propagating changes typically takes about a minute. A local disk of 100MB
has been adequate for us during these periods of disconnection. Trace-driven
simulations indicate that a disk of about half that size should be adequate for
disconnections lasting a typical workday.

2 DESIGN OVERVIEW^

Coda is designed for an environment consisting of a large collection of untrusted
Unix^. clients and a much smaller number of trusted Unix file servers. The
design is optimized for the access and sharing patterns typical of academic
and research environments. It is specifically not intended for applications that
exhibit highly concurrent, fine granularity data access.

^Unix is a trademark of AT&T.

Disconnected Operation in the Coda File System 509

Each Coda client has a local disk and can communicate with the servers over a
high bandwidth network. At certain times, a client may be temporarily unable
to communicate with some or all of the servers. This may be due to a server or
network failure, or due to the detachment of a portable client from the network.

Clients view Coda as a single, location-transparent shared Unix file system.
The Coda namespace is mapped to individual file servers at the granularity of
subtrees called volumes. At each client, a cache manager (Venus) dynamically
obtains and caches volume mappings.

Coda uses two distinct, but complementary, mechanisms to achieve high avail
ability. The first mechanism, server replication, allows volumes to have read-
write replicas at more than one server. The set of replication sites for a volume
is its volume storage group (VSG). The subset of a VSG that is currently ac
cessible is a client's accessible VSG (AVSG). The performance cost of server
replication is kept low by caching on disks at clients and through the use of par
allel access protocols. Venus uses a cache coherence protocol based on callbacks
[9] to guarantee that an open of a file yields its latest copy in the AVSG. This
guarantee is provided by servers notifying clients when their cached copies are
no longer valid, each notification being referred to as a "callback break." Mod
ifications in Coda are propagated in parallel to all AVSG sites, and eventually
to missing VSG sites.

Disconnected operation, the second high availability mechanism used by Coda,
takes effect when the AVSG becomes empty. While disconnected, Venus ser
vices file system requests by relying solely on the contents of its cache. Since
cache misses cannot be serviced or masked, they appear as failures to applica
tion programs and users. When disconnection ends, Venus propagates modi
fications and reverts to server replication. Figure 1 depicts a typical scenario
involving transitions between server replication and disconnected operation.

Earlier Coda papers [17], [18] have described server replication in depth. In
contrast, this paper restricts its attention to disconnected operation. We dis
cuss server replication only in those areas where its presence has significantly
infiuenced our design for disconnected operation.

510 CHAPTER 19

x=12

x=12 x=12

(a)

x=87 x=87

iCi
mahler

x=87

x=87

Vivaldi ravel

x=87

(b)

x=45 x=45 x=45
x=33

TCI
mahler

x=33

x=33

x= 87

Vivaldi

x=87

ravel

harp

(c)

x=87

x=45

TCI

/

_ flute]
"x=45"

//viola ^J—*
1(=45

x=87

Vivaldi

x=87

ravel

harp

x=33

x=87

(e)

-T l
mahler

XWf\
x=45

x= 87

Vivaldi

x=87

ravel

harp

x=33
(d)

Three servers (Inahler, vivaldi, and ravel^ have replicas of the volume containing
file X. This file is potentially of interest to users at three clients (Hute, viola,
and h a r p / Flute is capable of wireless communication (indicated by a dotted
line) as well as regular network communication. Proceeding clockwise, the steps
above show the value of x seen by each node as the connectivity of the system
changes. Note that in step (d), flute is operating disconnected.

Figure 1 How^ Disconnected Operation Relates to Server Replication

Disconnected Operation in the Coda File System 511

3 DESIGN RATIONALE

At a high level, two factors influenced our strategy for high availability. First,
we wanted to use conventional, off-the-shelf hardware throughout our system.
Second, we wished to preserve transparency by seamlessly integrating the high
availability mechanisms of Coda into a normal Unix environment.

At a more detailed level, other considerations influenced our design. These
include the need to scale gracefully, the advent oi portable workstations, the very
different resource, integrity, and security assumptions made about clients and
servers, and the need to strike a balance between availability and consistency.
We examine each of these issues in the following sections.

3.1 Scalability

Successful distributed systems tend to grow in size. Our experience with Coda's
ancestor, AFS, had impressed upon us the need to prepare for growth a priori,
rather than treating it as an afterthought [16]. We brought this experience
to bear upon Coda in two ways. First, we adopted certain mechanisms that
enhance scalability. Second, we drew upon a set of general principles to guide
our design choices.

An example of a mechanism we adopted for scalability is callback-based cache
coherence. Another such mechanism, whole-file caching, offers the added ad
vantage of a much simpler failure model: a cache miss can only occur on an
open, never on a read, w r i t e , seek, or c lose . This, in turn, substantially
simplifies the implementation of disconnected operation. A partial-file caching
scheme such as that of AFS-4 [21], Echo [8] or MFS [1] would have complicated
our implementation and made disconnected operation less transparent.

A scalability principle that has had considerable influence on our design is
the placing of functionality on clients rather than servers. Only if integrity or
security would have been compromised have we violated this principle. An
other scalability principle we have adopted is the avoidance of system-wide
rapid change. Consequently, we have rejected strategies that require election
or agreement by large numbers of nodes. For example, we have avoided algo
rithms such as that used in Locus [22] that depend on nodes achieving consensus
on the current partition state of the network.

512 CHAPTER 19

3,2 Portable Workstations

Powerful, lightweight and compact laptop computers are commonplace today.
It is instructive to observe how a person with data in a shared file system uses
such a machine. Typically, he identifies files of interest and downloads them
from the shared file system into the local name space for use while isolated.
When he returns, he copies modified files back into the shared file system.
Such a user is effectively performing manual caching, with write-back upon
reconnection!

Early in the design of Coda we realized that disconnected operation could
substantially simplify the use of portable clients. Users would not have to
use a different name space while isolated, nor would they have to manually
propagate changes upon reconnection. Thus portable machines are a champion
application for disconnected operation.

The use of portable machines also gave us another insight. The fact that people
are able to operate for extended periods in isolation indicates that they are quite
good at predicting their future file access needs. This, in turn, suggests that
it is reasonable to seek user assistance in augmenting the cache management
policy for disconnected operation.

Functionally, involuntary disconnections caused by failures are no different from
voluntary disconnections caused by unplugging portable computers. Hence
Coda provides a single mechanism to cope with all disconnections. Of course,
there may be qualitative differences: user expectations as well as the extent of
user cooperation are likely to be different in the two cases.

3.3 First vs Second Class Replication

If disconnected operation is feasible, why is server replication needed at all?
The answer to this question depends critically on the very different assumptions
made about clients and servers in Coda.

Clients are like appliances: they can be turned off at will and may be unat
tended for long periods of time. They have limited disk storage capacity, their
software and hardware may be tampered with, and their owners may not be
diligent about backing up the local disks. Servers are like public utilities: they
have much greater disk capacity, they are physically secure, and they are care
fully monitored and administered by professional staff.

Disconnected Operation in the Coda File System 513

It is therefore appropriate to distinguish between first class replicas on servers,
and second class replicas (i.e., cache copies) on clients. First class replicas are
of higher quality: they are more persistent, widely known, secure, available,
complete and accurate. Second class replicas, in contrast, are inferior along all
these dimensions. Only by periodic revalidation with respect to a first class
replica can a second class replica be useful.

The function of a cache coherence protocol is to combine the performance and
scalability advantages of a second class replica with the quality of a first class
replica. When disconnected, the quality of the second class replica may be
degraded because the first class replica upon which it is contingent is inacces
sible. The longer the duration of disconnection, the greater the potential for
degradation. Whereas server replication preserves the quality of data in the
face of failures, disconnected operation forsakes quality for availability. Hence
server replication is important because it reduces the frequency and duration
of disconnected operation, which is properly viewed as a measure of last resort.

Server replication is expensive because it requires additional hardware. Dis
connected operation, in contrast, costs little. Whether to use server replication
or not is thus a tradeoff between quality and cost. Coda does permit a volume
to have a sole server replica. Therefore, an installation can rely exclusively on
disconnected operation if it so chooses.

3.4 Optimistic vs Pessimistic Replica Control

By definition, a network partition exists between a disconnected second class
replica and all its first class associates. The choice between two families of
replica control strategies, pessimistic and optimistic [5], is therefore central to
the design of disconnected operation. A pessimistic strategy avoids conflict
ing operations by disallowing all partitioned writes or by restricting reads and
writes to a single partition. An optimistic strategy provides much higher avail
ability by permitting reads and writes everywhere, and deals with the attendant
danger of conflicts by detecting and resolving them after their occurence.

A pessimistic approach towards disconnected operation would require a client
to acquire shared or exclusive control of a cached object prior to disconnection,
and to retain such control until reconnection. Possession of exclusive control
by a disconnected client would preclude reading or writing at all other replicas.
Possession of shared control would allow reading at other replicas, but writes
would still be forbidden everywhere.

514 CHAPTER 19

Acquiring control prior to voluntary disconnection is relatively simple. It is
more difficult when disconnection is involuntary, because the system may have
to arbitrate among multiple requestors. Unfortunately, the information needed
to make a wise decision is not readily available. For example, the system
cannot predict which requestors will actually use the object, when they will
release control, or what the relative costs of denying them access would be.

Retaining control until reconnection is acceptable in the case of brief discon
nections. But it is unacceptable in the case of extended disconnections. A
disconnected client with shared control of an object would force the rest of
the system to defer all updates until it reconnected. With exclusive control,
it would even prevent other users from making a copy of the object. Coercing
the client to reconnect may not be feasible, since its whereabouts may not be
known. Thus, an entire user community could be at the mercy of a single errant
client for an unbounded amount of time.

Placing a time bound on exclusive or shared control, as done in the case of
leases [7], avoids this problem but introduces others. Once a lease expires, a
disconnected client loses the ability to access a cached object, even if no else in
the system is interested in it. This, in turn, defeats the purpose of disconnected
operation which is to provide high availability. Worse, updates already made
while disconnected have to be discarded.

An optimistic approach has its own disadvantages. An update made at one
disconnected client may conflict with an update at another disconnected or
connected client. For optimistic replication to be viable, the system has to be
more sophisticated. There needs to be machinery in the system for detecting
conflicts, for automating resolution when possible, and for confining damage
and preserving evidence for manual repair. Having to repair conflicts manually
violates transparency, is an annoyance to users, and reduces the usability of
the system.

We chose optimistic replication because we felt that its strengths and weak
nesses better matched our design goals. The dominant influence on our choice
was the low degree of write-sharing typical of Unix. This implied that an op
timistic strategy was likely to lead to relatively few conflicts. An optimistic
strategy was also consistent with our overall goal of providing the highest pos
sible availability of data.

In principle, we could have chosen a pessimistic strategy for server replication
even after choosing an optimistic strategy for disconnected operation. But that
would have reduced transparency, because a user would have faced the anomaly

Disconnected Operation in the Coda File System 515

of being able to update data when disconnected, but being unable to do so when
connected to a subset of the servers. Further, many of the previous arguments
in favor of an optimistic strategy also apply to server replication.

Using an optimistic strategy throughout presents a uniform model of the system
from the user's perspective. At any time, he is able to read the latest data in
his accessible universe and his updates are immediately visible to everyone else
in that universe. His accessible universe is usually the entire set of servers and
clients. When failures occur, his accessible universe shrinks to the set of servers
he can contact, and the set of clients that they, in turn, can contact. In the
limit, when he is operating disconnected, his accessible universe consists of just
his machine. Upon reconnection, his updates become visible throughout his
now-enlarged accessible universe.

4 DETAILED DESIGN AND
IMPLEMENTATION

In describing our implementation of disconnected operation, we focus on the
client since this is where much of the complexity lies. Section 4.1 describes the
physical structure of a client. Section 4.2 introduces the major states of Venus,
and Sections 4.3 to 4.5 discuss these states in detail. A description of the server
support needed for disconnected operation is contained in Section 4.5.

4.1 Client Structure

Because of the complexity of Venus, we made it a user level process rather than
part of the kernel. The latter approach may have yielded better performance,
but would have been less portable and considerably more difficult to debug.
Figure 2 illustrates the high-level structure of a Coda client.

Venus intercepts Unix file system calls via the widely-used Sun Vnode interface
[10]. Since this interface imposes a heavy performance overhead on user-level
cache managers, we use a tiny in-kernel MiniCache to filter out many kernel-
Venus interactions. The MiniCache contains no support for remote access, dis
connected operation or server replication; these functions are handled entirely
by Venus.

516 CHAPTER 19

Application

to Coda
"servers

Figure 2 Structure of a Coda Client

A system call on a Coda object is forwarded by the Vnode interface to the
MiniCache. If possible, the call is serviced by the MiniCache and control is re
turned to the application. Otherwise, the MiniCache contacts Venus to service
the call. This, in turn, may involve contacting Coda servers. Control returns
from Venus via the MiniCache to the application program, updating MiniCache
state as a side effect. MiniCache state changes may also be initiated by Venus
on events such as callback breaks from Coda servers. Measurements from our
implementation confirm that the MiniCache is critical for good performance
[20].

4.2 Venus States

Logically, Venus operates in one of three states: hoarding, emulation, and rein
tegration. Figure 3 depicts these states and the transitions between them.
Venus is normally in the hoarding state, relying on server replication but al
ways on the alert for possible disconnection. Upon disconnection, it enters the
emulation state and remains there for the duration of disconnection. Upon re-
connection, Venus enters the reintegration state, resynchronizes its cache with
its AVSG, and then reverts to the hoarding state. Since all volumes may not be
replicated across the same set of servers, Venus can be in different states with
respect to different volumes, depending on failure conditions in the system.

Disconnected Operation in the Coda File System 517

When disconnected, Venus is in the emulation state. It transits to reintegration
upon successful reconnection to an AVSG member, and thence^ to hoarding,
where it resumes connected operation.

F i g u r e 3 Venus States and Transitions

4.3 Hoarding

The hoarding state is so named because a key responsibility of Venus in this
state is to hoard useful data in anticipation of disconnection. However, this is
not its only responsibility. Rather, Venus must manage its cache in a manner
that balances the needs of connected and disconnected operation. For instance,
a user may have indicated that a certain set of files is critical but may currently
be using other files. To provide good performance, Venus must cache the latter
files. But to be prepared for disconnection, it must also cache the former set
of files.

Many factors complicate the implementation of hoarding:

File reference behavior, especially in the distant future, cannot be predicted
with certainty.

Disconnections and reconnections are often unpredictable.

The true cost of a cache miss while disconnected is highly variable and
hard to quantify.

Activity at other clients must be accounted for, so that the latest version
of an object is in the cache at disconnection.

518 CHAPTER 19

Personal files # XI1 files # Venus source files
a / c o d a / u s r / j j k d + # (from X l l mainta iner) # (shared among Coda developers)
a / c o d a / u s r / j j k 100:d+ a / u s r / X l l / b i n / X a / coda /p ro j ec t / coda / s r c /venus 100:c+
a / c o d a / u s r / j j k / p a p e r s / s o s p 1000:d+ a / u s r / X l l / b i n / X v g a a / coda /pro jec t /coda/ inClude 100:c4-

a / u s r / X l l / b i n / m w m a / c o d a / p r o j e c t / c o d a / l i b c-f
System files a / u s r / X l l / b i n / s t a r t x
a / u s r / b i n 100:d+ a / u s r / X l l / b i n / x c l o c k
a / u s r / e t c 100:d+ a / u s r / X l l / b i n / x i n i t
a / u s r / i nc lude 100:d+ a / u s r / X l l / b i n / x t e r m
a / u s r / l i b 100:d+ a / u s r / X l l / i n c l u d e / X l l / b i t m a p s c +
a / u s r / l o c a l / g n u d + a /usr /Xl l / l ib /app-defauIts d +
a /ua r / l oca l / r c s d + a / u s r / X l l / l i b / f o n t s / m i s c c-\-
a / u a r / u c b d + a /u sr /X l l / l ib / sys tem.mwmrc

(a) (b) (c)

These are typical hoard profiles provided by a Coda user, an application main
tainer, and a group of project developers. Each profile is interpreted separately
by the HDB front-end program. The 'a' at the beginning of a line indicates an
add-entry command. Other commands are delete an entry, clear all entries,
and list entries. The modifiers following some pathnames specify non-default
priorities (the default is 10) and/or meta-expansion for the entry. Note that
the pathnames beginning with /usr^ are actually symbolic links into /coda\

Figure 4 Sample Hoard Profiles

• Since cache space is finite, the availability of less critical objects may have
to be sacrificed in favor of more critical objects.

To address these concerns, we manage the cache using a prioritized algorithm,
and periodically reevaluate which objects merit retention in the cache via a
process known as hoard walking.

Prioritized Cache Management

Venus combines implicit and explicit sources of information in its priority-
based cache management algorithm. The implicit information consists of recent
reference history, as in traditional caching algorithms. Explicit information
takes the form of a per-workstation hoard database (HDB), whose entries are
pathnames identifying objects of interest to the user at that workstation.

A simple front-end program allows a user to update the HDB using command
scripts called hoard profiles, such as those shown in Figure 4. Since hoard
profiles are just files, it is simple for an application maintainer to provide a
common profile for his users, or for users collaborating on a project to main
tain a common profile. A user can customize his HDB by specifying different
combinations of profiles or by executing front-end commands interactively. To

Disconnected Operation in the Coda File System 519

facilitate construction of hoard profiles, Venus can record all file references
observed between a pair of start and stop events indicated by a user.

To reduce the verbosity of hoard profiles and the effort needed to maintain
them, Venus supports meta-expansion of HDB entries. As shown in Figure 4,
if the letter 'c' (or 'd') follows a pathname, the command also applies to imme
diate children (or all descendants). A '+ ' following the 'c' or 'd' indicates that
the command applies to all future as well as present children or descendents.
A hoard entry may optionally indicate a hoard priority^ with higher priorities
indicating more critical objects.

The current priority of a cached object is a function of its hoard priority as well
as a metric representing recent usage. The latter is updated continuously in
response to new references, and serves to age the priority of objects no longer
in the working set. Objects of the lowest priority are chosen as victims when
cache space has to be reclaimed.

To resolve the pathname of a cached object while disconnected, it is imperative
that all the ancestors of the object also be cached. Venus must therefore ensure
that a cached directory is not purged before any of its descendants. This hi
erarchical cache management is not needed in traditional file caching schemes
because cache misses during name translation can be serviced, albeit at a per
formance cost. Venus performs hierarchical cache management by assigning
infinite priority to directories with cached children. This automatically forces
replacement to occur bottom-up.

Hoard Walking

We say that a cache is in equilibrium^ signifying that it meets user expectations
about availability, when no uncached object has a higher priority than a cached
object. Equilibrium may be disturbed as a result of normal activity. For
example, suppose an object. A, is brought into the cache on demand, replacing
an object, B. Further suppose that B is mentioned in the HDB, but A is not.
Some time after activity on A ceases, its priority will decay below the hoard
priority of B. The cache is no longer in equilibrium, since the cached object A
has lower priority than the uncached object B.

Venus periodically restores equilibrium by performing an operation known as
a hoard walk. A hoard walk occurs every 10 minutes in our current imple
mentation, but one may be explicitly requested by a user prior to voluntary
disconnection. The walk occurs in two phases. First, the name bindings of

520 CHAPTER 19

HDB entries are reevaluated to reflect update activity by other Coda clients.
For example, new children may have been created in a directory whose path
name is specified with the '+ ' option in the HDB. Second, the priorities of all
entries in the cache and HDB are reevaluated, and objects fetched or evicted
as needed to restore equilibrium.

Hoard walks also address a problem arising from callback breaks. In traditional
callback-based caching, data is refetched only on demand after a callback break.
But in Coda, such a strategy may result in a critical object being unavailable
should a disconnection occur before the next reference to it. Refetching imme
diately upon callback break avoids this problem, but ignores a key characteristic
of Unix environments: once an object is modified, it is likely to be modified
many more times by the same user within a short interval [14], [6]. An im
mediate refetch policy would increase client-server traffic considerably, thereby
reducing scalability.

Our strategy is a compromise that balances availability, consistency, and scala
bility. For files and symbolic links, Venus purges the object on callback break,
and refetches it on demand or during the next hoard walk, whichever occurs
earlier. If a disconnection were to occur before refetching, the object would
be unavailable. For directories, Venus does not purge on callback break, but
marks the cache entry suspicious. A stale cache entry is thus available should a
disconnection occur before the next hoard walk or reference. The acceptability
of stale directory data follows from its particular callback semantics. A call
back break on a directory typically means that an entry has been added to or
deleted from the directory. It is often the case that other directory entries and
the objects they name are unchanged. Therefore, saving the stale copy and
using it in the event of untimely disconnection causes consistency to suffer only
a little, but increases availability considerably.

4.4 Emulation

In the emulation state, Venus performs many actions normally handled by
servers. For example, Venus now assumes full responsibility for access and se
mantic checks. It is also responsible for generating temporary file identifiers
(fids) for new objects, pending the assignment of permanent fids at reintegra
tion. But although Venus is functioning as a pseudo-server, updates accepted
by it have to be revalidated with respect to integrity and protection by real
servers. This follows from the Coda policy of trusting only servers, not clients.

Disconnected Operation in the Coda File System 521

To minimize unpleasant delayed surprises for a disconnected user, it behooves
Venus to be as faithful as possible in its emulation.

Cache management during emulation is done with the same priority algorithm
used during hoarding. Mutating operations directly update the cache entries
of the objects involved. Cache entries of deleted objects are freed immediately,
but those of other modified objects assume infinite priority so that they are not
purged before reintegration. On a cache miss, the default behavior of Venus
is to return an error code. A user may optionally request Venus to block his
processes until cache misses can be serviced.

Logging

During emulation, Venus records suflRcient information to replay update activ
ity when it reintegrates. It maintains this information in a per-volume log of
mutating operations called a replay log. Each log entry contains a copy of the
corresponding system call arguments as well as the version state of all objects
referenced by the call.

Venus uses a number of optimizations to reduce the length of the replay log,
resulting in a log size that is typically a few percent of cache size. A small log
conserves disk space, a critical resource during periods of disconnection. It also
improves reintegration performance by reducing latency and server load.

One important optimization to reduce log length pertains to wr i t e operations
on files. Since Coda uses whole-file caching, the c lose after an open of a file
for modification installs a completely new copy of the file. Rather than logging
the open, c l o s e , and intervening wr i t e operations individually, Venus logs a
single s t o r e record during the handling of a c l o s e .

Another optimization consists of Venus discarding a previous s t o r e record for
a file when a new one is appended to the log. This follows from the fact that
a s t o r e renders all previous versions of a file superfluous. The s t o r e record
does not contain a copy of the file's contents, but merely points to the copy in
the cache.

We are currently implementing two further optimizations to reduce the length
of the replay log. The first generalizes the optimization described in the pre
vious paragraph such that any operation which overwrites the effect of earlier
operations may cancel the corresponding log records. An example would be the
cancelling of a s t o r e by a subsequent unl ink or t r u n c a t e . The second opti-

522 CHAPTER 19

mization exploits knowledge of inverse operations to cancel both the inverting
and inverted log records. For example, a rmdir may cancel its own log record
as well as that of the corresponding mkdir.

Persistence

A disconnected user must be able to restart his machine after a shutdown and
continue where he left off. In case of a crash, the amount of data lost should
be no greater than if the same failure occurred during connected operation. To
provide these guarantees, Venus must keep its cache and related data structures
in non-volatile storage.

Meta-data, consisting of cached directory and symbolic link contents, status
blocks for cached objects of all types, replay logs, and the HDB, is mapped
into Venus' address space as recoverable virtual memory (RVM). Transactional
access to this memory is supported by the RVM library [12] linked into Venus.
The actual contents of cached files are not in RVM, but are stored as local Unix
files.

The use of transactions to manipulate meta-data simplifies Venus' job enor
mously. To maintain its invariants Venus need only ensure that each trans
action takes meta-data from one consistent state to another. It need not be
concerned with crash recovery, since RVM handles this transparently. If we
had chosen the obvious alternative of placing meta-data in local Unix files,
we would have had to follow a strict discipline of carefully timed synchronous
writes and an ad-hoc recovery algorithm.

RVM supports local, non-nested transactions and allows independent control
over the basic transactional properties of atomicity, permanence, and serializ-
ability. An application can reduce commit latency by labelling the commit as
no-flush, thereby avoiding a synchronous write to disk. To ensure persistence of
no-fiush transactions, the application must explicitly flush RVM's write-ahead
log from time to time. When used in this manner, RVM provides bounded
persistence^ where the bound is the period between log flushes.

Venus exploits the capabilities of RVM to provide good performance at a con
stant level of persistence. When hoarding, Venus initiates log flushes infre
quently, since a copy of the data is available on servers. Since servers are not
accessible when emulating, Venus is more conservative and flushes the log more
frequently. This lowers performance, but keeps the amount of data lost by a
client crash within acceptable limits.

Disconnected Operation in the Coda File System 523

Resource Exhaustion

It is possible for Venus to exhaust its non-volatile storage during emulation.
The two significant instances of this are the file cache becoming filled with
modified files, and the RVM space allocated to replay logs becoming full.

Our current implementation is not very graceful in handling these situations.
When the file cache is full, space can be freed by truncating or deleting modified
files. When log space is full, no further mutations are allowed until reintegration
has been performed. Of course, non-mutating operations are always allowed.

We plan to explore at least three alternatives to free up disk space while emulat
ing. One possibility is to compress file cache and RVM contents. Compression
trades off computation time for space, and recent work [2] has shown it to be a
promising tool for cache management. A second possibility is to allow users to
selectively back out updates made while disconnected. A third approach is to
allow portions of the file cache and RVM to be written out to removable media
such as floppy disks.

4.5 Reintegration

Reintegration is a transitory state through which Venus passes in changing roles
from pseudo-server to cache manager. In this state, Venus propagates changes
made during emulation, and updates its cache to reflect current server state.
Reintegration is performed a volume at a time, with all update activity in the
volume suspended until completion.

Replay Algorithm

The propagation of changes from client to AVSG is accomplished in two steps.
In the first step, Venus obtains permanent fids for new objects and uses them
to replace temporary fids in the replay log. This step is avoided in many cases,
since Venus obtains a small supply of permanent fids in advance of need, while
in the hoarding state. In the second step, the replay log is shipped in parallel to
the AVSG, and executed independently at each member. Each server performs
the replay within a single transaction, which is aborted if any error is detected.

The replay algorithm consists of four phases. In phase one the log is parsed, a
transaction is begun, and all objects referenced in the log are locked. In phase
two, each operation in the log is validated and then executed. The validation

524 CHAPTER 19

consists of conflict detection as well as integrity, protection, and disk space
checks. Except in the case of s t o r e operations, execution during replay is
identical to execution in connected mode. For a s to re , an empty shadow file
is created and meta-data is updated to reference it, but the data transfer is
deferred. Phase three consists exclusively of performing these data transfers, a
process known as hack-fetching. The final phase commits the transaction and
releases all locks.

If reintegrations succeeds, Venus frees the replay log and resets the priority of
cached objects referenced by the log. If reintegration fails, Venus writes out
the replay log to a local replay file in a superset of the Unix t a r format. The
log and all corresponding cache entries are then purged, so that subsequent
references will cause refetch of the current contents at the AVSG. A tool is
provided which allows the user to inspect the contents of a replay file, compare
it to the state at the AVSG, and replay it selectively or in its entirety.

Reintegration at finer granularity than a volume would reduce the latency per
ceived by clients, improve concurrency and load balancing at servers, and reduce
user effort during manual replay. To this end, we are revising our implementa
tion to reintegrate at the granularity of subsequences of dependent operations
within a volume. Dependent subsequences can be identified using the prece
dence graph approach of Davidson [4]. In the revised implementation Venus
will maintain precedence graphs during emulation, and pass them to servers
along with the replay log.

Conflict Handling

Our use of optimistic replica control means that the disconnected operations
of one client may conflict with activity at servers or other disconnected clients.
The only class of conflicts we are concerned with are write/write conflicts.
Read/write conflicts are not relevant to the Unix file system model, since it has
no notion of atomicity beyond the boundary of a single system call.

The check for conflicts relies on the fact that each replica of an object is tagged
with a storeid that uniquely identifies the last update to it. During phase two
of replay, a server compares the storeid of every object mentioned in a log entry
with the storeid of its own replica of the object. If the comparison indicates
equality for all objects, the operation is performed and the mutated objects are
tagged with a new storeid specified in the log entry.

Disconnected Operation in the Coda File System 525

If a storeid comparison fails, the action taken depends on the operation being
validated. In the case of a s t o r e of a file, the entire reintegration is aborted.
But for directories, a conflict is declared only if a newly created name collides
with an existing name, if an object updated at the client or the server has
been deleted by the other, or if directory attributes have been modified at the
server and the client. This strategy of resolving partitioned directory updates
is consistent with our strategy in server replication [11], and was originally
suggested by Locus [22].

Our original design for disconnected operation called for preservation of replay
files at servers rather than clients. This approach would also allow damage
to be confined by marking conflicting replicas inconsistent and forcing manual
repair, as is currently done in the case of server replication. We are awaiting
more usage experience to determine whether this is indeed the correct approach
for disconnected operation.

5 STATUS AND EVALUATION

Today, Coda runs on IBM RTs, Decstation 3100s and 5000s, and 386-based
laptops such as the Toshiba 5200. A small user community has been using
Coda on a daily basis as its primary data repository since April 1990. All
development work on Coda is done in Coda itself. As of July 1991 there were
nearly 350MB of triply-replicated data in Coda, with plans to expand to 2GB
in the next few months.

A version of disconnected operation with minimal functionality was demon
strated in October 1990. A more complete version was functional in January
1991, and is now in regular use. We have successfully operated disconnected
for periods lasting four to five hours. Our experience with the system has been
quite positive, and we are confident that the refinements under development
will result in an even more usable system.

In the following sections we provide quaUtative and quantitative answers to
three important questions pertaining to disconnected operation. These are:

• 1. How long does reintegration take?

• 2. How large a local disk does one need?

• 3. How likely are conflicts?

526 CHAPTER 19

5.1 Duration of Reintegration

In our experience, typical disconnected sessions of editing and program de
velopment lasting a few hours require about a minute for reintegration. To
characterize reintegration speed more precisely, we measured the reintegration
times after disconnected execution of two well-defined tasks. The first task is
the Andrew benchmark [9], now widely used as a basis for comparing file sys
tem performance. The second task is the compiling and linking of the current
version of Venus. Table 1 presents the reintegration times for these tasks.

The time for reintegration consists of three components: the time to allocate
permanent fids, the time for the replay at the servers, and the time for the
second phase of the update protocol used for server replication. The first com
ponent will be zero for many disconnections, due to the preallocation of fids
during hoarding. We expect the time for the second component to fall, consid
erably in many cases, as we incorporate the last of the replay log optimizations
described in Section 4.4. The third component can be avoided only if server
replication is not used.

One can make some interesting secondary observations from Table 1. First, the
total time for reintegration is roughly the same for the two tasks even though
the Andrew benchmark has a much smaller elapsed time. This is because the
Andrew benchmark uses the file system more intensively. Second, reintegration
for the Venus make takes longer, even though the number of entries in the replay
log is smaller. This is because much more file data is back-fetched in the third
phase of the replay. Finally, neither task involves any think time. As a result,
their reintegration times are comparable to that after a much longer, but more
typical, disconnected session in our environment.

5.2 Cache Size

A local disk capacity of 100MB on our clients has proved adequate for our
initial sessions of disconnected operation. To obtain a better understanding of
the cache size requirements for disconnected operation, we analyzed file refer
ence traces from our environment. The traces were obtained by instrumenting
workstations to record information on every file system operation, regardless
of whether the file was in Coda, AFS, or the local file system.

Our analysis is based on simulations driven by these traces. Writing and vali
dating a simulator that precisely models the complex caching behavior of Venus

Disconnected Operation in the Coda File System 527

Elapsed
Time

(seconds)

Reintegration Time (secondsxSize of Replay Lod

Total AllocPld! Replay! C0P2 I Records Bytes

Data Back-Fetcheq
(Bytes)

Andrew
Benchmark

288 (3) 43(2) 4(2) I 29(1) 110(1) ! 223 j 65,010 1,141,315

Venus I
Make ! 3.271(28) 52(4) 1(0) 40(1) I 10(3) 193 65,919 2,990,120

This data was obtained with a Toshiba T5200/100 client (12MB memory,
lOOMB disk) reintegrating over an Ethernet with an IBM RT-APC server
(12MB memory, 400MB disk). The values shown above are the means of three
trials. Figures in parentheses are standard deviations.

Table 1 Time for Reintegration

would be quite difficult. To avoid this difficulty, we have modified Venus to act
as its own simulator. When running as a simulator, Venus is driven by traces
rather than requests from the kernel. Code to communicate with the servers,
as well code to perform physical I/O on the local file system are stubbed out
during simulation.

Figure 5 shows the high-water mark of cache usage as a function of time. The
actual disk size needed for disconnected operation has to be larger, since both
the explicit and implicit sources of hoarding information are imperfect. Prom
our data it appears that a disk of 50-60MB should be adequate for operating
disconnected for a typical workday. Of course, user activity that is drasti
cally different from what was recorded in our traces could produce significantly
different results.

We plan to extend our work on trace-driven simulations in three ways. First, we
will investigate cache size requirements for much longer periods of disconnec
tion. Second, we will be sampling a broader range of user activity by obtaining
traces from many more machines in our environment. Third, we will evaluate
the effect of hoarding by simulating traces together with hoard profiles that
have been specified ex ante by users.

5.3 Likelihood of Conflicts

In our use of optimistic server replication in Coda for nearly a year, we have
seen virtually no conflicts due to multiple users updating an object in different

528 CHAPTER 19

I
is

I

10

[

1

\j
/

/ ' .

— Max
- - Avg

Min

1
^ ^̂

:.:X.l!.l! 1 1 1 1 1

0 2 4 6 8 10 12
Time (hours)

This graph is based on a total of 10 traces from 5 active Coda workstations. The
curve labelled "Avg" corresponds to the values obtained by averaging the high-
water marks of all workstations. The curves labelled "Max" and "Min" plot the
highest and lowest values of the high-water marks across all workstations. Note
that the high-water mark does not include space needed for paging, the HDB or
replay logs.

Figure 5 High-Water Mark of Cache Usage

network partitions. While gratifying to us, this observation is subject to at least
three criticisms. First, it is possible that our users are being cautious, knowing
that they are dealing with an experimental system. Second, perhaps conflicts
will become a problem only as the Coda user community grows larger. Third,
perhaps extended voluntary disconnections will lead to many more conflicts.

To obtain data on the likelihood of conflicts at larger scale, we instrumented the
AFS servers in our environment. These servers are used by over 400 computer
science faculty, staff" and graduate students for research, program development,
and education. Their usage profile includes a significant amount of collaborative
activity. Since Coda is descended from AFS and makes the same kind of usage
assumptions, we can use this data to estimate how frequent conflicts would be
if Coda were to replace AFS in our environment.

Disconnected Operation in the Coda File System 529

Type o£
Vol\ime

User

Project

System

Number of
Volumes

529

108

398

Type o f
Objec t

Files
Directories

Files
Directories

Files
Directories

T o t a l
Mutat ions

3,287,135
4,132,066

4,437,311
5,391,224

5,526,700
4,338,507

Same User

99.87%
99.80%

99.66%
99.63%

99.17%
99.54%

D i f f e r e n t Users

Total

0.13%
0.20%

0.34%
0.37%

0.83%
0.46%

< 1min

0.04%
0.04%

0.17%
0.00%

0.06%
0.02%

< lOmIn

0.05%
0.07%

0.25%
0.01%

0.18%
0.05%

<1hr

0.06%
0.10%

0.26%
0.03%

0.42%
0.08%

< 1 day

0.09%
0.15%

0.28%
0.09%

0.72%
0.27%

< Iwk

0.09%
0.16%

0.30%
0.15%

0.78%
0.34%

This data was obtained between June 1990 and May 1991 from the AFS servers
in the c s . emu.edu cell. The servers stored a total of about 12GB of data. The
column entitled "Same User'' gives the percentage of mutations in which the
user performing the mutation was the same as the one performing the immedi
ately preceding mutation on the same file or directory. The remaining mutations
contribute to the column entitled "Different User".

T a b l e 2 Sequential Write-Sharing in AFS

Every time a user modifies an AFS file or directory, we compare his identity
with that of the user who made the previous mutation. We also note the time
interval between mutations. For a file, only the c lose after an open for update
is counted as a mutation; individual wr i t e operations are not counted. For
directories, all operations that modify a directory are counted as mutations.

Table 2 presents our observations over a period of twelve months. The data is
classified by volume type: user volumes containing private user data, project
volumes used for collaborative work, and system volumes containing program
binaries, libraries, header files and other similar data. On average, a project
volume has about 2600 files and 280 directories, and a system volume has about
1600 files and 130 directories. User volumes tend to be smaller, averaging about
200 files and 18 directories, because users often place much of their data in their
project volumes.

Table 2 shows that over 99% of all modifications were by the previous writer,
and that the chances of two different users modifying the same object less than
a day apart is at most 0.75%. We had expected to see the highest degree of
write-sharing on project files or directories, and were surprised to see that it
actually occurs on system files. We conjecture that a significant fraction of this
sharing arises from modifications to system files by operators, who change shift
periodically. If system files are excluded, the absence of write-sharing is even

530 CHAPTER 19

more striking: more than 99.5% of all mutations are by the previous writer,
and the chances of two different users modifying the same object within a week
are less than 0.4%! This data is highly encouraging from the point of view of
optimistic replication. It suggests that conflicts would not be a serious problem
if AFS were replaced by Coda in our environment.

6 RELATED WORK

Coda is unique in that it exploits caching for both performance and high avail
ability while preserving a high degree of transparency. We are aware of no other
system, published or unpublished, that duplicates this key aspect of Coda.

By providing tools to link local and remote name spaces, the Cedar file system
[19] provided rudimentary support for disconnected operation. But since this
was not its primary goal. Cedar did not provide support for hoarding, trans
parent reintegration or conflict detection. Files were versioned and immutable,
and a Cedar cache manager could substitute a cached version of a file on ref
erence to an unqualified remote file whose server was inaccessible. However,
the implementors of Cedar observe that this capability was not often exploited
since remote files were normally referenced by specific version number.

Birrell and Schroeder pointed out the possibility of "stashing" data for availabil
ity in an early discussion of the Echo file system [13]. However, a more recent
description of Echo [8] indicates that it uses stashing only for the highest levels
of the naming hierarchy.

The FACE file system [3] uses stashing but does not integrate it with caching.
The lack of integration has at least three negative consequences. First, it
reduces transparency because users and applications deal with two different
name spaces, with different consistency properties. Second, utilization of local
disk space is likely to be much worse. Third, recent usage information from
cache management is not available to manage the stash. The available literature
on FACE does not report on how much the lack of integration detracted from
the usability of the system.

An application-specific form of disconnected operation was implemented in the
PCMAIL system at MIT [Lambert88]. PCMAIL allowed clients to disconnect,
manipulate existing mail messages and generate new ones, and re-synchronize
with a central repository at reconnect ion. Besides relying heavily on the se-

Disconnected Operation in the Coda File System 531

mantles of mail, PCMAIL was less transparent than Coda since it required
manual re-synchronization as well as pre-registration of clients with servers.

The use of optimistic replication in distributed file systems was pioneered by
Locus [22]. Since Locus used a peer-to-peer model rather than a client-server
model, availability was achieved solely through server replication. There was
no notion of caching, and hence of disconnected operation.

Coda has benefited in a general sense from the large body of work on trans
parency and performance in distributed file systems. In particular. Coda owes
much to AFS [18], from which it inherits its model of trust and integrity, as
well as its mechanisms and design philosophy for scalability.

7 FUTURE WORK

Disconnected operation in Coda is a facility under active development. In
earlier sections of this paper we described work in progress in the areas of log
optimization, granularity of reintegration, and evaluation of hoarding. Much
additional work is also being done at lower levels of the system. In this section
we consider two ways in which the scope of our work may be broadened.

An excellent opportunity exists in Coda for adding transactional support to
Unix. Explicit transactions become more desirable as systems scale to hundreds
or thousands of nodes, and the informal concurrency control of Unix becomes
less effective. Many of the mechanisms supporting disconnected operation,
such as operation logging, precedence graph maintenance, and conflict checking
would transfer directly to a transactional system using optimistic concurrency
control. Although transactional file systems are not a new idea, no such system
with the scalability, availability, and performance properties of Coda has been
proposed or built.

A different opportunity exists in extending Coda to support weakly-connected
operation^ in environments where connectivity is intermittent or of low band
width. Such conditions are found in networks that rely on voice-grade lines, or
that use wireless technologies such as packet radio. The ability to mask failures,
as provided by disconnected operation, is of value even with weak connectivity.
But techniques which exploit and adapt to the communication opportunities at
hand are also needed. Such techniques may include more aggressive write-back

532 GHAPTER 19

policies, compressed network transmission, partial file transfer, and caching at
intermediate levels.

8 CONCLUSIONS

Disconnected operation is a tantalizingly simple idea. All one has to do is to
pre-load one's cache with critical data, continue normal operation until dis
connection, log all changes made while disconnected, and replay them upon
reconnect ion.

Implementing disconnected operation is not so simple. It involves major modi
fications and careful attention to detail in many aspects of cache management.
While hoarding, a surprisingly large volume and variety of interrelated state has
to be maintained. When emulating, the persistence and integrity of client data
structures become critical. During reintegration, there are dynamic choices to
be made about the granularity of reintegration.

Only in hindsight do we realize the extent to which implementations of tra
ditional caching schemes have been simplified by the guaranteed presence of
a lifeline to a first-class replica. Purging and refetching on demand, a strat
egy often used to handle pathological situations in those implementations, is
not viable when supporting disconnected operation. However, the obstacles to
realizing disconnected operation are not insurmountable. Rather, the central
message of this paper is that disconnected operation is indeed feasible, efficient
and usable.

One way to view our work is to regard it as an extension of the idea of write-back
caching. Whereas write-back caching has hitherto been used for performance,
we have shown that it can be extended to mask temporary failures too. A
broader view is that disconnected operation allows graceful transitions between
states of autonomy and interdependence in a distributed system. Under favor
able conditions, our approach provides all the benefits of remote data access;
under unfavorable conditions, it provides continued access to critical data. We
are certain that disconnected operation will become increasingly important as
distributed systems grow in scale, diversity and vulnerability.

Disconnected Operation in the Coda File System 533

Acknowledgements

We wish to thank Lily Mummert for her invaluable assistance in collecting and
postprocessing the file reference traces used in Section 5.2, and Dimitris Varot-
sis, who helped instrument the AFS servers which yielded the measurements
of Section 5.3. We also wish to express our appreciation to past and present
contributors to the Coda project, especially Puneet Kumar, Hank Mashburn,
Maria Okasaki, and David Steere.

This work was supported by the Defense Advanced Research Projects Agency
(Avionics Lab, Wright Research and Development Center, Aeronautical Sys
tems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio, 45433-
6543 under Contract F33615-90-C-1465, ARPA Order No. 7597), National Sci
ence Foundation (PYI Award and Grant No. ECD 8907068), IBM Corporation
(Faculty Development Award, Graduate Fellowship, and Research Initiation
Grant), Digital Equipment Corporation (External Research Project Grant),
and Bellcore (Information Networking Research Grant).

REFERENCES

[1] Burrows, M., "Efficient Data Sharing", Ph.D. Thesis, University of Cam
bridge, Computer Laboratory, December, 1988.

[2] Cate, v . . Gross, T., "Combining the Concepts of Compression and Caching
for a Two-Level File System", Proceedings of the 4th ACM Symposium on
Architectural Support for Programming Languages and Operating Systems,
April 1991.

[3] Cova, L.L., "Resource Management in Federated Computing Environ
ments", Ph.D. Thesis, Department of Computer Science, Princeton Uni
versity, October 1990.

[4] Davidson, S., "Optimism and Consistency in Partitioned Distributed
Database Systems", ACM Transactions on Database Systems, Vol. 3, No.
9, September 1984.

[5] Davidson, S.B., Garcia-Molina, H., Skeen, D., "Consistency in Partitioned
Networks", ACM Computing Surveys, Vol 17, No 3, September, 1985.

[6] Floyd, R.A., "Transparency in Distributed File Systems", Technical Report
TR 272, Department of Computer Science, University of Rochester, 1989.

534 CHAPTER 19

[7] Gray, C.G., Cheriton, D.R., "Leases: An Efficient Fault-Tolerant Mech
anism for Distributed File Cache Consistency" , Proceedings of the 12th
ACM Symposium on Operating System Principles^ December 1989.

[8] Hisgen, A., Birrell, A., Mann, T., Schroeder, M., Swart, G., "Availability
and Consistency Tradeoffs in the Echo Distributed File System", Proceed
ings of the Second Workshop on Workstation Operating Systems^ Septem
ber, 1989.

[9] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan,
M., Sidebotham, R.N., West, M.J., "Scale and Performance in a Dis
tributed File System", ACM Transactions on Computer Systems, Vol. 6,
No. 1, February 1988.

[10] Kleiman, S.R., "Vnodes: An Architecture for Multiple File System Types
in Sun UNIX", Summer Usenix Conference Proceedings, 1986.

[11] Kumar, P., Satyanarayanan, M., "Log-Based Directory Resolution in the
Coda File System", Proceedings of the Second International Conference
on Parallel and Distributed Information Systems, San Diego, CA, January
1993.

[12] Mashburn, H., Satyanarayanan, M., "RVM: Recoverable Virtual Memory
User Manual", School of Computer Science, Carnegie Mellon University,
1991.

[13] Needham, R.M., Herbert, A.J., "Report on the Third European SIGOPS
Workshop: "Autonomy or Interdependence in Distributed Systems",
SIGOPS Review, Vol. 23, No. 2, April 1989.

[14] Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M., "A
Trace-Driven Analysis of the 4.2BSD File System" , Proceedings of the
10th ACM Symposium on Operating System Principles, December 1985.

[15] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B., "Design and
Implementation of the Sun Network Filesystem", Summer Usenix Confer
ence Proceedings, 1985.

[16] Satyanarayanan, M., "On the Influence of Scale in a Distributed System" ,
Proceedings of the 10th International Conference on Software Engineering,
April 1988.

[17] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H.,
Steere, D.C., "Coda: A Highly Available File System for a Distributed
Workstation Environment", IEEE Transactions on Computers, Vol. 39,
No. 4, April 1990.

Disconnected Operation in the Coda File System 535

[18] Satyanarayanan, M., "Scalable, Secure, and Highly Available Distributed
File Access", IEEE Computer, Vol. 23, No. 5, May 1990.

[19] Schroeder, M.D., GifFord, D.K., Needham, R.M., "A Caching File System
for a Programmer's Workstation", Proceedings of the 10th ACM Sympo
sium on Operating System Principles, December 1985.

[20] Steere, D.C., Kistler, J.J., Satyanarayanan, M., "Efficient User-Level
Cache File Management on the Sun Vnode Interface", Summer Usenix
Conference Proceedings, Anaheim, June 1990.

[21] "Decorum File System", Transarc Corporation, January 1990.

[22] Walker, B., Popek, C , English, R., Kline, C , Thiel, C , "The LOCUS
Distributed Operating System", Proceedings of the 9th ACM Symposium
on Operating System Principles, October, 1983

20
EXPERIENCE WITH

DISCONNECTED OPERATION IN
A MOBILE COMPUTING

ENVIRONMENT
M. Satyanarayanan, James J. Kistler,

Lily B. Mummert, Maria R. Ebling,
Puneet Kumar, and Qi Lu

School of Computer Science,
Carnegie Mellon University.

ABSTRACT

In this paper we present qualitative and quantitative data on file access in a mobile
computing environment. This information is based on actual usage experience with
the Coda File System over a period of about two years. Our experience confirms
the viability and effectiveness of disconnected operation. It also exposes certain defi
ciencies of the current implementation of Coda, and identifies new functionality that
would enhance its usefulness for mobile computing. The paper concludes with a
description of what we are doing to address these issues.

1 INTRODUCTION

Portable computers are commonplace today. In conjunction with high- and
low-bandwidth cordless networking technology, such computers will soon pro
vide a pervasive hardware base for mobile computing. A key requirement of this
new world of computing will be the ability to access critical data regardless of
location. Data from shared file systems must be made available to programs
running on mobile computers. But mobility poses serious impediments to meet
ing this requirement.

Permission has been granted by the USENIX Association to reprint this paper. This
paper was originally published in the USENIX Association Conference Proceedings, 1993.
Copyright ©USENIX Association, 1993.

538 CHAPTER 20

We begin this paper by describing how shared file access is complicated by the
constraints of mobile computing. We then show how the design of the Coda File
System addresses these constraints. The bulk of the paper focuses on our usage
experience with Coda. We present qualitative and quantitative data that shed
light on Coda's design choices. Based on our experience, we have identified a
number of ways in which Coda could be improved. The paper concludes with
a description of our current work along these dimensions.

2 CONSTRAINTS OF MOBILE
COMPUTING

Access to shared data in a mobile environment is complicated by three funda
mental constraints. These constraints are intrinsic to mobility, and are not just
artifacts of current technology:

• Mobile elements are resource-poor relative to static elements. For a given
cost and level of technology, mobile elements are slower and have less
memory and disk space than static elements. Weight, power, and size
constraints will always conspire to preserve this inequity.

• Mobile elements are more prone to loss, destruction, and subversion than
static elements. A Wall Street stockbroker is more likely to be mugged on
the streets of Manhattan and have his or her laptop stolen than to have
the workstation in a locked office be physically subverted. Even if security
isn't a problem, portable computers are more vulnerable to loss or damage.

• Mobile elements must operate under a much broader range of networking
conditions. A desktop workstation can typically rely on LAN or WAN
connectivity. A laptop in a hotel room may only have modem or ISDN
connectivity. Outdoors, a laptop with a cellular modem may find itself in
intermittent contact with its nearest cell.

These constraints violate many of the assumptions upon which today's dis
tributed systems are based. Further, the ubiquity of portable computers will
result in mobile computing systems that are much larger than the distributed
systems of today. Scalability will thus be a continuing concern.

Ideally, mobility should be completely transparent to users. Transparency re
lieves users of the need to be constantly aware of the details of their computing

Experience with Disconnected Operation 539

environment, thus allowing them to focus on the real tasks at hand. The adap
tation necessary to cope with the changing environment should be initiated by
the system rather than by users. Of course, perfect transparency is an unattain
able ideal. But that should not deter us from exploring techniques that enable
us to come as close as possible to the ideal.

3 OVERVIEW^ OF CODA FILE SYSTEM

Coda, a descendant of the Andrew File System [4], offers continued access to
data in the face of server and network failures. Earlier papers [7], [9], [14],
[15], [16], [17] have described various aspects of Coda in depth. Here we only
provide enough detail to make the rest of the paper comprehensible.

Coda is designed for an environment consisting of a large collection of untrusted
Unix^ clients and a much smaller number of trusted Unix file servers. The
design is optimized for the access and sharing patterns typical of academic and
research environments. It is specifically not intended for applications such as
online transaction processing applications that exhibit highly concurrent, fine
granularity update patterns.

Each Coda client has a local disk and can communicate with the servers over
a high bandwidth network. Clients view Coda as a single, location-transparent
shared Unix file system. The Coda namespace is mapped to individual file
servers at the granularity of subtrees called volumes. At each client, a cache
manager (Venus) dynamically obtains and caches data as well as volume map
pings.

Coda uses two distinct, but complementary, mechanisms to achieve high avail
ability. Both mechanisms rely on an optimistic replica control strategy. This
offers the highest degree of availability, since data can be updated in any net
work partition. The system ensures detection and confinement of conflicting
updates after their occurence, and provides mechanisms to help users recover
from such conflicts.

^Unix is a trademark of Unix System Laboratories.

540 CHAPTER 20

3.1 Server Replication

The first high-availability mechanism, server replication, allows volumes to have
read-write replicas at more than one server. The set of replication sites for a
volume is its volume storage group (VSG). The subset of a VSG that is currently
accessible is a client's accessible VSG (AVSG). The performance cost of server
replication is kept low by callback-based caching [6] at clients, and through the
use of parallel access protocols. Modifications at a Coda client are propagated
in parallel to all AVSG sites, and eventually to missing VSG sites.

3.2 Disconnected Operation

Although server replication is an important part of Coda, it is the second high-
availability mechanism, disconnected operation, that is a key enabling technol
ogy for mobile computing [8]. A client becomes disconnected with respect to
a volume when no server in its VSG is accessible. An involuntary disconnec
tion can occur in a mobile computing environment when there is a temporary
impediment to communication. This can be caused by limitations such as
short range, inability to operate underground and in steel-framed buildings,
or line-of-sight constraints. A voluntary disconnection can occur when a user
deliberately operates isolated from a network. This may happen because no
networking capability is available at the location of a mobile computer, or to
avoid use of the network for cost or power consumption reasons.

While disconnected, Venus services file system requests by relying solely on
the contents of its cache. Since cache misses cannot be serviced or masked,
they appear as failures to application programs and users. The persistence of
changes made while disconnected is achieved via an operation log implemented
on top of a transactional facility called RVM [16]. Venus implements a number
of optimizations to reduce the size of the operation log.

To support disconnected operation, Venus operates in one of three states:
hoarding, emulation, and reintegration. Venus is normally in the hoarding
state, relying on server replication but always on the alert for possible discon
nection. The hoarding state is so named because a key responsibility of Venus
in this state is to ensure that critical objects are in the cache at the moment
of disconnection. Upon disconnection, Venus enters the emulation state and
remains there for the duration of disconnection. Upon reconnection, Venus en
ters the reintegration state, resynchronizes its cache with its AVSG, and then
reverts to the hoarding state.

Experience with Disconnected Operation 541

Venus combines implicit and explicit sources of information in its priority-based
cache management algorithm. The implicit information consists of recent ref
erence history, as in traditional caching algorithms. Explicit information takes
the form of a per-client hoard database (HDB), whose entries are pathnames
identifying objects of interest to the user at that client. A simple front-end pro
gram called hoard allows a user to update the HDB directly or via command
scripts called hoard profiles.

Venus periodically reevaluates which objects merit retention in the cache via
a process known as hoard walking. Hoard walking is necessary to meet user
expectations about the relative importance of objects. When a cache meets
these expectations, it is said to be in equilibrium.

4 IMPLEMENTATION STATUS

Disconnected operation in Coda was implemented over a period of two to three
years. A version of disconnected operation with minimal functionality was
demonstrated in October 1990. A more complete version was functional in
early 1991 and began to be used regularly by members of the Coda group. By
the end of 1991 almost all of the functionality had been implemented, and the
user community had expanded to include several users outside the Coda group.
Several of these new users had no connection to systems research whatsoever.
Since mid-1992 implementation work has consisted mainly of performance tun
ing and bug-fixing. The current user community includes about 30 users, of
whom about 20 use Coda on a regular basis. During 1992 the code was also
made available to several sites outside of Carnegie Mellon University (CMU),
and they are now using the system on a limited basis.

There are currently about 25 laptop and about 15 desktop clients in use. The
laptops are mostly 386-based IBM PS2/L40's and the desktops are a mix of
DECStation 5000/200's, Sun Sparestations, and IBM RTs. We expect to be
adding about 20 newer 486-based laptops in the near future. We currently have
three DECstation 5000/200's with 2GB of disk storage in use as production
servers, volumes being triply replicated across them. Additional servers are
used for debugging and stress-testing pre-release versions of the system.

The production servers currently hold about 150 volumes. Roughly 25% of
the volumes are user volumes, meaning that they are assigned to specific users
who have sole administrative authority over them. Users are free, of course.

542 CHAPTER 20

to extend access rights to others by changing access-control lists on specific
objects in the volume. Approximately 65% of the volumes are project volumes,
for which administrative rights are assigned collectively to the members of a
group. Most of the project volumes are used by the Coda project itself, although
there are three or four other groups which have some project volumes. The
other 10% of the volumes are system volumes, which contain program binaries,
libraries, header files, and the like.

To limit our logistical and manpower commitments, we use Coda in slightly
different ways on our desktop and laptop clients. On desktop clients. Coda is
currently used only for user and project data. The system portions of their
namespaces are in AFS, and maintenance of these namespaces is by the CMU
facilities staff. Disconnected operation on these machines is therefore restricted
to cases in which AFS servers are accessible but Coda servers are not. Such
cases can arise when Coda servers have crashed or are down for maintenance,
or when a network partitioning has separated a client from the Coda servers
but not from AFS servers.

Our mobile clients do not use AFS at all and are therefore completely dependent
on Coda. The system portions of the name space for this machine type are
maintained by us in Coda. To minimize this maintenance effort, we initially
supported only a minimal subset of the system software and have grown the
size of the supported subset only in response to user requests. This strategy has
worked out very well in practice, resulting in a highly usable mobile computing
environment. Indeed, there are many more people wishing to use Coda laptops
than we can accommodate with hardware or support services.

Porting Coda to a new machine type is relatively straightforward. Most of
the code is outside the kernel. The only in-kernel code, a VFS driver[17], is
small and entirely machine independent. Porting simply involves recompiling
the Coda client and server code, and ensuring that the kernel works on the
specific piece of hardware.

5 QUALITATIVE EVALUATION

The nature of our testbed environment has meant that we have more experi
ence with voluntary than with involuntary disconnected operation. The most
common disconnection scenario has been a user detaching his or her laptop and
taking it home to work in the evening or over the weekend. We have also had

Experience with Disconnected Operation 543

cases where users have taken their laptops out of town, on business trips and
on vacations, and operated disconnected for a week or more.

Although the dependence of our desktop workstations on AFS has limited our
experience with involuntary disconnections, it has by no means eliminated it.
Particularly during the early stages of development, the Coda servers were
quite brittle and subject to fairly frequent crashes. When the crash involved
corruption of server meta-data (alas, a common occurence) repairing the prob
lem could take hours or even days. Hence, there were many opportunities for
clients to involuntarily operate disconnected from user and project data.

We present our observations of hoarding, server emulation, and reintegration
in the next three sections. This is followed by a section with observations that
apply to the architecture as a whole.

5.1 Hoarding

In our experience, hoarding has substantially improved the usefulness of discon
nected operation. Disconnected cache misses have occurred, of course, and at
times they were quite painful, but there is no doubt that both the number and
the severity of those misses were dramatically reduced by hoarding. Moreover,
this was realized without undue burden on users and without degradation of
connected mode performance.

Our experience has confirmed one of the main premises of hoarding: that
implicit and explicit sources of reference information are both important for
avoiding disconnected cache misses, and that a simple function of hoard and
reference priorities can effectively extract and combine the information content
of both sources. It also confirms that the cache manager must actively respond
to local and remote disequilibrating events if the cache state is to meet user
expectations about availability. In the rest of this section we examine specific
aspects of hoarding in more detail.

Hoard Profiles

The aggregation of hints into profiles is a natural step. If profiles had not been
proposed and support for them had not been built into the hoard tool, it's
certain that users would have come up with their own ad-hoc profile formu
lations and support mechanisms. No one, not even the least system-savvy of
our users, has had trouble understanding the concept of a profile or making

544 CHAPTER 20

Personal files # X l l files
a /coda/usr/satya 100:d+ # (from X l l maintainer)
a /coda/usr/satya/papers/mobile93 1000:d+ a / u s r / X l l / b i n / X

a /us r /Xl l /b in /Xvga
System files a /us r /Xl l /b in /mwm
a /usr/bin 100:d-|- a /us r /Xl l /b in / s ta r tx
a /usr/etc 100:d-|- a /usr/Xll /bin/xclock
a /usr/include 100:d+ a /usr /Xl l /b in /x in i t
a /usr/lib 100:d-f a /us r /Xl l /b in /x te rm
a /usr/local/gnu d-\- a /usr /Xl l / inc lude/Xl l /b i tmaps c+
a /usr/local/res d-j- a /usr/Xll/lib/app-defaults d+
a /usr/ucb d-\- a /usr/Xll/ l ib/fonts/misc c+

a /usr/Xll/ l ib/system.mwmrc

(a) (b)

These are typical hoard profiles in actual use by some of our users. The 'a' at
the beginning of a line indicates an add-entry command. Other commands are
delete an entry, clear all entries, and list entries. The numbers following some
pathnames specify hoard priorities (default 10). The 'c-/-' and ^d+' notations
indicate meta-expansion, as explained in Section 1.

Figure 1 Sample Hoard Profiles

modifications to pre-existing profiles on their own. And, although there has
been occasional direct manipulation of the HDB via the hoard tool, the vast
majority of user/HDB interactions have been via profiles.

Most users employ about 5-10 profiles at any one time. Typically, this includes
one profile representing the user's "personal" data: the contents of his or her
root directory, notes and mail directories, etc. Several others cover the appli
cations most commonly run by the user: the window system, editors and text
formatters, compilers and development tools, and so forth. A third class of
profile typically covers data sets: source code collections, publication and cor
respondence directories, collections of lecture notes, and so on. A user might
keep a dozen or more profiles of this type, but only activate a few at a time
(i.e., submit only a subset of them to the local Venus). The number of en
tries in most profiles is about 5-30, with very few exceeding 50. Figure 1 gives
examples of typical hoard profiles.

Contrary to our expectations, there has been little direct sharing of profiles.
Most of the sharing that has occurred has been indirect; that is, a user making

Experience with Disconnected Operation 545

his or her own copy of a profile and then changing it slightly. There appear to
be several explanations for this:

early users of the system were not conscientious about placing application
profiles in public areas of the namespace.

our users are, for the most part, quite sophisticated. They are used to
customizing their environments via files such as . l og in and .Xdefaults
(and, indeed, many cannot resist the temptation to constantly do so).

most of our users are working independently or on well-partitioned aspects
of a few projects. Hence, there is not much incentive to share hoard profiles.

We expect that the degree of direct profile sharing will increase as our user
community grows, and as less sophisticated users begin to use Coda.

Multi-Level Hoard Priorities

The earliest Coda design had only a single level of hoard priority; an object
was either "sticky" or it was not. Sticky objects were expected to be in the
cache at all times. Although the sticky approach would have been simpler to
implement and easier for users to understand, we are certain that it would have
been much less pleasant to use and far less eff'ective in avoiding misses than our
multi-level priority scheme.

We believe that a sticky scheme would have induced the following, undesirable
types of hoarding behavior:

• a tendency to be conservative in specifying hints, to avoid pinning vast
amounts of low-utility data.

• a proliferation of hoard profiles for the same task or data set into, for
example, "small," "medium," and "large" variants.

• micro-management of the hoard database, to account for the facts that
profiles would be smaller and more numerous and that the penalty for
poor specification would be higher.

The net effect of all this is that much more time and effort would have been
demanded by hoarding in a sticky scheme than is the case now. This would

546 CHAPTER 20

have reduced the ability of users to hoard effectively, resulting in more frequent
disconnected misses. Overall, the utility of disconnected operation would have
been sharply reduced.

An argument besides simplicity which is sometimes used in favor of the sticky
approach is that "you know for sure that a sticky object will be in the cache
when you disconnect, whereas with priorities you only have increased proba
bility that a hoarded object will be there." That statement is simply not true.
Consider a trivial example in which ten objects have been designated sticky
and they occupy 90% of the total cache space. Now suppose that all ten are
doubled in size by a user at another workstation. How can the local cache
manager ensure that all sticky objects are cached? Clearly it cannot. The best
it can do is re-fetch an arbitrary subset of the ten, leaving the rest uncached.

A negative aspect of our current priority scheme is that the range of hoard
priorities is too large. Users are unable to classify objects into anywhere near
1000 equivalence classes, as the current system allows. In fact, they are often
confused by such a wide range of choice. Examination of many private and a
few shared profiles revealed that, while most contained at least two levels of
priority, few contained more than three or four. Moreover, it was also apparent
that no user employs more than six or seven distinct levels across all profiles.
We therefore believe that future versions of the system should offer a priority
range of about 1-10 instead of the current 1-1000. Such a change would reduce
the uncertainty felt by some users as well as aid in the standardization of
priorities across profiles.

Meta-Expansion

To reduce the verbosity of hoard profiles and to simplify their maintenance.
Coda supports meta-expansion of HDB entries. If the letter 'c' (or 'd') follows
a pathname in a hoard profile, the command also applies to immediate children
(or all descendants). A '+ ' following the 'c' or 'd' indicates that the command
applies to all future as well as present children or descendents.

Meta-expansion has proven to be an indispensible feature of hoarding. Virtually
all hoard profiles use it to some degree, and some use it exclusively. There are
also many cases in which a profile would not even have been created had meta-
expansion not been available. The effort in identifying the relevant individual
names and maintaining the profile over time would simply have been too great.
Indeed, it is quite possible that hoarding would never have reached a threshold
level of acceptance if meta-expansion had not been an option.

Experience with Disconnected Operation 547

A somewhat unexpected benefit of meta-expansion is that it allows profiles to
be constructed incrementally. That is, a usable profile can almost always be had
right away by including a single line of the form "add <rootname> d+," where
<rootname> is the directory heading the application or data set of interest.
Typically, it is also wise to specify a low priority so that things don't get out
of hand if the sub-tree turns out to be very large. Later, as experience with
the application or data set increases, the profile can be refined by removing
the "root expansion" entry and replacing it with entries expanding its children.
Children then known to be uninteresting can be omitted, and variations in
priority can be incorporated. This process can be repeated indefinitely, with
more and more hoarding effort resulting in better and better approximations
of the user's preferences.

Reference Spying

In many cases a user is not aware of the specific files accessed by an application.
To facilitate construction of hoard profiles in such situations. Coda provides a
spy program. This program can record all file references observed by Venus
between a pair of start and stop events indicated by a user. Of course, different
runtime behavior of the application can result in other files being accessed.

The spy program has been quite useful in deriving and tuning profiles. For
example, it identified the reason why the X window system would sometimes
hang when started from a disconnected workstation. It turns out that X font
files are often stored in compressed format, with the X server expected to un
compress them as they are used. If the uncompress binary is not available
when this occurs then the server will hang. Before spy was available, myste
rious events such as this would happen in disconnected mode with annoying
frequency. Since spy's introduction we have been able to correct such problems
on their first occurrence or, in many cases, avoid them altogether.

Periodic Hoard Walking

Background equilibration of the cache is an essential feature of hoarding. With
out it there would be inadequate protection against involuntary disconnection.
Even when voluntary disconnections are the primary type in an environment,
periodic equilibration is still vital from a usability standpoint. First, it guards
against a user who inadvertently forgets to demand a hoard walk before discon
necting. Second, it prevents a huge latency hit if and when a walk is demanded.
This is very important because voluntary disconnections are often initiated

548 CHAPTER 20

when time is critical—for example, before leaving for the airport or when one
is already late for dinner. Psychologically, users find it comforting that their
machine is always "mostly current" with the state of the world, and that it
can be made "completely current" with very little delay. Indeed, after a short
break-in period with the system, users take for granted the fact that they'll
be able to operate effectively if either voluntary or involuntary disconnection
should occur.

Demand Hoard Walking

Foreground cache equilibration exists solely as an insurance mechanism for vol
untary disconnections. The most common scenario for demand walking con
cerns a user who has been computing at their desktop workstation and is about
to detach their laptop and take it home to continue work in the evening. In
order to make sure that the latest versions of objects are cached, the user must
force a hoard walk. An easy way to do this is to put the line "hoard walk" in
one's . logout file. Most users, however, seem to like the reassurance of issuing
the command manually, and internalize it as part of their standard shutdown
procedure. In any case, the requirement for demand walking before voluntary
disconnection cannot be eliminated since the background walk period cannot
be set too close to 0. This bit of non-transparency has not been a source of
complaint from our users, but it could conceivably be a problem for a less
sophisticated user community.

5.2 Server Emulation

Our qualitative evaluation of server emulation centers on two issues: trans
parency and cache misses.

Transparency

Server emulation by Venus has been quite successful in making disconnected
operation transparent to users. Many involuntary disconnections have not been
noticed at all, and for those that have the usual indication has been only a pause
of a few seconds in the user's foreground task at reintegration time. Even with
voluntary disconnections, which by definition involve explicit manual actions,
the smoothness of the transition has generally caused the user's awareness of
disconnection to fade quickly.

Experience with Disconnected Operation 549

The high degree of transparency is directly attributable to our use of a single
client agent to support both connected and disconnected operation. If, like
FACE [1], we had used a design with separate agents and local data stores for
connected and disconnected operation, then every transition between the two
modes would have been visible to users. Such transitions would have entailed
the substitution of different versions of the same logical objects, severely hurting
transparency.

Cache Misses

Many disconnected sessions experienced by our users, including many sessions
of extended duration, involved no cache misses whatsoever. We attribute this to
two primary factors. First, as noted in the preceding subsection, hoarding has
been a generally effective technique for our user population. Second, most of
our disconnections were of the voluntary variety, and users typically embarked
on those sessions with well-formed notions of the tasks they wanted to work
on. For example, they took their laptop home with the intent of editing a
particular paper or working on a particular software module; they did not
normally disconnect with the thought of choosing among dozens of distinct
tasks.

When disconnected misses did occur, they often were not fatal to the session.
In most such cases the user was able to switch to another task for which the
required objects were cached. Indeed, it was often possible for a user to "fall
back" on different tasks two or three times before they gave up and terminated
the session. Although this is a result we expected, it was still quite a relief to
observe it in practice. It confirmed our belief that hoarding need not be 100%
effective in order for the system to be useful.

On a cache miss, the default behavior of Venus is to return an error code. A
user may optionally request Venus to block processes until cache misses can
be serviced. In our experience, users have made no real use of the blocking
option for handling disconnected misses. We conjecture that this is due to the
fact that all of our involuntary disconnections have occurred in the context of
networks with high mean-time-to-repair (MTTR). We expect blocking will be
a valuable and commonly used option in in networks with low MTTRs.

550 CHAPTER 20

5.3 Reintegration

Our qualitative evaluation of reintegration centers on two issues: performance
and failures.

Performance

The latency of reintegration has not been a limiting factor in our experience.
Most reintegrations have taken less than a minute to complete, with the ma
jority having been in the range of 5-20 seconds. Moreover, many reintegrations
have been triggered by background Venus activity rather than new user re
quests, so the perceived latency has often been nil.

Something which we have not experienced but consider a potential problem
is the phenomenon of a reintegration storm. Such a storm could arise when
many clients try to reintegrate with the same server at about the same time.
This could occur, for instance, following recovery of a server or repair of a
major network artery. The result could be serious overloading of the server and
greatly increased reintegration times. We believe that we have not observed this
phenomenon yet because our client population is too small and because most of
our disconnections have been voluntary rather than the result of failures. We
do, however, have two ideas on how the problem should be addressed:

Have a server return a "busy" result once it reaches a threshold level of
reintegration activity. Clients could back-off different amounts of time
according to whether their reintegration was triggered by foreground or
background activity, then retry. The back-off amounts in the foreground
case would be relatively short and those in the background relatively long.

Break operation logs into independent parts and reintegrate the parts sep
arately. Of course, only the parts corresponding to foreground triggering
should be reintegrated immediately; reintegration of the other parts should
be delayed until the storm is over.

Detected Failures

Failed reintegrations have been very rare in our experience with Coda. The
majority of failures that have occurred have been due to bugs in the implemen
tation rather than update conflicts. We believe that this mostly reflects the
low degree of write-sharing intrinsic to our environment. There is no doubt,

Experience with Disconnected Operation 551

however, that it also reflects certain behavioral adjustments on the part of our
users. The most significant such adjustments were the tendencies to favor in
direct over direct forms of sharing, and to avoid synchronization actions when
one was disconnected. So, for example, if two users were working on the same
paper or software module, they would be much more likely to each make their
own copy and work on it than they would to make incremental updates to the
original object. Moreover, the "installation" of a changed copy would likely be
delayed until a user was certain he or she was connected. Of course, this basic
pattern of sharing is the dominant one found in any Unix environment. The
observation here is that it appeared to be even more common among our users
than is otherwise the case.

Although detected failures have been rare, recovering from those that have
occurred has been irksome. If reintegration fails, Venus writes out the operation
log and related container files to a local file called a closure. A tool is provided
for the user to inspect the contents of a closure, to compare it to the state at
the AVSG, and to replay it selectively or in its entirety.

Our approach of forming closures and storing them at clients has several prob
lems:

there may not be enough free space at the client to store the closure. This
is particularly true in the case of laptops, on which disk space is already
precious.

the recovery process is tied to a particular client. This can be annoying if
a user ever uses more than one machine.

interpreting closures and recovering data from them requires at least an
intermediate level of system expertise. Moreover, even for expert users it
can be diflBcult to determine exactly why some reintegrations failed.

The first two limitations could be addressed by migrating closures to servers
rather than keeping them at clients. That strategy was, in fact, part of the orig
inal design for disconnected operation, and it continues to look like a worthwhile
option.

We believe that the third problem can be addressed through a combination of
techniques that reduce the number of failures that must be handled manually,
and simplify the handling of those that remain. We discuss our current work
in this area in Section 7.3.

552 CHAPTER 20

5.4 Other Observations

Optimistic Replication

The decision to use optimistic rather than pessimistic replica control was un
doubtedly the most fundamental one in the design of Coda. Having used the
system for more than two years now, we remain convinced that the decision
was the correct one for our type of environment.

Any pessimistic protocol must, in one way or another, allocate the rights to ac
cess objects when disconnected to particular clients. This allocation involves an
unpleasant compromise between availability and ease of use. On the one hand,
eliminating user involvement increases the system's responsibility, thereby low
ering the sophistication of the allocation decisions. Bad allocation decisions
translate directly into lowered availability; a disconnected client either does
not have a copy of a critical object, or has a copy that it cannot use because
of insufficient rights. On the other hand, the more involved users are in the
allocation process, the less transparent the system becomes.

An optimistic replication approach avoids the need to make a priori allocation
decisions altogether. Our users have never been faced with the situation in
which they are disconnected and have an object cached, but they cannot access
it because of insufficient replica control rights. Similarly, they have never had
to formally "grab control" of an object in anticipation of disconnection, nor
have they had to "wrest control" from another client that had held rights they
didn't really need. The absence of these situations has been a powerful factor
in making the system effective and pleasant to use.

Of course, there is an advantage of pessimistic over optimistic replica control,
which is that reintegration failures cannot occur. Our experience indicates that,
in a Unix file system environment, this advantage is not worth much because
there simply are very few failed reintegrations. The amount and nature of
sharing in the workload make reintegration failures unlikely, and users adopt
work habits that reduce their likelihood even further. In effect, the necessary
degree of cross-partition synchronization is achieved voluntarily, rather than
being enforced by a pessimistic algorithm.

Herlihy [3] once gave the following motivation for optimistic concurrency con
trol, which applies equally well to optimistic replica control:

Experience with Disconnected Operation 553

...[optimistic replica control] is based on the premise that it is more
effective to apologize than to ask permission.

In our environment, the cases in which one would wrongfully be told "no" when
asking permission vastly outnumber those in which a "no" would be justified.
Hence, we have found it far better to suffer the occasional indignity of making
an apology than the frequent penalty of a wrongful denial.

Security

There have been no detected violations of security in our use of Coda, and we
believe that there have been no undetected violations either. The friendliness
of our test bed environment is undoubtedly one important explanation for this.
However, we believe that the Coda implementation would do well security-wise
even under more hostile conditions.

The basis for this belief is the faithful emulation of the AFS security model.
Coda servers demand to see a user's credentials on every client request, includ
ing reintegration. Credentials can be stolen, but this requires subversion of a
client or a network-based attack. Network attacks can be thwarted through
the use of (optional) message encryption, and the danger of stolen credentials
is limited by associating fixed lifetimes with them. Access-control lists further
limit the damage due to credential theft by confining it to areas of the names
pace legitimately accessible to the subverted principal. Disconnected operation
provides no back-doors that can be used to circumvent these controls.

AFS has provided good security at large-scale and under circumstances that
are traditionally somewhat hostile. Indeed, we know of no other distributed
file system in widespread use that provides better security with a comparable
level of functionality. This strongly suggests that security would not be a factor
limiting Coda's deployment beyond our testbed environment.

Public Workstations

Some computing environments include a number of public workstation clusters.
Although it was never a primary goal to support disconnected operation in that
domain, it was something that we hoped would be possible and which influenced
Coda's early design to some degree.

554 C H A P T E R 20

Our experience with disconnected operation has convinced us that it is simply
not well suited to public access conditions. One problem is that of security.
Without disconnected operation, it is the case that when a user leaves a pub
lic workstation his or her data is all safely at servers and he or she is totally
independent of that workstation. This allows careful users to flush their au
thentication tokens and their sensitive data from the cache when they depart,
and to similarly "scrub" the workstation clean when they arrive. But with
disconnected operation, scrubbing is not necessarily an option. The depart
ing user cannot scrub if he or she has dirty objects in the cache, waiting to
be reintegrated. The need to leave valid authentication tokens with the cache
manager is particularly worrying, as that exposes the user to arbitrary damage.
And even if damage does not arise due to security breach, the departing user
still must worry that a future user will scrub the machine and thereby lose his
or her pending updates.

The other major factor that makes disconnected operation unsuited to public
workstations is the latency associated with hoarding. Loading a cache with
one's full "hoardable set" can take many minutes. Although this is done in the
background, it can still slow a client machine down considerably. Moreover, if
a user only intends to use a machine briefly, as is often the case with public
machines, then the eff'ort of hoarding is likely to be a waste. It is only when
the cost of hoarding can be amortized over a long usage period that it becomes
a worthwhile exercise.

6 QUANTITATIVE EVALUATION

An earlier paper [7] presented measurements that shed light on key aspects of
disconnected operation in Coda. Perhaps the most valuable of those measure
ments was the compelling evidence that optimistic replication in a Coda-like
environment would indeed lead to very few write-write conflicts. That evi
dence was based on a year-long study of a 400-user AFS cell at CMU. The data
showed that cross-user write-sharing was extremely rare. Over 99% of all file
and directory modifications were by the previous writer, and the chances of two
diflFerent users modifying the same object less than a day apart was at most
0.72%. If certain system administration files which skewed the data were ex
cluded, the absence of write-sharing was even more striking: more than 99.7%
of all mutations were by the previous writer, and the chances of two diff̂ erent
users modifying the same object within a week were less than 0.3%.

Experience with Disconnected Operation 555

Trace Identifier Machine Name

Work-Day # 1
Work-Day #2
Work-Day # 3
Work-Day #4
Work-Day # 5
Full-Week # 1
Full-Week #2
Full-Week # 3
Full-Week #4
Full-Week # 5

brahms.coda.cs.cniu.edu
holst.coda.cs.cmu.edu
ives.coda.cs.cmu.edu
mozart.coda.cs.cmu.edu
verdi.coda.cs.cmu.edu
concord.nectar.cs.cmu.edu
holst.coda.cs.cmu.edu
ives.coda.cs.cmu.edu
messiaen.coda.cs.cmu.edu
purcell.coda.cs.cmu.edu

Machine Type

IBM RT-PC
DECstation 3100
DECstation 3100
DECstation 3100
DECstation 3100
Sun 4/330
DECstation 3100
DECstation 3100
DECstation 3100
DECstation 3100

Simulation Start

25-Mar-91,
22-Feb-91,
05-Mar-91,
ll-Mar-91,
21-Feb-91,
26-Jul-91,
18-Aug-91,
03-May-91
27-Sep-91,
21-Aug-91,

, 11:00
09:15

, 08:45
, 11:45
12:00
11:41
23:21

, 12:15
00:15
14:47

Trace Records

195289
348589
134497
238626
294211
3948544
3492335
4129775
1613911
2173191

Table 1 Vital Statistics for the Work-Day and Full-Week Traces

In the following sections we present new measurements of Coda. These mea
surements either address questions not considered in our earlier paper, or pro
vide more detailed and up-to-date data on issues previously addressed. The
questions we address here are:

How large a local disk does one need?

How noticeable is reintegration?

How important are optimizations to the operation log?

6.1 Methodology

To estimate disk space requirements we relied on simulations driven by an
extensive set of file reference traces that we had collected [12]. Our analysis
was comprehensive, taking into account the effect of all references in a trace
whether they were to Coda, AFS or the local file system. The traces were
carefully selected for sustained high levels of activity from over 1700 samples.
We chose 10 workstation traces, 5 representing 12-hour workdays and the other
5 representing week-long activity. Table 1 identifies these traces and presents
a summary of the key characteristics of each.

To address the question of reintegration latency, we performed a well-defined
set of activities while disconnected and timed the duration of the reintegration
phase after each. One of these activities was the running of the Andrew bench
mark [4]. Another was the compilation of the then-current version of Venus.
A third class of activities corresponded to the set of traces in Table 1. We

556 CHAPTER 20

effectively "inverted" these traces and generated a command script from each.
When executed, each of these scripts produced a trace isomorphic to the one it
was generated from. This gave us a controlled and repeat able way of emulating
real user activity.

We combined these two techniques to assess the value of log optimizations.
Using our trace suite, we compared disk usage with and without optimizations
enabled. We also measured the impact of log optimizations on reintegration
latency for the set of activites described in the previous paragraph.

6.2 Disk Space Requirements

Figure 2 shows the high-water mark of cache space usage for the Work-Day
and Full-Week traces as a function of time. The high-water mark is simply
the maximum cache space in use at the current and all previous points in the
simulation. The high-water mark therefore never declines, although the current
cache space in use may (due to the deletion of objects).

These curves indicate that cache space usage tends to grow rapidly at the
start, but tapers off quite soon. For example, most of the Work-Day traces
had reached 80% of their 12-hour high-water marks within a few hours of their
start. Similarly, all but one of the Full-Week traces had reached a substantial
fraction of their 7-day high-water marks by the end of the second day. Note
that it was not the case that the workstations simply became idle after the first
parts of the traces; the traces were carefully selected to ensure that users were
active right through to the end of the simulated periods.

These results are encouraging from the point of view of disconnected operation.
The most expansive of the Work-Day traces peaked out below 25 MB, with the
median of the traces peaking at around 10 MB. For the Full-Week traces, the
maximum level reached was under 100 MB and the median was under 50 MB.
This suggests that today's typical desktop workstation, with a disk of 100 MB
to 1 GB, should be able to support many disconnections of a week or more in
duration. Even the 60-200MB disk capacity of many laptops today is adequate
for extended periods of disconnected operation. These observations corroborate
our first-hand experience in using Coda laptops.

Experience with Disconnected Operation 557

^50
t/3

4J

t^o
§

220

i
ho

.

•

Trace #1

Trace #2

Trace #3

Trace #4

Trace #5

/

/ ^
. . . • • - '

J !.,_,.-. ..
1 1 1

10 12
Time (hours)

^200
to
QJ

h50

t
^100

•u

^ 50

(a) Work-Day Traces

1

Trace #1

Trace #2

Trace #3

Trace #4

Trace #5

-^

•J .—-•—
£ ^ 1 1 1 1 J 1 1 L

'"~~~

J

24 48 12 96 120 144 168
Time (hours)

(b) Full-Week Traces
This graph presents the high-water marks of cache usage for each trace in Table
1. Note that the vertical axis on the graphs for Work-Day and Full-Week traces
are different.

Figure 2 High-Water Marks of Cache Space Usage

6.3 Reintegration Latency

Reintegration latency is a function of the update activity at a client while dis
connected. In our use of the system, most one-day disconnections have resulted

558 CHAPTER 20

Task

Andrew Benchmark
Venus Make
Work-Day # 1 Replay
Work-Day # 2 Replay
Work-Day # 3 Replay
Work-Day # 4 Replay
Work-Day # 5 Replay
Full-Week # 1 Replay
Full-Week # 2 Replay
Full-Week # 3 Replay
Full-Week # 4 Replay
Full-Week # 5 Replay

Log Record
Total

203
146
1422
316
212
873
99
1802
1664
7199
1159
2676

Back-Fetch
Total

1.2
10.3
4.9
.9
.8
1.3
4.0
15.9
17.5
23.7
15.1
35.8

Prelude

1.8
1.4
6.5
1.9
1.0
2.9
.9
15.2
16.2
152.6
5.1
28.2

Latency
Interlude

7.5
36.2
54.7
9.8
6.2
23.2
20.5
138.8
129.1
881.3
77.4
212.8

Postlude

.8

.4
10.7
1.7
.9
5.9
.5
21.9
15.0
183.0
7.0
31.7

Total

10
38
72
14
8
32
22
176
160
1217
90
273

(1)
1)
5)

.1)
(0)
(3)

8!
(2)
(12)

(r
9'

This data was obtained with a DECstation 5000/200 client and server. The
Back-Fetch figures are in megabytes. Latency figures are in seconds. Each
latency number is the mean of three trials. The numbers in parentheses in the
"Latency Total" column are standard deviations. Standard deviations for the
individual phases are omitted for space reasons.

Table 2 Reintegrat ion Latency

in reintegration times of a minute or less, and a few longer disconnections have
taken a few minutes. Table 2 reports the latency, number of log records, and
amount of data back-fetched for each of our reintegration experiments. Back-
fetching refers to the transfer of data from chent to server representing discon
nected file store operations. Reintegration occurs in three subphases: a prelude,
an interlude, and postlude. Latency is reported separately for the subphases as
well as in total. On average, these subphases contributed 10%, 80% and 10%
respectively to the total latency.

These results confirm our subjective experience that reintegration after a typical
one-day disconnection is hardly perceptible. The Andrew benchmark, Venus
make, and four of the five Work-Day trace-replay experiments all reintegrated
in under 40 seconds. The other Work-Day trace-replay experiment took only
slightly more than a minute to reintegrate.

The reintegration times for the week-long traces are also consistent with our
qualitative observations. Four of the five week-long trace-replay experiments
reintegrated in under five minutes, with three completing in three minutes
or less. The other trace-replay experiment is an outlier, requiring about 20
minutes to reintegrate.

Experience with Disconnected Operation 559

In tracking down the reason for this anomaly, we discovered a significant short
coming of our implementation. We found, much to our surprise, that the time
for reintegration bore a non-linear relationship to the size of the operation log
and the number of bytes back-fetched. Specifically, the regression coefficients
were .026 for the number of log records, .0000186 for its square, and 2.535 for
the number of megabytes back-fetched. The quality of fit was excellent, with
an R2 value of 0.999.

The first coefficient implies a direct overhead per log record of 26 milliseconds.
This seems about right, given that many records will require at least one disk
access at the server during the interlude phase. The third coefficient implies a
rate of about 400 KB/s for bulk data transfer. This too seems about right, given
that the maximum disk-to-disk transfer rate between 2 DECstation 5000/200s
on an Ethernet that we've observed is 476 kilobytes/second. The source of
the quadratic term turned out to be a naive sorting algorithm that was used
on the servers to avoid deadlocks during replay. For disconnected sessions of
less than a week, the linear terms dominate the quadratic term. This explains
why we have never observed long reintegration times in normal use of Coda.
But around a week, the quadratic term begins to dominate. Clearly some
implementation changes will be necessary to make reintegration linear. We do
not see these as being conceptually difficult, but they will require a fair amount
of code modification.

It is worth making two additional points about reintegration latency here. First,
because reintegration is often triggered by a daemon rather than a user request,
perceived latency is often nil. That is, reintegrations often occur entirely in
the background and do not delay user computation at all. Second, the trace-
replay experiments reflect activity that was originally performed in a number of
volumes. For the Work-Day traces 5-10 volumes were typically involved, and for
the Full-Week traces the number was typically 10-15. For logistical reasons, the
replay experiments were each performed within a single Coda volume. Hence,
there was only one reintegration for each experiment. Following an actual
disconnected execution of the trace activity, though, there would have been a
number of smaller reintegrations instead of one large one. If the reintegrated
volumes were spread over different servers, a significant amount of parallelism
could have been realized. The total latency might therefore have been much
smaller, perhaps by a factor of three or four.

560 CHAPTER 20

6.4 Value of Log Optimizations

Venus uses a number of optimizations to reduce the length of the operation
log. A small log conserves disk space, a critical resource during periods of
disconnection. It also improves reintegration performance by reducing latency
and server load. Details of these optimizations can be found elsewhere [7], [8].

In order to understand how much space these optimizations save in practice,
our Venus simulator was augmented to report cache usage statistics with the
optimizations turned off as well as on. Figure 3 compares the median high-
water marks of space usage for our trace suite with and without optimizations.

The differences between the curves in each case are substantial. After an initial
period in which the two curves increase more or less together, the unopti-
mized curves continue to increase while the optimized curves taper off. For the
Work-Day traces, the unoptimized total has grown to nearly twice that of the
optimized case by the 12-hour mark. The trend continues unabated with the
Full-Week traces, with the unoptimized total being more than 5 times that of
the optimized case at the end of the week. This equates to a difference of more
than 145 megabytes. The slopes of the two lines indicate that the difference
would increase even further over periods of greater length.

Table 3 shows that the differences for certain individual traces are even more
striking. That table lists the unoptimized and optimized totals for each trace at
its termination. In addition, each total is broken down into its two constituents:
cache container space and RVM space. Cache container space refers to the space
used by the local files that are used to hold the images of the current versions
of Coda files.

The greatest savings tend to be realized in cache container space, although the
RVM space savings can also be substantial. The far right column shows the
ratio of unoptimized to optimized total space usage. The maximum ratio for
the Work-Day traces is 3.1, indicating that more than three times the amount
of space would have been needed without the optimizations. The maximum
ratio for the Full-Week traces is an astonishing 28.9, which corresponds to a
difference of more than 850 megabytes.

These results confirm that log optimizations are critical for managing space
at a disconnected client. But they are also important for keeping reintegration
latency low. To confirm this, we used the regression results and measured values
of unoptimized log records and data back-fetched from the experiments reported

Experience with Disconnected Operation 561

^50
to

6

10

[/noptimized
Optimized

10 12
Time (hours)

4J

1

in

^

1
§50
":! ti:

•

(a) Work-Day Traces

[/noptmized

Optimized

• /-'

^ —

^ 1 1 1

... •

1 1 1

24 12 % 120 lU 168
Time (hours)

(b) Full-Week Traces
Each curve above represents the median values of the high-water marks of space
usage for the five corresponding traces. Note that the vertical axis on the two
graphs are different.

Figure 3
Marks

Optimized versus Unoptimized Cache Space High-Water

562 CHAPTER 20

Trace

Work-Day # 1
Work-Day # 2
Work-Day # 3
Work-Day # 4
Work-Day # 5
Full-Week # 1
Full-Week # 2
Full-Week # 3
Full-Week # 4
Full-Week # 5

Container Space
Unopt

34.6
14.9
7.9
16.7
59.2
872.6
90.7
119.9
222.1
170.8

Opt

15.2
4.0
5.8
8.2
21.3
25.9
28.3
45.0
23.9
79.0

RVM Sp
Unopt

2.9
2.3
1.6
1.9
1.2
11.7
13.3
46.2
5.5
9.1

•ace
Opt

2.7
1.5
1.4
1.5
1.1
4.8
5.9
9.1
3.9
7.7

Unopt

37.5
17.2
9.5
18.6
60.4
884.3
104.0
165.9
227.5
179.8

Total
Opt

17.8
5.5
7.2
9.7
22.3
30.6
34.2
54.0
27.7
86.5

Spcae
Ratio

2.1
3.1
1.3
1.9
2.7
28.9
3.0
3.1
8.2
2.1

The figures in the "UnopV^ and "Opt^^ columns are in megabytes

Table 3 Opt imized versus Unopt in i ized Space Usage

Task

Andrew Benchmark
Venus Make
Work-Day # 1 Replay
Work-Day # 2 Replay
Work-Day # 3 Replay
Work-Day # 4 Replay
Work-Day # 5 Replay
Full-Week # 1 Replay
Full-Week # 2 Replay
Full-Week # 3 Replay
Full-Week # 4 Replay
Full-Week # 5 Replay

Log Record Total
Unopt

211
156
2422
4093
842
2439
545
33923
36855
175392
8519
8873

Opt

203
146
1422
316
212
873
99
1802
1664
7199
1159
2676

Back-Fetch Total
Unopt

1.5
19.5
19.1
10.9
2.1
8.5
40.9
846.9
62.4
75.0
199.1
92.7

Opt

1.2
10.3
4.9
.9
.8
1.3
4.0
15.9
17.5
23.7
15.1
35.8

Unopt

10
54
221
446
41
196
123
24433
26381
576930
2076
1930

Latency
Opt

10
38
72
14
8
32
22
176
160
1217
90
273

Ratio

1.0
1.4
3.1
31.9
5.1
6.1
5.6
138.8
164.9
474.1
23.1
7.1

Back-fetch figures are in megabytes, and latencies in seconds. The reported
latencies are the means of three trials. Standard deviations are omitted for
brevity.

Table 4 Opt imized versus Unopt imized Reintegrat ion Latency

in Section 6.3. Using this information we estimated how long reintegration
would have taken, had log optimizations not been done. Table 4 presents our
results.

Experience with Disconnected Operation 563

The time savings due to optimizations are enormous. The figures indicate that
without the optimizations, reintegration of the trace-replay experiments would
have averaged 10 times longer than actually occurred for the Work-Day set, and
160 times longer for the Full-Week set. Reintegrating the unoptimized replay
of Full-Week trace # 3 would have taken more than 6 days, or nearly as long
as the period of disconnection! Obviously, much of the extra time is due to the
fact that the unoptimized log record totals are well into the range at which the
quadratic steps of our implementation dominate. Although the savings will not
be as great when our code is made more efficient, it will not be inconsequential
by any means. Even if the quadratic term is ignored, the ratios of unoptimized
to optimized latency are still pronounced: on average, 4.5 for Work-Day traces
and 7.6 for the Full-Week traces.

7 VV^ORK IN PROGRESS

Coda is a system under active development. In the following sections we de
scribe work currently under way to enhance the functionality of Coda as well
as to alleviate some of its current shortcomings.

7.1 Exploiting Weak Connectivity

Although disconnected operation in Coda has proven to be effective for using
distributed file systems from mobile computers, it has several limitations:

cache misses are not transparent. A user may be able to work in spite of
some cache misses, but certain critical misses may frustrate these efforts.

longer disconnections increase the likelihood of resource exhaustion on the
client from the growing operation log and new data in the cache.

longer disconnections also increase the probability of conflicts requiring
manual intervention upon reconnection.

Wireless technologies such as cellular phone and even traditional dialup lines
present an opportunity to alleviate some of the shortcomings of disconnected
operation. These weak connections are slower than LANs, and some of the

564 CHAPTER 20

wireless technologies have the additional properties of intermittence and non-
trivial cost. The characteristics of these networks differ substantially from those
of LANs, on which many distributed file systems are based.

We are exploring techniques to exploit weak connectivity in a number of ways:

Coda clients will manage use of the network intelligently. By using the
network in a preemptive, prioritized fashion, the system will be able to
promptly service critical cache misses. It will propagate mutations back
to the servers in the background to prevent conflicts that would arise at
reintegration time and to reclaim local resources. It will allow users to
weaken consistency on an object-specific basis to save bandwidth.

Coda clients will minimize bandwidth requirements by using techniques
such as batching and compression. Techniques in this class demand more
server computation per request, so the state of the server will play a role
in the use of these techniques.

Coda clients will dynamically detect and adapt to changes in network
performance. This will be especially important when connectivity is inter
mittent.

An important consideration in the use of weak connections is the issue of call
back maintenance. Callback-based cache consistency schemes were designed
to minimize client-server communication, but with an underlying assumption
that the network is fast and reliable. After a network failure all callbacks are
invalid. In an intermittent low-bandwidth network, the cost of revalidation
may be substantial and may nullify the performance benefits of callback-based
caching.

To address this issue we have introduced the concept of large granularity call
backs. A large granularity trades off" precision of invalidation for speed of val
idation after connectivity changes. Venus will choose the granularity on a
per-volume basis, adapting to the current networking conditions as well as the
observed rate of callback breaks due to mutations elsewhere in the system.
Further details on this approach can be found in a recent paper [11].

Experience with Disconnected Operation 565

7.2 Hoarding Improvements

We are in the process of developing tools and techniques to reduce the burden
of hoarding on users, and to assist them in accurately assessing which files to
hoard. A key problem we are addressing in this context is the choice of proper
metrics for evaluating the quality of hoarding.

Today, the only metric of caching quality is the miss ratio. The underlying
assumption of this metric is that all cache misses are equivalent (that is, all
cache misses exact roughly the same penalty from the user). This assumption
is valid in the absense of disconnections and weak connections because the
performance penalty resulting from a cache miss is small and independent of
file length. This assumption is not valid during disconnected operation and
may not be valid for weakly-connected operation, depending on the strength
of the connection. The cache miss ratio further assumes that the timing of
cache misses is irrelevant. But the user may react differently to a cache miss
occurring within the first few minutes of disconnection than to one occurring
near the end of the disconnection.

We are extending the analysis of hoarding tools and techniques using new
metrics such as:

the time until the first cache miss occurs.

the time until a critical cache miss occurs.

the time until the cumulative effect of multiple cache misses exceeds a
threshold.

the time until connection transparency is lost.

the percentage of the cache actually referenced when disconnected or weak
ly connected, as a measure of overly-generous hoarding.

the change in connected-mode miss ratio due to hoarding.

We plan to use these metrics to evaluate the relative value of different kinds
of hoarding assistance. For example, under what circumstances does one tool
prove better than another? Some of our experiments will be performed on-line
as users work. Others will be performed off-line using post-mortem analysis of
file reference traces. The tools we plan to build will address a variety of needs
pertinent to hoarding. Examples include tools to support task-based hoarding

566 C H A P T E R 20

and a graphical interface to accept hoard information and provide feedback
regarding the cache contents.

7.3 Application-Specific Conflict Resolution

Our experience with Coda has established the importance of optimistic repli
cation for mobile computing. But optimistic replication brings with it the need
to detect and resolve concurrent updates in multiple partitions. Today Coda
provides for transparent resolution of directory updates. We are extending our
work to support transparent resolution on arbitrary files. Since the operating
system does not possess any semantic knowledge of file contents, it is necessary
to obtain assistance from applications.

The key is to provide an application-independent invocation mechanism that
allows pre-instailed, application-specific resolvers (ASRs) to be transparently
invoked and executed when a confiict is detected. As a practical example of
this approach, consider a calendar management application. The ASR in this
case might merge appointment database copies by selecting all non-conflicting
appointments and, for those time slots with conflicts, choosing to retain one
arbitrarily and sending mail to the rejected party(s).

We have recently described such an interface for supporting ASRs [10]. Our
design addresses the following issues:

An application-independent interface for transparently invoking ASRs.

An inheritance mechanism to allow convenient rule-based specification of
ASRs based on attributes such as file extension or position in the naming
hierarchy.

A fault tolerance mechanism that encapsulates ASR execution.

Even in situations where manual intervention is unavoidable, ASR technology
may be used for partial automation. Consider, for example, the case of two
users who have both edited a document or program source file. An "interac
tive ASR" could be employed in this case which pops up side-by-side windows
containing the two versions and highlights the sections which differ. The user
could then quickly perform the merge by cutting and pasting. Similarly, a
more useful version of the calendar management ASR might begin with a view
of the appointment schedule merged with respect to all non-conflicting time

Experience with Disconnected Operation 567

slots, then prompt the user to choose between the alternatives for each slot
that conflicts.

Another class of ASRs that may be valuable involves automatic re-execution
of rejected computations by Venus. This is precisely the approach advocated
by Davidson in her seminal work on optimistic replication in databases [2], and
it will be feasible to use in Coda once the transactional extensions described
in Section 7.4 are completed. Automatic re-execution would be appropriate in
many cases involving the make program, for example.

7.4 Transactional Extensions for Mobile
Computing

With the increasing frequency and scale of data sharing activities made possi
ble by distributed Unix file systems such as AFS, Coda, and NFS [13], there
is a growing need for effective consistency support for concurrent file accesses.
The problem is especially acute in the case of mobile computing, because ex
tended periods of disconnected or weakly-connected operation may increase the
probability of read-write inconsistencies in shared data.

Consider, for example, a CEO using a disconnected laptop to work on a report
for an upcoming shareholder's meeting. Before disconnection she cached a
spreadsheet with the most recent budget figures available. She writes her report
based on the numbers in that spreadsheet. During her absence, new budget
figures become available and the server's copy of the spreadsheet is updated.
When the CEO returns and reintegrates, she needs to discover that her report
is based on stale budget data. Note that this is not a write-write confiict, since
no one else has updated her report. Rather it is a read-write conflict, between
the spreadsheet and the report. No Unix system today has the ability to detect
and deal with such problems.

We are exploring techniques for extending the Unix interface with transactions
to provide this functionality. A key attribute of our eff'ort is upward compati
bility with the Unix paradigm. Direct transplantation of traditional database
transactions into Unix is inappropriate. The significant diff^erences in user en
vironment, transaction duration and object size between Unix file systems and
database systems requires transactional mechanisms to be specially tailored.
These considerations are central to our design of a new kind of transaction,
called isolation-only transaction, whose use will improve the consistency prop
erties of Unix file access in partitioned networking environments.

568 CHAPTER 20

A distinct but related area of investigation is to explore the effects of out-
of-band communication on mobile computing. For example, a disconnected
user may receive information via a fax or phone call that he incorporates into
the documents he is working on. What system support can we provide him
to demarcate work done before that out-of-band communication? This will
become important if he later needs to extricate himself from a write-write or
read-write conflict.

8 CONCLUSIONS

In this paper, we have focused on disconnected operation almost to the exclu
sion of server replication. This is primarily because disconnected operation is
the newer concept, and because it is so central to solving the problems that arise
in mobile computing. However, the importance of server replication should not
be underestimated. Server replication is important because it reduces the fre
quency and duration of disconnected operation. Thus server replication and
disconnected operation are properly viewed as complementary mechanisms for
high availability.

Since our original description of disconnected operation in Coda [7] there }ias
been considerable interest in incorporating this idea into other systems. One
example is the work by Huston and Honeyman [5] in implementing disconnected
operation in AFS. These efforts, together with our own substantial experience
with disconnected operation in Coda, are evidence of the soundness of the
underlying concept and the feasibility of its effective implementation.

None of the shortcomings exposed in over two years of serious use of discon
nected operation in Coda are fatal. Rather, they all point to desirable ways
in which the system should evolve. We are actively refining the system along
these dimensions, and have every reason to believe that these refinements will
render Coda an even more usable and effective platform for mobile computing.

Acknowledgements

We wish to thank all the members of the Coda project, past and present, for
their contributions to this work. David Steere, Brian Noble, Hank Mashburn,
and Josh Raiff deserve special mention. We also wish to thank our brave and

Experience with Disconnected Operation 569

tolerant user community for their willingness to use an experimental system.
This work was supported by the Advanced Research Projects Agency (Avion
ics Laboratory, Wright Research and Development Center, Aeronautical Sys
tems Division(AFSC), U.S. Air Force, Wright-Patterson AFB under Contract
F33615-90-C-1465, Arpa Order No. 7597), the National Science Foundation
(Grant BCD 8907068), IBM, Digital Equipment Corporation, and Bellcore.

REFERENCES
[1] Cova, L.L., "Resource Management in Federated Computing Environ

ments", Ph.D. Thesis, Department of Computer Science, Princeton Uni
versity^ October 1990.

[2] Davidson, S., "Optimism and Consistency in Partitioned Distributed
Database Systems", ACM Transactions on Database Systems, Vol. 3, No.
9, September 1984.

[3] Herlihy, M., "Optimistic Concurrency Control for Abstract Data Types",
Proceedings of the Fifth Annual Symposium on Principles of Distributed
Computing, August 1986.

[4] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan,
M., Sidebotham, R.N., West, M.J., "Scale and Performance in a Dis
tributed File System", ACM Transactions on Computer Systems^ Vol. 6,
No. 1, February 1988.

[5] Huston, L., Honeyman, P., "Disconnected Operation for AFS", Proceed
ings of the 1993 USENIX Symposium on Mobile and Location-Independent
Computing^ Cambridge, MA, August 1993.

[6] Kazar, M.L., "Synchronization and Caching Issues in the Andrew File
System", Winter Usenix Conference Proceedings, Dallas, TX, 1988.

[7] Kistler, J.J., Satyanarayanan, M., "Disconnected Operation in the Coda
File System", ACM Transactions on Computer Systems, Vol. 10, No. 1,
February 1992.

[8] Kistler, J.J., "Disconnected Operation in a Distributed File System",
Ph.D. Thesis, Department of Computer Science, Carnegie Mellon Uni
versity, May 1993.

570 CHAPTER 20

[9] Kumar, P., Satyanarayanan, M., "Log-Based Directory Resolution in the
Coda File System", Proceedings of the Second International Conference
on Parallel and Distributed Information Systems, San Diego, CA, January
1993.

[10] Kumar, P., Satyanarayanan, M., "Supporting Application-Specific Reso
lution in an Optimistically Replicated File System", submitted to the 4ih
IEEE Workshop on Workstation Operating Systems, Napa, CA, October
1993.

[11] Mummert, L.B., Satyanarayanan, M., "File Cache Consistency in a Weakly
Connected Environment", submitted to the 4th IEEE Workshop on Work
station Operating Systems, Napa, CA, October 1993.

[12] Mummert, L.B., "Efficient Long-Term File Reference Tracing", In prepa
ration, 1993.

[13] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B., "Design and
Implementation of the Sun Network Filesystem", Summer Usenix Confer
ence Proceedings, 1985.

[14] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H.,
Steere, D.C., "Coda: A Highly Available File System for a Distributed
Workstation Environment", IEEE Transactions on Computers, Vol. 39,
No. 4, April 1990.

[15] Satyanarayanan, M., "Scalable, Secure, and Highly Available Distributed
File Access", IEEE Computer, Vol. 23, No. 5, May 1990.

[16] Satyanarayanan, M., Mashburn, H.H., Kumar, P., Steere, D.C., Kistler,
J.J., "Lightweight Recoverable Virtual Memory", School of Computer Sci
ence, Carnegie Mellon University, CMU-CS-93-143, March 1993.

[17] Steere, D.C., Kistler, J.J., Satyanarayanan, M., "Efficient User-Level
Cache File Management on the Sun Vnode Interface", Summer Usenix
Conference Proceedings, Anaheim, June 1990.

21
MOBILITY SUPPORT FOR SALES

AND INVENTORY APPLICATIONS
Narayanan Krishnakumar and Ravi Jain

Bell Communications Research,
445 South Street, Morristown, NJ 07960

ABSTRACT

An important and challenging set of issues in mobile computing is the design of archi
tectures and protocols for providing mobile users with integrated Personal Information
Services and Applications (PISA), such as personalized news and financial informa
tion, and mobile sales and banking. We present a system architecture for delivery
of PISA based on replicated distributed servers connected to users via a personal
communications services (PCS) network. The PISA architecture takes advantage of
many of the basic facilities incorporated in proposed PCS network designs.

We focus on the mobile sales and inventory application as an example of a PISA with a
well-defined market segment. We deal with both application-level and infrastructure-
level protocols supporting this application. At the application level, we describe a
database design and protocol which supports both mobile and stationary salespersons.
A key principle behind our design choices is to minimize those aspects which are
needed solely to support user mobility. We propose using a site escrow method and
reconfiguration protocol for supporting sales transactions, and discuss how mobile
salespersons can be accommodated in this scheme. On the infrastructure-level, we
discuss how the service profiles of the mobile salespersons can be maintained using a
two-level hierarchy of profile databases, and show that a protocol more robust than
that used for maintaining their location is needed. We finally present such a protocol
for maintaining service profiles.

Copyright ©1995 by Bell Communications Research. Reprinted with permission.

572 CHAPTER 21

1 INTRODUCTION

An important and challenging area of mobile information systems is the de
sign of architectures and protocols for providing mobile users with Personal
Information Services and Applications (PISA). Examples of PISA include per
sonalized financial and stock market information, electronic magazines, news
clipping services, traveler information, as well as mobile shopping, banking,
sales, inventory, and file access. As a concrete running example in this paper,
we use the mobile sales and inventory application. In sec. 2 we describe this
application in more detail.

We consider the situation in which PISA are primarily provided by a commer
cial entity called the Information Service and Applications Provider (ISAP).
The ISAP maintains a set of servers which contain the appropriate informa
tion and run applications, and which are connected to the mobile user via a
personal communications services (PCS) network. The ISAP need not be the
same commercial and administrative entity as the PCS network provider.

The mobile user's terminal runs application software to interact with the ISAP.
These interactions are divided into logical, application-dependent segments
called sessions. For example, in the case of the mobile sales and inventory
application, a session may consist of the salesperson connecting to a remote
server, downloading images and text describing a product, and then logging
out. Sessions may be initiated by the user or by the ISAP. The salesperson
may be an employee of the ISAP, or the ISAP may be a third party providing
integrated sales and inventory information (e.g. a real estate multiple listing
service). It is desirable that when a session is in progress, the user is not aware
of any disruption in service as the user moves.

In order to meet reliability, performance and cost objectives when the number of
users is large and geographically dispersed, a distributed server architecture will
be necessary. In sec. 3 we describe the system architecture for mobile sales and
inventory applications where the ISAP has a distributed replicated database
architecture and uses the underlying PCS network for communicating with the
user. As the user moves or network load and availability changes, the server
interacting with the user may need to change. Thus, real mobility on the part
of the user may result in the virtual mobility of the server. This is accomplished
by means of a service handoff^ which is broadly analogous to a PCS call handoff
or user location update (i.e., registration/deregistration) procedure [1, 18], but
relatively less frequent. We have previously designed a service handoff protocol
[12, 13] and described the context information which must be transferred from

Mobile sales and inventory 573

the old to the new server for various classes of applications, including mobile
transactions.

In this paper, we draw attention to two sets of issues that arise in PISA:
application-level issues related to the design and management of application
databases in a mobile environment, and infrastructure-level issues that relate
to the management of service profile data that is important for the flexibility
and efficiency of PISA. In sec. 4 we describe how the semantics of the sales
application can be exploited to provide an appropriate application database
design. In sec. 5, we extend escrow techniques from traditional database man
agement to provide a framework for running mobile transactions. Just as for
the underlying PCS network, the ISAP will need to maintain user service pro
files to determine what services the user needs and is authorized to obtain.
A PCS network typically uses a two-level hierarchy of databases (Home Lo
cation Register and Visitor Location Register - HLR and VLR) to maintain
this information, and a user location update protocol (e.g. IS-41 [1]). For the
same reason as for the PCS network, we propose in sec. 6 that the ISAP also
use a two-level database hierarchy for service profiles, and discuss scenarios in
which the need arises for an access protocol more robust than those (e.g. IS-
41 [1]) used for managing user location information in the PCS network. We
present a protocol for managing the service profile databases. We end with
some concluding remarks in sec. 7.

2 APPLICATION SCENARIO: MOBILE
SALES AND INVENTORY

We consider a scenario in which the user is a mobile salesperson selling financial
products (like insurance, bonds, etc.), or consumable products (e.g. doctor's
office supplies like gloves, syringes, etc.). The ISAP is either the company the
salesperson works for, whose products are being sold, or a third-party supplier
of information. The salesperson uses a personal digital assistant (PDA) as a
mobile database when discussing and completing sales. To avoid confusion,
we will adopt the following terminology. The salesperson is also referred to as
the user of the ISAP's services. The PDA or other end equipment which the
salesperson uses is called the mobile or the client of the ISAP's servers. The
person to whom the sale is being made is referred to as the customer.

The user visits numerous customer oflSces during the course of a day and dis
cusses their requirements, shows images of products, initiates new orders or

574 CHAPTER 21

queries about the status of previous orders, etc., using the PDA. The PDA is
capable of doing these functions using either a wireless or a wireline link to
the ISAP's servers. The mobile database contains customer records as well
as information regarding policies, prices and availability of the product being
sold. The time available to the salesperson for meeting with the customer
may be extremely limited [21]. In order to ensure that this time is utilized
most effectively, the mobile database must have current information available
about dynamically varying quantities such as inventory levels, delivery dates,
etc. The mobile database is periodically updated from the ISAP's database.
The user has a service profile stored with the ISAP which ensures that the
mobile database is updated at appropriate times with the appropriate informa
tion. Orders or queries placed by the salesperson are transmitted to the ISAP
database.

Observe that this is not a far-fetched scenario. Mobile sales applications are
already being tested and marketed [22, 21]. Moreover, if current market pro
jections are realized, this scenario will not be rare in the future. PDAs are
forecasted to become a commonplace business accessory, with sales of PDAs
exceeding 3.6 million units by 1997 [14].

3 SYSTEM ARCHITECTURE

We explore different architectural alternatives for the ISAP.

A centralized architecture: In the initial phases of the service offering, the
number of users (salespersons) is likely to be relatively small. If the users
are also geographically localized, and move infrequently it may be sufficient
for the ISAP to maintain a centralized architecture, i.e., to store and process
information at a central site. The ISAP and users can then communicate
with each other via a PCS network, possibly owned by a separate PCS service
provider, by initiating a PCS call.

Multiple independent servers architecture: Current market and technol
ogy trends project rapid increases in the number of mobile users with intelligent
mobile computing and communication devices [14], and ISAPs offering nation
wide, even global, services involving multimedia interactions. If these trends
evolve as projected, the centralized ISAP system architecture will become in-
viable, largely because of the computing and communication bottleneck at the
central server. Initially, this could be addressed by installing a centralized paral-

Mobile sales and inventory 575

lei server at the central site, i.e., a logically centralized server which physically
consists of several processors working in parallel. However, as the user base
becomes more geographically dispersed, the communication costs and delays
involved in interacting with users from a central server site will become unac
ceptable.

For some applications, it will suffice to address the communication concerns
by installing multiple independent servers at several geographically distributed
sites, and connecting each server independently to the PCS network. For exam
ple, if the information being provided to users is itself geographically localized,
as in details about customers in a geographical region, it is likely that most
users of that information will also be localized, so communication overheads
will not be serious. Note however, that inventory or sales data might not be
easily partitionable geographically, so having independent servers is not a good
solution.

Distributed server architecture: In general, mobile users will desire ac
cess to private and corporate databases which cannot be simply geographically
partitioned into locally-accessed portions. It will then be necessary to use a
distributed server architecture, where the information is (partially) replicated
across multiple interconnected servers but the system functions as a single log
ical information base. For the remainder of this paper we assume a distributed
server architecture.

There are several possible ways of interconnecting the servers, e.g. using a
private ISAP network attached to the PCS network via a gateway, or using
the PCS network itself as the inter-server communication backbone. The ge
ographical coverage area for the information service is partitioned into service
areas, analogous to PCS registration areas. It is likely that a service area will
cover several PCS registration areas. Each service area is served by a single
information server, called the local server, analogous to the PCS network's
Mobile Switching Center (MSC) or VLR database. The connection between
the ISAP and the mobile user can be set up by either side dialing the other's
non-geographic telephone number.

The most basic support^ required by the ISAP from the PCS network is that
the physical connection between the user and the ISAP be maintained without
interruption during a session as the user moves. Two key functions needed for
this support are to locate the mobile user a.nd to perform a physical connection

^The PCS network can also provide additional serviaes such as billing etc, which are
outside the scope of this paper.

576 CHAPTER 21

transfer as the user moves. Protocols for performing the physical connection
transfer function in a store-and-forward-packet-switched network have been
proposed by Keeton et al. [15]. However, we note that both functions above
are already provided by the user location facilities and call handofF mechanisms
specified in PCS standards. Thus we will assume that the following levels of
protocols are already provided by the PCS network:

1. A call handofF protocol, similar to that specified in Bellcore's WACS [3]
or GSM standards [18] for physical connection transfer of the wireless link
when a mobile client moves from one cell to another.

2. A user location protocol, similar to that specified in the IS-41 [1] or GSM
[18] standard, for registering a mobile client in a registration area and for
locating and delivering calls to the client when it moves between registra
tion areas.

We also assume that the application is running a link-level protocol which
recovers from bit errors, as well as packet losses, duplication and reordering,
for both wireless and wired links. (Examples of such protocols include LAPR
for wireless links and LAPM for wireline voiceband modems; see [20]).

As a mobile user moves from cell to cell but within the same service area (so
that the user is in contact with the same server during the move), the PCS
network can perform a physical connection transfer, i.e., keep the connection
continuous with the same server, using the usual PCS call handofF procedure.
The call handofF may result in errors at the physical layer of the connection,
e.g. bit errors or packets being dropped, which can be recovered from by using
the link level protocol.

As the user moves out of one service area into another, it is desirable that
the local server at the new service area take over providing the service. This
service handoffioi the virtual mobility of the server is broadly analogous to the
PCS call handofF procedure (except that it occurs between ISAP servers rather
than PCS base stations), and also has the requirement that service appear to
continue transparently without interruption.^ In [12, 13], we have described
protocols and capabiUties required in both the ISAP and the PCS network to
implement service handofFs. Briefly, a service handofF consists of a transfer of
context information from the old server to the new server, followed by a physical

'^Note that virtual mobility differs from service mobility [2], which is the ability of a user
to have a consistent set of services even though the user may move.

Mobile sales and inventory 577

connection transfer between the old and new servers. The context information
depends upon the application in progress, but essentially informs the new server
of where to pick up the session after the old server left off. For example, if the
mobile user was simply reading through a file, the context information would
be the name of the file and a pointer (e.g. line number or byte position) from
where the new server should start sending information to the mobile.

The service handoff is initiated by an ISAP process called the matchmaker,
which is responsible for mapping users to appropriate servers, and for setting
up initially and managing the connection between the user and servers of the
ISAP. (The term "matchmaker", and some of its functionality, has been bor
rowed from [24]. However our notion of service handoffs, the protocols we have
developed and the applications we consider are quite different [12, 13].) The
matchmaker can be implemented in a centralized or a distributed manner across
several ISAP servers.

It is important to note that the interactions between the mobile and server(s)
only imply that a connection is continuously maintained between the mobile
and the server at the session or application level. In particular, it is not nec
essary that the wireless link be continuously in use, since the client and server
can exchange occasional packets as necessary. Similarly, long-running interac
tions need not imply that the client machine is turned on at full power all the
time; almost all modern mobile client devices slip into doze mode, yielding very
substantial decreases in power consumption.

4 DATABASE SYSTEM DESIGN

In this section we describe the design of the ISAP's database. The design
choices are motivated by the need to accommodate both stationary and mobile
users. A principal aim of the design is to minimize the aspects of the database
which are specific to mobile users.

4.1 Background

We first review some background on how transactions may typically be handled
in distributed database environments. Readers familiar with this material may
skip to the following subsection.

578 CHAPTER 21

In a transaction processing environment, transactions can concurrently access
shared (possibly replicated) data. Therefore, their execution has to be carefully
controlled so that correctness is preserved: for instance, the last inventory item
should not be allocated to two different transactions. The traditional notion of
correctness is serializability [6], i.e. the effect of the interleaved operations of
(concurrent) transactions is the same as that produced by a sequential execu
tion of the transactions. The algorithms used to ensure serializability are also
referred to as concurrency control protocols.

One example of a concurrency control protocol is strict two-phase locking. In
this protocol, a transaction acquires a read lock {write lock) on a data item
before reading (writing) that item. Two locks on a data item are conflicting
if either is a write lock, and a transaction may acquire a lock only if no other
transaction holds a conflicting lock. This ensures that there is only one writer,
but there can be multiple readers if there is no concurrent write. Furthermore,
a transaction cannot acquire any more locks after it releases a lock. This defines
a two-phase execution for a transaction with respect to the locks, where first
there is a growing phase when locks are acquired, and then there is a shrinking
phase when all the locks are released. In strict two-phase locking, all locks
can be released only when the transaction commits or aborts. This mechanism
ensures that the transactions are serializable in the order in which they release
locks.

The corresponding notion of correctness for replicated data (where copies of
the same data item are stored at several servers) is one-copy serializabiUty: the
effect of the execution of a set of transactions on the replicated data is equivalent
to some serial execution of those transactions on a single copy. The Available
Copies Algorithm [6] extends two-phase locking to the replicated environment.
In this algorithm, a site reads from its own copy of the data item by using a
read lock, but writes to all replicas by obtaining write locks on the data item at
those replicas. The generalization of this algorithm is the Quorum Consensus
(Locking) Algorithm [8, 25, 10] where a read operation on a data item locks
the data item at a read quorum of replicas and a write operation locks the data
item at a write quorum of replicas. One-copy serializability is guaranteed if the
read and write quorums intersect.

In a replicated system, a transaction is executed at a single replica; however
locks could be obtained at several sites and updates might have to be installed
at several sites at the end of the transaction. Thus a co-ordination protocol is
required to ensure that the transaction commits at all sites or aborts at all sites.
This co-ordination protocol is the two-phase commit protocol: a co-ordinator
sends a prepare message to the participating replicas, upon which each replica

Mobile sales and inventory 579

votes whether it can commit its unit or not. If all votes are affirmative, the
co-ordinator sends a commit message to the replicas, and an abort message
otherwise.

Thus, in general, replicated data management involves acquiring locks at a set
of sites and executing a two-phase commit at the end of the transaction to
ensure the system-wide consistent commit or abort of the transaction and the
release of the locks.

4.2 Escrow techniques

We assume that the (most frequently accessed portion of the) ISAP's database
is replicated across several servers. Thus we would expect the ISAP to ensure
the typical correctness condition of one-copy serializability. However, the re
quirement of one-copy serializability has been found to be quite restrictive, so
recent approaches in the literature have taken into account the semantics of
the application to relax this criterion and improve transaction throughput. In
this paper, we take a similar approach and provide an escrow-based algorithm
that accommodates mobile users easily.

We first review how the consistency of the data in the ISAP can be preserved,
without discussing how mobility impacts it. Consider the situation where a
salesperson is selling items from inventory, where each instance of the item is
indistinguishable from the others (e.g. the item is a medical supply item, and
each instance is, say, one box of the item). For ease of exposition, consider a
single sale item, m. Let Totalm be a (replicated) datum in the database that
indicates the total number of instances of that item in stock. As salespersons
make sales of that item, the problem is to ensure that the total number of items
they have sold for immediate delivery, Salesm^ satisfies the constraint Salesm
< Totalm at all times. As sales orders are taken or canceled, salespersons
launch transactions which update the number of instances sold, SaleSm- These
updates will typically be made as operational updates instead of value updates,
i.e., instead of reading and writing the actual value of the variable SaleSm,
transactions will issue operations to increment or decrement it. (Operational
updates can be preferred over value updates for a number of reasons relating
to concurrency control, and rollback and recovery of aborted transactions [6]).

As seen in sec. 4.1, if two or more salespersons launch long-running transactions
which contain update operations, a traditional concurrency control algorithm
would require that the variable SaleSm be locked by each transaction, so that

580 CHAPTER 21

one transaction cannot begin until the other commits and releases the lock.
In a replicated system, this further entails using a distributed protocol such
as quorum locking [10] and then a two-phase commit to ensure consistency.
The two-phase commit protocol has some disadvantages: (a) it requires all the
participants to be available at one point of time and vote yes if the transaction
has to commit; any failure by any participant results in the transaction being
aborted, (b) it is a blocking protocol, i.e. if the co-ordinator fails during
some window of time, the participants have to wait for the co-ordinator to
recover before a decision to commit or abort the transaction can be made,
(c) it requires at least two rounds of messages between the co-ordinator and
the participants before commit or abort of the transaction. However, the idea
of placing instances of the item being sold in escrow allows data items to be
locked for small intervals of time and also avoids the two-phase commit, thereby
increasing throughput.

In general, an escrowable resource item refers to a resource whose instances
are indistinguishable, so that the instances can be partitioned, either among
transactions or among sites in a replicated database (as we see shortly). Sev
eral escrow schemes have been proposed in the literature including transaction
escrow [19], site escrow [17, 23, 5], and generalized site escrow [16]. In the
following we describe transaction and site escrow as a background for the com
bined site and transaction escrow scheme we will be using.

Transaction escrow: The transaction escrow scheme was initially proposed
[19] for access to hot-spots in a single-copy (i.e., non-replicated) database. In
this algorithm, a transaction executes an escrow operation to try to place in
reserve the resources that it will (potentially) use. All successful escrow op
erations are logged in an escrow log. Before executing an escrow operation,
each transaction accesses the log and sees the total escrow quantities of all
uncommitted transactions. The transaction then makes a worst-case decision
to determine whether it can proceed. For instance, suppose the total quantity
of item m in stock is Totalm = 100, and the quantity sold due to committed
transactions is Salesm = 20. Suppose there are currently two uncommitted
transactions each requesting one item. Let transaction T wishing to reserve
ten items now be initiated. Since the log indicates that SaleSm ^ 22 < Totalm^
T can proceed irrespective of whether the other two transactions commit or
abort: the constraint is maintained in any case. Note that when transaction
T executes an escrow operation, T obtains a short-term lock on the escrow
log to access and update the log and releases the lock after the log has been
updated. (The lock release need not wait for the commit or abort of T as in
a traditional transaction execution). Thus any other transactions which access
SaleSm are forced to wait only for the duration of the log update operation,

Mobile sales and inventory 581

rather than for the entire duration of T as would occur in a traditional scheme.
This feature allows long-running transactions that contain escrow operations
to run concurrently so that throughput is increased.

Site escrow: In site escrow algorithms [17, 23, 4], the total number Totalm
of available instances of a given item m, is partitioned across the number of
sites (servers) in the system. This can be thought of as each site (as against a
transaction) holding a number of instances in escrow. A transaction launched
by a user runs at only one site (typically, the one closest to the user). A
transaction can successfully complete at a site only if the number of instances it
requires does not exceed the number of instances available in escrow at that site.
Each operation of the transaction acquires a lock at the site when accessing the
item, just as for a traditional locking scheme. However, this lock is different
in two important respects. Firstly, the lock is local in the sense it applies
only to the site where the operation is executing, and is designed to protect
the operation from other transactions executing at that site. This contrasts
with traditional replica control schemes, such as quorum locking, which would
require each site to lock (a subset of) the other sites before proceeding with
the operation. Secondly, the lock can be released on successful completion of
the operation^ in contrast to traditional strict two-phase locking where the lock
is released only at commit time of the transaction. By allowing each site to
deplete its own escrowed instances without consulting other sites, avoiding the
distributed two-phase commit, and shrinking the interval during which items
are locked, the site escrow model results in higher autonomy to sites and greater
throughput.

The number of instances held in escrow at each site is adjusted to reflect the
consumption of instances by the transaction only if it commits; otherwise the
escrow is restored to its original state. When one site requires more instances, a
redistribution or reconfiguration protocol such as the point-to-point demarcation
protocol [5] or a dynamic quorum-based protocol [16] is executed, so that the
site can get a portion of some other sites' unassigned instances.

As an example of a reconfiguration protocol, we describe the demarcation pro
tocol (we will use a variant of this protocol in our design.) The demarcation
protocol helps preserve distributed numerical constraints such as A H- B < 200,
where A and B are two data items. Assume that A is stored at site 1 and
B at site 2. To preserve the constraint above, each site maintains an upper
limit on the data item stored at that site: site 1 has the limit Au for A and
site 2 the limit Bu for B, such that Au-\- Bu < 200. Transactions are allowed
to alter A ov B but cannot alter Au or Bw The limit values at each site are
essentially the site escrow quantities: a transaction at site 1 can increment A

582 CHAPTER 21

without consulting site 2 as long as the final value of A is less than or equal to
Au (similarly for B.) However, if a transaction wishes to increase ^ to a value
larger than Au, a message has to be sent to site 2 to decrease Bu appropriately.
Only after this co-ordination can the transaction proceed. Several policies can
be used to modify the limit values dynamically [5].

Notice that this co-ordination above does not need a two-phase commit. Site
2 can take a decision to decrease Bu without needing to consult any other
site, i.e., can unilaterally do so. Site 1 decreases Au only after a confirmation
message from site 2 indicating the decrease of Bu is received. Now suppose
the confirmation message from site 2 to site 1 is lost due to a hnk failure or a
network partition. Site 1 might abort the transaction subsequently. However,
the effect is that site 2 has decreased Bw Note that the integrity constraints
of the system, e.g., A -\- B < 200, are still maintained [5]. However, a certain
number of resources in the system have become unavailable, since they cannot
be accessed via site 2. In practice, a reliable underlying message transport
protocol is needed.

Site-transaction escrow: The two escrow schemes described above can also
be combined [16]. Thus the total number Totalm of available instances of item
m is partitioned across sites, and in addition, each transaction at a site uses
a transaction escrow scheme to allocate and deallocate resources at that site.
Once again, a reconfiguration protocol is used to transfer resource instances
between sites as necessary.

The site-transaction escrow scheme provides an elegant and efficient repHca
control mechanism for partitionable resources, and allows sites to make allo
cation decisions locally as far as possible. This technique is desirable in the
mobile environment due to the following reasons:

1. A mobile is usually powered by a limited power source. Suppose a mobile
has established a session with a server and is trying to allocate resources. If
that server could possibly allocate the resources locally, this would enable
quick response to the mobile and hence less power is consumed while idling.

2. When performing service handoffs (as seen in Sec. 5), the escrow model
permits lesser context information to be transferred than when a tradi
tional concurrency/replica control protocol is used. This results in quicker
service handoffs and savings in cost.

3. The wireless bandwidth between the mobile and the ISAP server is limited.
Thus instead of remaining in contact with a server at all times, it might

Mobile sales and inventory 583

be desirable for the mobile to itself escrow some instances and allocate
them locally. The site-transaction escrow scheme permits this alternative
naturally.

We assume therefore that the ISAP servers use a site-transaction escrow scheme
for maintaining inventory information, using a reconfiguration mechanism such
as the demarcation protocol.

5 MOBILE SALES TRANSACTIONS

We now consider how mobile sales transactions can be handled given our sys
tem architecture and database design outlined above. It turns out that site-
transaction escrow methods, such as used in our design, are particularly appro
priate for mobility.

We first consider the situation referred to as discrete mobility. For instance,
consider the situation in which a user makes some sales at one service area,
completes all transactions, closes the session, disconnects from the PCS network
and moves to another service area. The user can now start another session
with the local server of the new service area and make further sales. The sales
transactions at the new service area can simply operate on the escrow values
stored at the new server. The decision as to whether any operation performed
by the transaction is safe or unsafe can most likely be made by the local server
(and if unsafe and solvable, the server can do a reconfiguration operation to
permit the operation). This scheme does not represent any change to the
underlying protocols to accommodate mobility.

Now consider the situation of continuous mobility in which the user is running
a long transaction involving the allocation of multiple inventory items, and the
user moves between service areas while the transaction is running. (Henceforth,
unless otherwise stated, we deal only with transactions which allocate resources
- the typical sales scenario. The discussion below is easily generalized to cases
where transactions can have both allocation and deallocation of resources.) In
our model, we assume that a service handofF occurs, so that the user starts
communicating with the local server of the new service area. The service hand-
off protocol [12, 13] maintains continuity of the physical communication link
between the user and the ISAP while the handoff occurs. However, before the
physical connection transfer can actually be carried out, the context of the in-

584 CHAPTER 21

teractions of the user with the ISAP needs to be transferred from the old to
the new server.

Let us study the context information transfer of the handoif in greater detail.
Essentially, a transaction involves numerous operational updates. When the
user moves to the new service area, the current operation in progress at the
old server is completed, and then the context of the transaction is transferred
to the new server. (Observe here that the mobile can continue interacting
with the old server while the context is being transferred. Only after the
context is transferred does the mobile start interacting with the new server.)
If a traditional locking scheme had been used for concurrency control, the
context information would include the set of locks held by the transaction,
along with the transaction id. Additional information relating to replica control
would also need to be transferred. For instance, suppose a pessimistic quorum
consensus protocol [10] with operational updates is used. In this protocol, it is
not necessary that at any point of time, a server i know of the updates done at
all the other servers. It is necessary though that when a transaction wishes to
execute at server 2, server i is brought up to date of all the updates done at the
other servers. Thus server, z, before initiating an operation o of a transaction
T, locks the data items accessed by o at a set of quorum servers. The quorum
servers send the committed (timestamped) updates that they know of along
with the lock grant response to i. On receiving the lock grant responses, server
i merges in timestamp order the committed updates it has obtained from the
quorum servers with the set of committed updates it knows about. If the
quorum is a majority of servers in the system, one can ensure that at this
stage [10], server i is up to date of all the committed updates in the system
and also that since the lock for o was acquired, there is no other conflicting
operation executing in the system. Based on the updated state, i determines the
update, UT' UT is then appended to an intentions list of uncommitted updates
for the transaction T. When T is ready to commit, a two-phase commit is
executed across all the quorum servers of its operations, and if the decision is
to commit, the intentions list is added to the list of committed updates at i
and the quorum servers, otherwise the list is discarded. Thus, if this protocol
is used, the context transferred from the old server to the new server would
also include (a) the list of updates seen at the old server before the most recent
operation in T was executed, (b) the intentions list for T, and (c) the list of
quorum servers for each operation in T executed so far. The new server will
have to first incorporate the list (a) into its state, set up (b) as an intentions
list for T, update the lock table to remember the locks that T has already
acquired, and store the list of quorum servers (so that they can participate in
a two-phase commit when T is ready to commit). Using site escrow methods
makes this context transfer and set-up much easier.

Mobile sales and inventory 585

Total^ =
Total^ =
Escrow^

Escrow^

30
20

= 0

= 0

T: ALLOC 10
Total^ =30
Total^ =
Escrow^
Escrow2

20

= 10
= 0

TYPEl

After redistributj

Total^ =
Total^ =
Escrow^
Escrow

20
20

= 0
= 0

L
1 1
ITEMS

L

i .
on

Service

\ handoff i

i

Total, 10

Total^ =20
EscroWj^ = 0
Escrow. = 0

After redistribution
Total^ =20
Total^ =20
Escrow^ =10
EscrowJ= 0

T: ALLOC 5 TYPE2 ITEMS
Total^ =20
Totals =20
Escrow^ =10
Escrow. = 5

T: commit
Tota\ =10
Total^ =15
Escrow^ = 0
EscrowJ= 0

F i g u r e 1 A mobile sales transaction example

In our design using the site escrow method, decisions in the sales transaction
to allocate resources are made locally (as far as possible). So quorum infor
mation as described earlier does not have to be maintained or tranferred as
context. Furthermore, since sites use transaction escrow locally, locks are re
leased after the completion of each operation. So no lock information needs
to be transferred to the new server. In addition, suppose the operations in
the sales transaction deal only with escrowable resource types. The new server

586 CHAPTER 21

does not need information about the operations already performed at the old
server, since the old server made its decisions based on its locally escrowed re
sources. Thus it is possible that the context transferred is only the information
about which operation in the transaction is to be run next at the new server.
However, when the transaction commits, a two-phase commit would also be re
quired between the old server and the new server since part of the transaction
has been run at the old server and the rest at the new server. (Note that the
two-phase commit might be between several servers if the user moves between
several service areas during the duration of the transaction, but for simpHcity,
we are considering only two servers here.) The benefit of the escrow idea in the
case of a salesperson who does not move is that most of the time, a two-phase
commit would not be required at the end of the transaction since requests for
resources might be satisfied locally. If the salesperson moves around a lot be
tween service areas, then a two-phase commit is almost always required at the
end of the transaction, and this is undesirable.

To account for this problem, we associate a reconfiguration of item instances
with a service handoff. Recall that a reconfiguration protocol is provided as
part of the site escrow framework. On a service handoff, a reconfiguration of
instances is performed as follows. The total number of instances at the old
server is decremented by the number of instances allocated by the transaction,
and the total number of instances at the new server is incremented by the same
amount. Furthermore, these newly acquired instances are entered as having
been escrowed by the transaction at the new server. Thus, the reconfiguration
protocol is invoked to transfer the required number of instances from the old to
the new server. If the transaction commits at the new server, the new server's
total is decremented accordingly; if the transaction aborts, the total is not
modified. This scheme thereby eliminates the need for the two-phase commit
protocol at the end of the transaction, allowing the transaction to perform a
simple one-phase commit at its current server. The context information which
needs to be transferred during service handoff, with the site escrow method,
thus includes only the transaction id and the intentions list already done at
the old server. The reconfiguration protocol can be performed independently
of the context information transfer - the only requirement is that the reconfig-
uration(s) complete before the transaction commits.

The reconfiguration itself need not involve a two-phase commit between the
old and new servers similar to the the demarcation protocol. However, in the
absence of a two-phase commit, resources could become unavailable as seen
in the demarcation protocol in sec. 4.2. Thus, there is a tradeoff between
having a pair-wise two-phase commit between the old and new servers and the
possibility of losing some resources in the absence of the two-phase commit.

Mobile sales and inventory 587

Notice however, that if we do include a pair-wise two-phase commit between
the old and new servers as part of the reconfiguration, the two-phase commit is
not necessarily at the end of the transaction : we overlap it with the rest of the
processing in the transaction. Furthermore, by employing pair-wise two-phase
commits, we do not require all servers that participate in the transaction to be
simultaneously available - this improves the reliability of the system.

An example of a mobile sales transaction is shown in Figure 1. There are two
types of resource items, and Totali and Total2 dit each server indicates the
total number of instances available there. Escrow\ and Escrow^ indicate the
number of instances escrowed by uncommitted transactions at each site. The
mobile allocates 10 items of type 1 at server 1 and then moves from server 1
to server 2. The reconfiguration protocol updates Totah and Escrowi at both
the sites. The mobile submits another operation to allocate 5 items of type 2
as part of the same transaction (this could potentially have been run in parallel
with the reconfiguration), and then commits.

We now discuss disconnections in more detail. Either the mobile could volun
tarily disconnect from the ISAP (as in discrete mobility), or the mobile could
be disconnected due to a failure in communications or of a server. In the for
mer case, the salesperson could desire to continue selling items while being
disconnected. It is then necessary that the salesperson have some idea of how
many resource instances of each kind he/she expects to sell. The salesperson
can allocate that many resources from the server and "cache" those resources
at the mobile before disconnecting. The mobile could thereby continue to sell
items by using transaction escrow on the resources that it had "cached" from
the server. At some point, when the mobile reconnects, the resources that are
left over could be deallocated. (Business policies would have to determine a
maximum on the number of resources that can be cached, since the ISAP could
quickly run out of resources even if they were not being sold: all salespersons
might cache resources and not be able to sell them.) Thus the escrow model is
very suitable for voluntary disconnections and local caching of resources. The
second case of disconnection is when the server fails or there is a communica
tions failure. It is then possible that a lock is held by a transaction running on
a mobile, or some items have been escrowed at a server on behalf of an uncom
mitted transaction. Some timeout mechanism would have to be used in either
case to abort the transaction and free up the resources. If the reconfiguration
protocol fails during a service handoff, it is retried until the commit point of
the transaction or until the timeout on escrowed resources expires at the other
server, at which point the transaction is aborted.

588 CHAPTER 21

Therefore, by using the ideas of escrow, service handoffs and reconfiguration
of resources, we have provided a clean transaction framework for performing
mobile sales transactions.

6 MAINTAINING SERVICE PROFILES

We now discuss the need for user service profiles and how they can be main
tained.

Just as the PCS network maintains user profiles for PCS users, to determine
what communication services the user needs and is authorized to obtain, it
is likely that the ISAP will also need to maintain service profiles i.e., what
are the information service requirements and access rights of the user. For
instance, in our appHcation, the mobile database contains client records as
well as information regarding policies, prices and availability of the product
being sold. It is desirable that the mobile database have reasonably current
information available about quantities such as inventory levels, etc. The service
profile would therefore indicate that the server should initiate a transaction
which is to be run on the mobile database at appropriate instances of time,
(say hourly or in response to specific market changes), to update the mobile
inventory. Such a transaction could be an operational summary of the items
consumed at all the sites since the last such update (such as, x instances of
item 1 and y of item 2 were consumed, etc.).

In a PCS network, a two-level hierarchy of databases is used to store pro
files, with the HLR at one level connected to several VLRs at the lower level.
Each VLR serves one or more PCS registration areas (and MSCs). When a
user moves between registration areas served by the same VLR, only the VLR
needs to be notified that the user has moved. Thus the two-level database
scheme reduces the signalling network traflRc and database load at the HLR,
so helping to prevent the HLR from becoming a performance bottleneck. For
the same reasons as for the PCS network, we propose that the ISAP store the
service profiles in a similar logical two-level hierarchy, using a Home Service
Database (HSD) and Visitor Service Databases (VSD). With each ISAP server
is associated a VSD. When the ISAP detects that the user has moved into a
service area, the associated VSD is updated with information from the HSD
about the user's service profile. The server in the user's current service area
can use this profile to determine what interactions are required with the user,
and when.

Mobile sales and inventory 589

Old Registration Area Public Network New Registration Area

MSC HLR VLR MSC

Registration request
the mobile

LEGEND:
REGNOT - Registration

Notification
REGCANC- Registration

Cancellation

Note: Lowercase letters
denote corresponding
responses

Figure 2 Signalling message flow in the IS-41 protocol

The use of a two-level hierarchy of profile databases entails a protocol for man
aging them. For instance, when a user moves into a new service area, the new
VSD needs to obtain the user's service profile, and it may be necessary to delete
the profile stored in the user's old VSD. This is analogous to a PCS location
update (registration/deregistration) procedure. Therefore, it would seem that
one could use a PCS user location strategy, such as that specified in the IS-41 or
GSM standards, for service area registration and deregistration. However, the
semantics of most PCS user location protocols (see [11] for a survey) do not en
sure that a user is registered in the visited database of exactly one registration
area at any given time, which can lead to race conditions.

As an example, consider the location update procedure in the IS-41 protocol
[1], restricting attention to the databases involved. Suppose the user moves be
tween regions served by different VLRs (see Fig. 2). The new VLR is notified
(by the new MSC) that the user has moved into a registration area served by
that VLR. The new VLR sends a registration notification message (abbrevi
ated "REGNOT") to the user's HLR. The HLR is updated to reflect the new
VLR as the user's serving VLR. The HLR sends a confirmation message (called
"regnot") to the new VLR, and then sends a registration cancellation message

590 CHAPTER 21

Old Registration Area Public Network New Registration Area

MSC VSD HSD VSD

regnot

MSC

Registration request
the mobile

LEGEND:
REGNOT - Registration

Notification
REGCANC- Registration

Cancellation

Note: Lowercase letters
denote corresponding
responses

Figure 3 Message flow for a service profile management protocol, bcised upon
a modified version of the IS-41 protocol "

("REGCANC") to the old VLR. The new VLR completes the registration of
the user after it receives the "regnot" message. The old VLR deletes the user's
registration after it receives the "REGCANC" message, and sends a confirma
tion message ("regcanc") to the HLR. With this protocol, there exists a race
condition between the arrival of the "regnot" message at the new VLR and the
arrival of the "REGCANC" message at the old VLR, so it is possible that for
some finite time the user is registered in both the VLRs.

The negative effects of race conditions during user location updates are not
likely to be serious; for instance, a call to the user might not be completed dur
ing the race interval, and the caller might get a busy signal. In contrast, depend
ing upon the application in question, race conditions during service handoffs
could be serious. For instance, if a protocol similar to IS-41 is used to update
VSDs, it is possible that when a user moves two VSDs contain the user's pro
file. In our mobile sales application example, the VSD alerts the server, at the
time specified in the user's profile, to initiate the appropriate transaction on the
client database. If a protocol similar to IS-41 is used to manage the VSDs when
a user moves from one service area to another (whether a call is in progress or

Mobile sales and inventory 591

not), the race condition described above can occur, resulting in both servers
running the same update transactions twice and the mobile database having
inconsistent information.

We propose one possible solution for preventing race conditions. First, note
that the race condition we have described in IS-41 can result in the user being
registered in two VLRs, but it can also result in the user being "active" in
neither VLR. The latter situation arises because although the new VLR records
the user's location before it sends the "REGNOT" registration message to the
HLR, it does not consider the user "active" until it has received the "regnot"
confirmation message from the HLR. Thus if the "REGCANC" cancellation
message arrives at the old VLR before the "regnot" message arrives at the new
VLR, the user will be active in neither. In other words, the protocol as it stands
allows the user, at different times, to be active in zero, one or two databases.

We propose using a simple modification of the IS-41 protocol for managing
service profile databases, as follows (see Fig. 3). Upon receiving a "REGNOT"
message from a the new VSD, the HSD first sends a "REGCANC" cancellation
message to the old VSD to deactivate the user's profile. Upon receipt of the
"REGCANC" message the old VSD stops all further operations related to the
user's profile. The HSD then waits until it receives a "regcanc" confirmation
message from the old VSD before sending a "regnot" registration confirmation
message to the new VSD. This sequence of messages removes one ambiguity in
the protocol, by ensuring that the user can never be active in two VSDs. Note
that in principle the user's service profile is transferred to the new VSD (either
from the old VSD or the HSD, as appropriate) after this activation procedure
is complete; in practice, the service profile may arrive at the new VSD along
with the "regnot" message.

The modified protocol also has the effect of ensuring that there is a small
interval during every service handoff when the user is active in neither VSD.
Consider again our example scenario, where some transaction T is initiated
based upon the user's profile at a fixed time, say t. Suppose the old VSD
receives the "REGCANC" message and deactivates the user at some time to <
t, where to is the time according to the local clock at the old VSD. Suppose the
user becomes active at the new VSD at time tn, where tn is the local time at
the new VSD. As it stands, if tn > t, the new VSD will not alert the new server
to perform transaction T. To prevent this, the old VSD timestamps the user's
profile with time to as its last operation upon the profile. (Alternatively, the
old VSD can send this information to the new VSD via a separate signalling
message.) When the new VSD receives the profile, if tn > to the new VSD
initiates all transactions which fall in the interval [^^^n], including transaction

592 C H A P T E R 2 1

T. Otherwise t^ < to and the new VSD does not initiate any transactions
based upon the user's profile until the new VSD's local clock exceeds to- This
convention ensures that the user being active in neither VSD does not cause
some transactions to be dropped, and also does not require that the clocks of
the two VSDs be synchronized.

7 CONCLUSIONS

We have presented a distributed replicated server architecture for delivery of
PISA, and identified the notion of service handofFs in this architecture. We
have presented a database system design, based on a site escrow method, suit
able for sales and inventory applications supporting both stationary and mobile
users. We have discussed how the site escrow idea provides a simple method
for performing service handoflFs when a mobile user moves from one service area
to another. Finally, we discussed a two-level hierarchy of databases for main
taining service profiles for salespersons, and designed an appropriate update
protocol for it. We are currently investigating some of the issues discussed in
this paper further. We have previously discussed [12, 13] how mobile transac
tions which access distinguishable instances, for which site escrow methods are
typically not appropriate, can be supported. We are currently exploring the
tradeoffs of combining such transactions with those accessing indistinguishable
items.

Acknowledgements

We thank A. Grinberg, D. Hakim, M. Kramer, R. Wolff, and T. Whitaker for
their helpful comments on an earlier version of parts of this paper.

REFERENCES

[1] "Cellular radiotelecommunications intersystem operations. Rev. B",
EIA/TIA, July, 1991.

[2] "Feature description and functional analysis of Personal Communications
Services (PCS) Capabilities", Bellcore Special Report, SR-TSV-00230,
Apr. 1992.

Mobile sales and inventory 593

[3] "Generic criteria for Version 0.1 Wireless Access Communications Systems
(WACS)", Bellcore Technical Advisory, TA-NWT-001313, Issue 1, July
1992.

[4] G. Alonso and A. El Abbadi, "Partitioned data objects in distributed
databases". University of California, Santa Barbara, Technical Report
TRCS-93-06, 1993.

[5] D. Barbara and H. Garcia-Molina, "The Demarcation Protocol : A tech
nique for maintaining arithmetic constraints in distributed database sys
tems" , Proceedings of International Conference on Extending Data Base
Technology, 1992.

[6] P.A. Bernstein, V. Hadzilacos and N. Goodman, "Concurrency Control
and Recovery in Database Systems", Addison Wesley Publishing Com
pany, 1987.

[7] D. Ferrari, A. Banerjea and H. Zhang, "Network support for multimedia
- a discussion of the Tenet approach". Technical Report TR-92-072, Intl.
Comp. Sci. Inst., Berkeley, CA, Nov. 92.

[8] D.K. Gifford, "Weighted voting for replicated data". Proceedings of the
Seventh ACM Symposium on Operating Systems Principles, pages 150-
159, 1979.

[9] J. Gray and A. Renter, "Transaction Processing: Concepts and Tech
niques", Morgan Kaufmann, 1993.

[10] M. P. Herlihy, "Concurrency vs. availability: Atomicity mechanisms for
replicated data", ACM TOCS, 5 (3), 249-274, Aug. 1987

[11] R. Jain, "A survey of user location strategies in personal communications
services systems", Submitted for publication, 1993.

[12] R. Jain and N. Krishnakumar, "Network Support for Personal Information
Services to PCS Users", IEEE Conf. Networks for Pers. Comm. (NPC),
Long Branch, NJ, Mar. 1994.

[13] R. Jain and N. Krishnakumar, "Service handoffs and virtual mobility for
delivery of personal information services to mobile users", Submitted for
publication, 1994.

[14] J. Jerney, "A conversation with Dataquest's Jerry Purdy", Pen-based com
puting, pp. 7-8, Aug./Sep., 1993.

594 CHAPTER 21

[15] K. Keeton, B. A. Mah, S. Seshan, R. H. Katz, D. Ferrari, "Providing
connection-oriented network services to mobile hosts", Proc. USENIX
Symp. Mobile and Location-Independent Computing, pp. 83-102, Aug. 93.

[16] N. Krishnakumar and A. Bernstein, "High throughput escrow algorithms
for replicated databases", Proceedings of the 18th Intl. Conf. on Very Large
Data Bases, 175-186, Aug. 1992

[17] A. Kumar and M. Stonebraker, Semantics based transaction management
techniques for replicated data, Proceedings of the ACM SIGMOD Interna
tional Conference on Management of Data, pp. 379-388, 1988.

[18] M. Mouly and M. - B. Pautet, "The GSM System for Mobile Communi
cations", 49 rue Louise Bruneau, Palaiseau, France, 701 pp., 1992.

[19] P. E. O'Neil, "The escrow transactional model", ACM TODS, 11 (4), 405-
430, Dec. 1986.

[20] A. R. Noerpel, L. F. Chang and D. J. Harasty, "Radio link access procedure
for a wireless access communications system", Proc. Intl. Conf. Comm.,
May, 1994.

[21] V. Schnee, "An excellent adventure". Wireless, pp. 40-43, Mar./Apr., 1994.

[22] J. Schwartz, "Upgrade lets salespeople share data", Comm. Week, pp. 47-
48, May 24, 1994.

[23] N. Soparkar and A. Silberschatz, "Data-value partitioning and virtual mes
sages". Proceedings of the 9th ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pp. 357-367, 1990.

[24] C. Tait and D. Duchamp, "An efficient variable-consistency replicated file
service", Proc. USENIX File System Workshop, May 92.

[25] R.H. Thomas, "A majority consensus approach to concurrency control
for multiple copy databases", ACM Transactions on Database Systems,
4(2):180-209, Jun. 1979.

22
STRATEGIES F O R QUERY

PROCESSING
IN MOBILE C O M P U T I N G

Masahiko Tsukamoto,
Rieko Kadobayashi* and Shojiro Nishio

Dept. of Information Systems Engineering,

Faculty of Engineering, Osaka University

2-1 Yamadaoka, Suita, Osaka 565, Japan

* ATR Media Integration & Communications Research Laboratories,

Seika-cho, Soraku-gun, Kyoto 619-02, Japan

ABSTRACT

In this paper, we discuss several strategies for efficient processing of three types of
queries concerning mobile hosts; (1) queries to obtain the location of a mobile host
(location queries), (2) queries to determine whether the mobile host is currently active
{existence queries), and (3) queries to obtain a piece of information from a mobile host
{data queries). Extracting five fundamental strategies from those usually employed
in mobile communication protocols, we shall discuss their features and then compare
their performance. These five strategies are: single broadcast notification (SBN),
double broadcast notification (WBN), broadcast query forwarding (BQF), single default
notification (SDN), and double default notification (WDN). We show that the optimal
strategy varies according to network conditions such as network topology, network
scale, migration rate, and query occurrence rate.

1 I N T R O D U C T I O N

Currently, one of the most important and attractive research issues in computer
networks is the development of ubiquitously-accessed networks^ where users can
access computer resources at anytime from anywhere through movable com
puters. A substantial amount of research has already been conducted on how
to support mobile communications in existing network environments (see, e.g.,
[4], [8], [17], [18], [19], [20], and [22]). These approaches were directed at the

596 CHAPTER 22

realization of low cost location management of mobile hosts. In addition to the
packet transmission required in conventional mobile communication protocols,
the mobile computing environments currently under development must resolve
several data management issues such as query processing (see, e.g., [1], [6], [9],
[10], [11], and [14]).

Among queries in a mobile computing environment, we consider queries called
location sensitive queries which are used (1) to obtain the location of a mobile
host, (2) to determine the existence of a mobile host, and (3) to obtain data
stored in a mobile host (e.g., location dependent information such as the sensor
value set on a mobile host). The strategies for processing such queries are
considered to be rather different from those used for mobile communication
protocols, although the key tasks for both are the management of location
information of each mobile host.

In this paper, we first review the strategies currently used in mobile commu
nication protocols, and then, extracting the fundamental ideas of these strate
gies, the following five strategies will be proposed for processing location sensi
tive queries: single broadcast notification (SBN), double broadcast notification
(WBN), broadcast query forwarding (BQF), single default notification (SDN),
and double default notification (WDN). For each of these five strategies, we shall
discuss their features and then compare their performance. As a result, we show
that the optimal strategy among them varies according to such conditions as
network topology, network scale, and migration rate.

The paper is organized as follows. First in Section 2, we extract five basic
strategies currently employed in mobile communication protocols. Then we
apply these strategies to process location sensitive queries in Section 3. In Sec
tion 4, we evaluate these strategies and demonstrate that the optimal strategy
changes according to several network conditions. Finally, we summarize the
paper and discuss possible future work in Section 5.

2 TECHNIQUES USED IN MOBILE
COMMUNICATION PROTOCOLS

In this section, we study mobile communication protocols in regard to their
ability to process location sensitive queries in Section 3. Here we use the model
illustrated in Figure 1 as an example. A mobile host is a system which is capa
ble of moving across wireless cells. A router is a system which forwards packets

Strategies for Query Processing in Mobile Computing 597

router

mobile host

F i g u r e 1 An example of a communication network.

from/to mobile hosts. A wireless cell is managed by a router, and the router
can exchange packets with any mobile host located in its cell. Mobile communi
cation protocols are concerned with correctly and efficiently forwarding packets
to the destination mobile host.

Many researchers have proposed various protocols to support mobile communi
cation. Teraoka et al. [19], Perkins and Bhagwat [17], and Wada et al. [22] have
proposed protocols for mobile hosts in IP networks. loannidis et al. [8] have
proposed protocols for small IP networks such as campus networks. In OSI net
work environments, the existing routing protocol, i.e., the IS-IS protocol [13],
can deal with host migration within an area. Furthermore, several protocols for
inter-area migration have been proposed by Carlberg [4] and Tsukamoto and
Tanaka [20], and an effective protocol for intra-area migration has been also
proposed by Tanaka and Tsukamoto [18].

Careful observation of these protocols allows us to determine that they employ
the following three fundamental strategies in an integrated manner:

Broadcast Notification (BN): A mobile host's location information is broadcast
throughout the network on each migration. According to this information, data
packets for the mobile host are forwarded to the current location, the IS-IS
protocol and OSPF [16] are examples of BN.

598 CHAPTER 22

Default Forwarding (DF): A default router exists for each mobile host. The
default router maintains that host's location information. A local router is
located in the same network as the mobile host and notifies the default router
of the mobile host's current location. Data packets to the mobile host are first
forwarded to the default router and then forwarded to the local router. DF
is currently the most common strategy used to support mobile hosts and is
employed in [18], [19], [20], and [22].

Broadcast Query (BQ): On receiving a data packet addressed to a mobile host,
the router broadcasts a query packet to all the other routers in order to forward
the data packet according to the reply. BQ is used in [8].

In addition to the above three strategies, the following two strategies can be
used to support mobile hosts:

Default Query (DQ): Like DF above, there exists a default router for each
mobile host. The default router is informed of the mobile host's current loca
tion. On receiving a data packet addressed to a mobile host, the router asks
the default router for the location of the mobile host, and then forwards the
data packet to the location identified in the reply.

Broadcast Forwarding (BF): This strategy is based on a broadcast mecha
nism. The router receives data packets and then broadcasts them to the entire
network. This strategy has been widely used in packet radio networks [7].

These five strategies can be categorized from several viewpoints. In BQ and
DQ, as soon as a router receives a packet, a query packet is sent for obtaining
the destination mobile host's location. We call these strategies query-based
strategies. On the other hand, in BF and DF, as soon as a router receives a
packet, the packet is forwarded to other systems without first using a query
packet to obtain the destination mobile host's location. We call these strategies
forwarding-based strategies. In DF and DQ, there is a default router for each
mobile host to manage that host's location information. We call these strategies
default-based strategies. In BN, BF, and BQ, a special system for mobile host
location information management does not exist. In this case, broadcast is used
for notification, forwarding, or querying. We call these strategies broadcast-
based strategies.

Among many possible parameters which affect the network environment, the
three parameters, amount of traffic, migration rate, and packet size, are con
sidered to have a strong eff'ect on the performance of the above protocols. If

Strategies for Query Processing in Mobile Computing 599

large packet

............... BN.........
high traffic iiMMMMM'^y^'*

small packet

F i g u r e 2 Best strategies for mobile communication.

high traffic and infrequent migration are assumed, BN is considered to be the
best strategy for bandwidth utilization regardless of the packet size because
BN provides faster convergence. If the opposite case is assumed, BF or BQ is
better than the others because no location information is sent on migration.
Otherwise, if traffic as well as migration rate are moderate in comparison to the
abovementioned two extreme cases, then DF and DQ are effective at reducing
the total traffic because packets are not broadcast on both migration of mobile
hosts and forwarding of data packets.

If data packets are large, query-based strategies DQ and BQ are better than
the forwarding-based strategies DF and BF, respectively. Caching of mobile
information in each router can reduce the time it takes a query to complete
and hence results in effective use of bandwidth. If the data packets are small,
it is better to choose the forwarding-based strategies.

Generally, default-based strategies DF and DQ are more scalable than broadcast-
based strategies BF and BQ, respectively. If we consider an n-grid topology
and evaluate the cost by total traffic caused by control packets and data pack
ets, the cost of default-based strategies grows as an order of 0{n), while the
cost of broadcast-based strategies grows as an order of 0{n'^). However, it is

600 C H A P T E R 22

I
"x

j ce l l

query server

lllllj mobile host server

(J) client

111 mobile host

Figure 3 An example of a mobile database network.

possible that broadcast-based strategies reduce the total traffic when used in
small or low cost networks.

Therefore, the best strategies to support mobile communications depend on
the network conditions. Figure 2 graphically shows which strategy is superior.
Most of these strategies are qualitatively analyzed in [21].

3 QUERY PROCESSING FOR LOCATION
SENSITIVE QUERIES

In this section, the mobile database network model assumed in this paper is
described. Then, we discuss query processing functions essential to mobile com
munication environments using references to the features of mobile communica
tion protocols described in Section 2. Finally, we propose several fundamental
strategies for the query processing.

Strategies for Query Processing in Mobile Computing 601

3.1 Model

A mobile host, which can move across cells, can keep pieces of information that
may be accessed by other systems. A client is a system which invokes queries
about mobile hosts. A query server is a system which can handle mobile query
processing according to the requests from clients. Each client is directly or
indirectly connected to at least one query server through a global network.
A mobile host server is a system which can directly communicate with all
mobile hosts in the same cell through its wireless interface, and furthermore
can communicate with all query servers through global networks. In Figure 3,
we show an example of a network which includes clients, query servers, mobile
host servers, and mobile hosts.

As soon as a query server receives a query from a client, it starts to process the
query. In its processing, the query server exchanges packets with any mobile
host servers, mobile hosts and other systems as necessary. In this model, we
have the following assumptions:

• The existence of each mobile host is known to all mobile host servers
located in its wireless cell. This assumption can be realized by mechanisms
such as beaconing, which is the periodic exchange of beacon packets. Such
mechanisms are provided by several network protocols such as the ES-IS
protocol [12], and by several datalink protocols such as IEEE 802.11 [5].

• Each mobile host server can multicast a packet to all query servers, and
each query server can multicast a packet to all mobile host servers. These
assumptions can be realized by a static configuration of all associated ad
dresses at each server, or by a multicast protocol.

• Cells are disjoint in a logical level, that is, a mobile host belongs to at
most one cell. This can be achieved by using an appropriate hand-off
mechanism.

A mobile host server can send a query packet to a mobile host in its cell to
obtain a piece of information stored in the mobile host, if necessary. The
following types of location sensitive queries are considered for mobile hosts.

1. Location (L) query: A query to obtain the location of a mobile host.

Note that an L query is not concerned with whether the mobile host is
active or not.

602 CHAPTER 22

2. Existence (E) query: A query to determine if the mobile host is active.

3. Data (D) query: A query to obtain a piece of information from a mobile
host.

3.2 Comparison of query processing and
communication protocols for mobile hosts

Prior to proposing query processing strategies for mobile hosts, we discuss
similarities and differences between mobile communication protocols and our
concerns regarding query processing for mobile hosts (hereafter we refer to this
query processing as mobile query processing).

In both mobile communication protocols and mobile query processing, location
management of mobile hosts is very important. It is therefore natural to apply
the location management schema of mobile communication protocols to those
of mobile query processing. There are two basic types of actions taken by
routers in mobile communication protocols:

(1) Actions taken when routers detect migration of mobile hosts.

(2) Actions taken when routers receive packets destined for mobile hosts.

These two actions may be compared to their respective two types of actions in
mobile query processing:

(1) Actions taken by mobile host servers when they detect migration of mobile
hosts.

(2) Actions taken by query servers when they receive queries concerning mobile
hosts.

Based on this correspondence, basic strategies of mobile communication proto
cols such as

broadcast of location information when a mobile host moves (BN),

notification of location information to a certain system when a mobile host
moves (DF/DQ), and

Strategies for Query Processing in Mobile Computing 603

• no location management of a mobile host until a router receives a packet
destined for the mobile host (BF/BQ),

are applied in a straightforward manner to mobile query processing.

However, we can find some substantial differences between mobile communica
tion protocols and mobile query processing. First, the former concerns itself
with how to forward a packet from a certain point to a mobile host, while the
latter concerns itself with how to obtain a piece of information about a mobile
host at a certain point. This causes a topological difference of information flow;
the flow for the former is from a certain point to a mobile host, and the flow
for the latter is from a certain point returned to the point. Someone may think
that mobile query processing can be achieved by combining packet forward
ing from the query server to the mobile host and packet forwarding from the
mobile host to the query server. Such a viewpoint is correct when the requested
information is only stored at the mobile host. However, we can consider the
case of systems other than the mobile host having the requested information.
For instance, in mobile communication protocols, the default router has the
location information in DQ and DF, and all routers have the location informa
tion in BN. If a similar distribution of information is applied to mobile query
processing, it is possible for a query server to realize query processing without
sending a packet to the mobile host. Consequently, the optimal strategies in
mobile query processing cannot be obtained by simply combining the strategies
for mobile communication protocols.

Secondly, the size of a packet transmitted by a query server in mobile query
processing is generally considered to be much smaller than that of a packet for
warded by a router in mobile communication protocols. The former is at most
several hundreds of bytes since the packet contains only the query information
sent to a mobile host. On the other hand, the latter is occasionally as much
as several kilo-bytes since the packet has data requested by users and its size
may become very large. According to the discussion in Section 2, query-based
strategies perform better than forwarding-based strategies when the size of a
packet is large. Therefore, query-based strategies are not effective in mobile
query processing. From this point onwards we will not concern ourselves with
query-based strategies in our search for optimal strategies in mobile query pro
cessing.

The third important difference lies in the assumptions made about their op
erations with special emphasis on their reliability and geographic scopes. In
mobile communication protocols, it is generally desirable for a single protocol

604 CHAPTER 22

to be employed uniformly used throughout the whole global network since it is
very important for many users to access the network from its arbitrary location.
To meet such a requirement in a very large scale network, very high reliabil
ity of location information is necessary. For mobile query processing, a locally
restricted area, such as a campus, an office, or a manufacturing plant, should
employ its own query processing strategy. This is due to the fact that users
generally want to protect the databases stored in their mobile host from being
accessed through the global network. Therefore, in mobile query processing,
each strategy is usually used in a small restricted area where it is easy for users
to find the location information of mobile hosts within the same area. Thus,
high reliability of the location information is not always necessary for each
mobile query processing strategy. In all the mobile communication protocols
that we surveyed, when we examine the high-reliability of location information,
we see that notification is made by two systems for each migration of a mobile
host. These two systems are the router that detects the existence of the mobile
host and the router that detects that the mobile host is no longer in its cell.
However it is possible to consider a protocol where notification is made by only
one system for each migration of a mobile host. In this case, it is the router
that detects the existence of the mobile host. This variation is considered to
be valid in the case of mobile query processing, since it is efficient in decreasing
the traffic of packets and such query processing does not require high-reliability
of location information.

3.3 Query processing strategies for mobile
hosts

Based on the discussion of the previous subsection, the five strategies discussed
in Section 2 are now applied to query processing for location sensitive queries
according to the following policies:

• The actions of routers on migration of mobile hosts in mobile communica
tion protocols are taken by mobile host servers in mobile query processing.

• The actions of routers for forwarding packets to mobile hosts in mobile
communication protocols are taken by query servers for processing (L, E
or D) queries in mobile query processing.

• Query-based strategies, such as DQ and BQ, will not be considered in
mobile query processing.

• We consider two notification methods for handling mobility.

Strategies for Query Processing in Mobile Computing 605

(1) For each migration of a mobile host, notification is made by two
mobile host servers, i.e., the previous neighbor mobile host server
and new neighbor mobile host server.

(2) For each migration of a mobile host, notification is made by a mobile
host server, i.e., the new neighbor mobile host server.

Now, we propose the following strategies for handling the three types of queries.

Single Broadcast Notification (SBN): This strategy is based on the BN strategy
for mobile communication protocols. As soon as a mobile host server newly
detects the existence of a mobile host, the location information of the mobile
host is broadcast to all query servers. In this case, even if the mobile host
becomes inactive or moves into another network, no query server notices that
the information it holds has become obsolete until it sends a packet to the
mobile host.

For an L query from a client, each query server can reply directly. For an
E and/or a D query, each query server cannot directly reply to the query.
Therefore it must send a packet to the mobile host server according to the
information it holds.

For example, if the mobile host i moves from e's cell to / ' s in Figure 3, /
notifies all query servers a and b that it is newly adjacent io i. If the client
c sends an L query of z to a, a immediately replies. For an E query or a D
query of 2, a should forward the query to / . Moreover, even if i moves out of
/ ' s cell, or it becomes inactive, / does not take any more action. In this way,
each query server does not know whether the mobile host is really active in the
cell of the mobile host server which had previously notified it of the existence
of the mobile host.

double Broadcast Notification (WBN): This strategy is based on the BN strat
egy. As soon as a mobile host server newly detects the existence of a mobile
host, the location information of the mobile host is broadcast to all query
servers. Furthermore, when a mobile host server newly detects that a cer
tain mobile host which had resided in its cell no longer exists in the cell, such
non-existence information is broadcast to all query servers. In this case, if a
mobile host has become inactive or moves into another network, each query
server will notice that the information it holds on this mobile host has become
obsolete, which makes it eliminate the entry. The IS-IS protocol uses this noti
fication method, and this is a popular method for routing in networks in which
migration is not so frequent.

606 CHAPTER 22

Each query server can directly reply to every L query and E query. Only in
the case of a D query, the query server cannot directly answer. Therefore it
must send a packet to the mobile host server according to the information it
holds. For example, if the mobile host i moves from e's cell to / ' s in Figure 3,
besides / ' s action of notifying all query servers of the existence of i in its cell, e
notifies all query servers that i is no longer in its cell. Each query server, e.g.,
a, immediately replies to L queries as well as E queries. Only for a D query of
z, a should forward it to / . Moreover, if i moves out of / ' s cell, or it becomes
inactive, / notifies all query servers that i is no longer in its cell. In this way,
each query server knows whether the mobile host is really active in the cell of
the mobile host server which has previously notified it of the existence of the
mobile host.

Broadcast Query Forwarding (BQF): This strategy is based on the BF strategy
used in mobile communication protocols. No action is taken if a mobile host
server newly detects the existence of a mobile host. No action is taken either
even if a mobile host server detects that a certain mobile host which had resided
in its cell no longer exists in the cell. Mobile information can be obtained by
broadcasting a packet to all mobile host servers. Therefore, for any of L, E,
and D queries, the query server broadcasts a packet to all mobile host servers.
The mobile host server in whose cell the objective mobile host resides gives the
answers to the query server.

For example, even if the mobile host i moves from e's cell to / ' s in Figure 3,
no action will be taken by either e or / . When a client c sends a query about
2 to a query server a, the server sends the contents of the query to all mobile
host servers, and then the mobile host server / , in whose cell the mobile host
i resides, replies to the query.

Single Default Notification (SDN): This strategy is based on the DF strategy
for mobile communication protocols. There exists a default server for each
mobile host, and each mobile host server and each query server know which
system is the default server of each mobile host beforehand. As soon as a
mobile host server newly detects the existence of a mobile host, the default
server is notified of the mobile host's location. In this case, if the mobile host
becomes inactive or moves into another network, the default server cannot
notice that the information being held has become obsolete unless it sends a
packet to the mobile host.

For an L query, a query server can reply by sending a query to its default
server. For an E and a D query, the default server cannot reply. Therefore the

Strategies for Query Processing in Mobile Computing 607

"^

V,
jcell

query server

|||jli.||| mobile host server

(J) client

^ mobile host

(x)\ default server of x

F i g u r e 4 A network example for SDN and WDN.

default server must forward a packet to the mobile host server according to the
information it holds.

In Figure 4, let the systems /, m, n, and o be the default servers of the mobile
hosts /i, z, j , and A;, respectively.

If the mobile host i moves from e's cell to / ' s cell, / notifies m, the default
server of z, of i's existence. If a query server a receives an L query of i from a
client c, it asks m for the location of i, and then m replies to this query.

For an E query and a D query of z, since m cannot directly answer, it forwards
the query to / . Moreover, even if i moves out of the / ' s cell, or it becomes
inactive, / does not take further action. With this strategy, the default server
does not know whether the mobile host is really active in the cell of the mobile
host server which had provided previous notification it of the mobile host's
existence.

608 CHAPTER 22

double Default Notification (WDN): This strategy is based on the DF strategy
for mobile communication protocols. There exists a default server for each
mobile host, and each mobile host server and each query server know beforehand
which system is the default server of each mobile host. As soon as a mobile
host server newly detects the existence of a mobile host, the default server is
notified of the mobile host's location. Furthermore, as soon as a mobile host
server newly detects that the mobile host which had resided in one of its cell no
longer exists in the cell, the default server is notified by the mobile host server
that the mobile host no longer resides in its cell. In this case, if the mobile host
becomes inactive or moves to another network, the default server will notice
that the information being held has become obsolete. The default server will
then eliminate the entry.

For an L query and an E query, each query server can answer by sending a
query to the default server. Only for a D query is the default server unable to
reply. Therefore the default server must forward a packet to the mobile host
server according to the information it holds.

For example, in Figure 4, if the mobile host i moves from e's cell to / ' s cell,
/ informs m, the default server of i of i's existence. The mobile host server e
also notifies m when i is no longer in its cell. If a query server a receives an L
query or an E query of i from a client c, it sends the query to m, and m replies
to this query. Since m itself cannot directly answer a D query of 2, it forwards
the query to / Moreover, if i moves out of / ' s cell, or becomes inactive, / will
notify m that i is no longer in its cell.

With this strategy, the default server does know whether the mobile host is
really active in the cell of the mobile host server which had provided previous
notification it of the mobile host's existence.

4 EVALUATION

In this section, we compare the costs of SBN, WBN, BQF, SDN, and WDN.
Here we use the following parameters in our cost estimation:

Strategies for Query Processing in Mobile Computing 609

T a b l e 1 Cost estimates of each strategy

Strategy

SBN

WBN

BQF

SDN

WDN

1 migration

1 <^
Bi''^+B\'^^

0

L query

0

0

M'^^+F„,/
2Di^'

2i>î ^

E query

2 ^ 0 , /

0

B'^^+H.j

21^1?

D query

2^a,/

2^a,/

Sr+i?a,/

5^^

B. (M).

Ha:

D. (Q).
x,y '

r) (M) .

the cost of broadcasting a packet from a query server x to
all the mobile host servers.
the cost of broadcasting a packet from a mobile host server
X to all the query servers.
the cost of sending a packet between a query server x and
a mobile host server y.

the cost of sending a packet between a query server x and
the default server of a mobile host y.

the cost of sending a packet between a mobile host server
X and the default server of a mobile host y.

Table 1 shows the costs incurred by each strategy for the following cases: mi
gration of the mobile host i as it moves from the cell of mobile host server e to
the cell of the mobile host server / , query server a processing a L query and
an E query, and a D query concerning i when i is in / ' s cell. In this table,we
do not include the cost of transmitting a packet between a mobile host server
and a mobile host.

Now, similar to other approaches such as [3], [9], [11], [15], [18], and [23],
we assume that migration intervals of each mobile host and query occurrence
intervals are exponentially distributed. We also assume that the location to
which each mobile host moves is randomly selected from all the possible mobile
host servers. Let // be the migration rate, i.e., the mean number of migrating
mobile hosts in a unit time, and A be the query occurrence rate, i.e., the mean
number of queries occurring in a unit time. Queries are composed of a of L
queries, /? of E queries, and 7 of D queries such that a -h /3 -f 7 = 1. Let

610 CHAPTER 22

j5(^) be the average of Bi ^ for an arbitrary mobile host server x, B(^^ be the
average of Bx for an arbitrary query server x, H be the average of H^^y for
an arbitrary combination of query server x and mobile host server y, Z)(^) be
the average of Di,y for an arbitrary combination of mobile host server x and
mobile host y, and Z)(^) be the average of Di^y for an arbitrary combination
of query server x and mobile host y. The mean total cost in a unit time in each
strategy is as follows:

SBN: B(^)fx + 2H{p H- 7)A

WBN: 2B(^)fji-h2HjX

BQF: {B(Q) + H){a-\- /? + 7)A

SDN: D(^)/i + 2i^WaA + (D(^) + P (^) + g) (^ + 7)A

WDN: 2D(^)fi -h 2D(^)(a -h ^)A -f (î (<5) + D(^) + F)7A

Now let us consider how the predominant strategy changes according to network
parameters in two typical network topologies: n-grid topologies and binary tree
topologies.

Example 1 : n-grid topologies. Consider the network topology shown by
Figure 5, which is scaled by integer n. Here the default server for each mobile
host is the most central server if n is odd, and one of the central four servers if n
is even. All servers are mobile host servers. The cost is estimated by counting
the hops between servers. Packet broadcast is efficient if a certain dynamic
spanning tree algorithm is used. B^H, and D are expressed as follows:

B(Q) = B(^) =n^-l

T T _ 2 (n - l) (n + l)
^ ~ 3n

n
7 (n : even)

A campus network is a typical example of n-grid topology since it usually
ranges geographically over the campus. A grid topology is often used as a
typical topology for OSI networks because a dynamic routing protocol, the
IS-IS protocol, can be efficiently used in networks that include many highly-
multiplexed paths, which are typical of a grid topology.

Strategies for Query Processing in Mobile Computing 611

\-----m
gh:-HSl

I (*)

Kl
query server & mobile host server
& default server for all mobile hosts

query server & mobile host server

Figure 5 n-grid topologies.

First, we show how these three types of queries affect the total cost. Figure
6, Figure 7, and Figure 8 respectively illustrate the total costs per move for
given query/migration ratio in three extreme cases, (l)Qf = l, /3 = 0, 7 = 0,
and n = 3, 10, (2) a = 0, ^ = 1, 7 = 0, and n = 3, 10, and (3) a = 0,
^ = 0, 7 = 1, and n = 3, 10. In these figures, the horizontal axes are the
query/migration ratio A//x, and the vertical axes are the total cost per move.
Note that query/migration ratio is similar to the call/mobility ratio in [9].
According to the query/migration ratio, the optimal strategy becomes (1) BQF,
SDN, or SBN for L queries, (2) BQF, WDN, or WBN for E queries, and (3)
BQF, SDN, or SBN for D queries.

Next we see complex cases of three types of queries. The total costs for the
cases a = 0.2, 13 = 0.2, 7 = 0.6, and n = 3, 10 are illustrated in Figure 9.
By this figure, we can see that, in both cases n = 3 and n = 10, an arbitrary
strategy can be optimal according to the query/migration ratio.

For a given query/migration ratio and a given network scale n, the domain in
which each strategy is optimal is illustrated by Figure 10. We can see by this
figure that all strategies can be optimal according to the query/mobility ratio
and the network scale n. BQF is better than the others if migration is assumed
to be frequent, while SBN or WBN are best used if the occurrence of queries

612 CHAPTER 22

O 6 0

n =3

/
BQF

• ;3 -> '

, • 5 : ; ; ^ SDN

30

" / •
jjj^ '^i^--2 r > ^

WBN

/
•^I^^ teis^ SBN

10' 15

Query/Migration Ratio

n = 1 0

"3
f2 /BQF

t
i

WBN

WDN.. .u l l l»»"*"

WllU*'
«.«•»»'

tfill^l
. ^ . - . • - " I D N

;r.iun«»»Hl! •«riw»*
,!«••«'

lluiiM'*

Ulli*>{

SBN

15
Query/Migration Ratio

Figure 6 Total cost comparison of an n-grid topology for L queries.

Strategies for Query Processing in Mobile Computing 613

O 6 0

n=3

/
'BQF

/

^ . . • » *

WDJJ»»»'

30

— /
^ j ^ 1

f ; ^ - ^ -
WBN

^
^

10' 15
Query/Migration Ratio

n = 1 0

^#BQF

r

/

L,.»»r...

/ ^ < : : : : : -

.̂ •r
.-̂ •̂ # - - ^ - -

^.-^». *»*•• »»»̂ »i

..••••

. . „ . „ . ^ „ „ _ „ „ ^

•.•^'

. , ^ 5

SDN

WBN

,„•%•••••** WDN

15
Query/Migration Ratio

Figure 7 Total cost comparison of an n-grid topology for E queries.

614 CHAPTER 22

O 5 0

o
H

« = 3

W -^;,,-^^^^

30

• /V î;̂ .̂

•3
(2

10' 15
Query/Migration Ratio

n=10

u-:i:

i
i

/BQF
i

/
r

Z
.-••' ̂̂ •̂'

i
i
i

i

I

^

WBNJ»»

; - . - . « ^ *••: * • • ' ...-i-
*••"

»»»' mi!." ,»»»»' ,.»»«' „i« !»»«' m*' ,!>»«' # ' ...••^

•.i"ii«
S B N . ^ . . - *

• • - " • ^ - • • " ^
WDN . f i l * ^ * ^

^ t » ^ . r ! . ? D N

15
Query/Migration Ratio

Figure 8 Total cost comparison of an n-grid topology for D queries.

Strategies for Query Processing in Mobile Computing 615

O 6 0

•a
(2

/

/

ifBQF

n =3

SDN ^ * •̂•̂
^ * •̂•̂ WDN i

':;»• "zss**
^ ^ ^

30

/ •€^.

/

^ ^ . ijifi-

K*- : . i^
.J^f^'

.x^'

10' 15
Query/Migration Ratio

AI=10
i

iBQF
i

0
i
i

i
i
i
i
i

WBN - • - t

j , ^ » * ^ | * .

:..H

i
i
i

i
i
i
i

.^••^SBN

.^^. .s<**'
if̂ '*'

.t^^'«^•'•

f * ' — f •^jl-»-""i'(

15
Query/Migration Ratio

Figure 9 Total cost comparison of an n-grid topology for case a = 0.2,/? =
0.2,7 = 0.6.

616 CHAPTER 22

Network
Scale n

BQF

10 Query/Migration Ratio

Figure 10 Optimal strategy for n-grid topologies.

is assumed to be frequent. Default-bcised strategies SDN and WDN are more
scalable than broadcast-based strategies. The costs for SDN, WDN are 0{n)^
while those for SBN, WBN, and BQF are 0{ri^). From this comparison we
can say that broadcast-based strategies are not appropriate for a large scale
network.

Example 2 : binary tree topologies (depth n) . Consider the network
topology shown in Figure 11, which is scaled by integer n. Here the default
server for each mobile host is the root of the tree. Leaf systems are mobile host
servers as well as query servers.

A wide area network is a typical example of a binary tree topology. The inter
net, with its hierarchical construction rooted from a single backbone, is based
on a binary tree topology. This topology is appropriate for the manual config
uration of routing tables since there is no possibility of packet looping and no
alternative choices of the forwarding direction for a given destination.

The cost is estimated from the hop count between servers. Here we assume that
queries are invoked randomly by each mobile host. B, H, and D are expressed
as follows:

Strategies for Query Processing in Mobile Computing 617

n /v.
_rL JA
T\ 7T 7T TT

f *) I default server for all mobile hosts

|| | |l query server & mobile host server

F i g u r e 1 1 B i n a r y t r e e topo log ies .

B^Q) = B(^) = 2 ^ - 2
ll = 2{n - 2) + 2^-^
D(Q) = D(^) =n-l

When we assume a = 0.3, /? = 0.2, and 7 = 0.5, the optimal strategy for a given
n and the query/migration ratio is shown in Figure 12. We can see from this fig
ure that all strategies can be optimal according to n and query/migration ratio.
We can also see a similarity to grid topology in this case. Since broadcasting
costs 0(2^) in this case, the tendency in scalability is more conspicuous.

5 CONCLUSIONS

In this paper, we have discussed three types of queries L, E, and D for dealing
with mobile hosts and have shown five strategies SBN, WBN, BQF, SDN, and
WDN for query processing. We have analytically compared their performance
from a network cost point of view and shown how the optimal strategies vary
according to the conditions such as the migration rate of the mobile hosts,
the query occurrence rate, and the scale of the network. The comparison was
carried out for two typical network topologies: grid topology and tree topology.

618 CHAPTER 22

Network
Scale n

BQF

10 Query/Migration Ratio

F igure 12 Optimal strategy for binary tree topologiea.

As a result of this paper, we could say that implementing all these strategies
enables mobile users to select the optimal strategy when the network conditions
for each user differ.

The scope of this paper has been fundamental strategies. Several advanced
techniques, such as cachCy interception [18], hierarchical server [2] or pointer
[9], were not taken into account in the cost analysis. The evaluation of the
strategies using the abovementioned techniques is one of our important future
research issues.

REFERENCES

[1] Alonso, R. and Korth, H.F., "Database System Issues in Nomadic Com
puting," Proc. of ACM-SIGMOD'93, pp.388-392, 1993.

[2] Awerbuch, B. and Peleg, D., "Concurrent Online Tracking of Mobile User,"
Proc. of ACM-SIGC0MM'91, pp.221-233, 1991.

[3] Bar-Noy, A., Kessler, I., and Sidi, M., "Mobile Users: To Update or not to
Update," Proc. of IEEE INFOCOM'94, pp.570-576, 1994.

Strategies for Query Processing in Mobile Computing 619

[4] Carlberg, K.G., "A Routing Architecture That Supports Mobile End Sys
tems," Proc. of IEEE MILCOM'92, pp.159-164, 1992.

[5] Dieplstraten, W., Ennis, G., and Belanger, P., "DFWMAC: Distributed
Foundation Wireless Medium Access Control," IEEE P802.11-93/190,
1993.

[6] Forman, G.H. and Zahorjian, J., "The Challenges of Mobile Computing,
IEEE COMPUTER," Vol.27, No.4, pp.38-47, 1994.

[7] Hahn, J.J. and StoUe, D.D., "Packet Radio Network Algorithms: A
Survey," IEEE Communications Magazine, Vol.22, No.l l , pp.41-47, 1984.

[8] loannidis, J., Duchamp, D. and Maguire Jr., G.Q., "IP-based Protocols for
Mobile Internetworking," Proc. ACM-SIGC0MM'91, pp.235-245, 1991.

[9] Imielinski, T. and Badrinath, B.R., "Querying in Highly Mobile Dis
tributed Environments," Proc. of VLDB'92, pp.41-52, 1992.

[10] Imielinski, T. and Badrinath, B.R., "Data Management for Mobile Com
puting," ACM SIGMOD RECORD, Vol.22, No.l, pp.34-39, 1993.

[11] Imielinski, T. and Badrinath, B.R., "Mobile Wireless Computing: Solu
tions and Challenges in Data Management," Technical Report DCS-TR-
296, Department of Computer Science, Rutgars University, 1993.

[12] ISO 9542, "Information Processing Systems - Telecommunications and In
formation Exchange between Systems - End System to Intermediate Sys
tem Routeing Exchange Protocol for Use in Conjunction with the Protocol
for Providing the Connectionless-mode Network Service (ISO 8473)," 1988.

[13] ISO/IEC 10589, "Information Technology - Telecommunications and Infor
mation Exchange between Systems - Intermediate System to Intermediate
System Intra-Domain Routeing Information Exchange Protocol for Use
in Conjunction with the Protocol for Providing the Connectionless-mode
Network Service (ISO 8473)," 1992.

[14] Korth, H.F. and Imielinski, T., "Mobile Computing: Fertile Research Area
or Black Hole?," Proc. of VLDB'93, pp.699-700, 1993.

[15] Madhow, U., Honig, M.L. and Steiglitz, K., "Optimization of Wireless
Resources for Personal Communications Mobility Tracking," Proc. of IEEE
INFOCOM'94, pp.577-584, 1994.

[16] Moy, J., "OSPF Version 2," RFC 1583, 1994.

620 CHAPTER 22

[17] Perkins, C.E. and Bhagwat, R., "A Mobile Networking System based on
Internet Protocol," IEEE Personal Communication, Vol.1, No.l, pp.32-41,
1994.

[18] Tanaka, R. and Tsukamoto, M., "A CLNP-based Protocol for Mobile End
Systems within an Area," Proc. of IEEE International Conference on Net
work Protocols, pp.64-71, 1993.

[19] Teraoka, F., Yokote, Y., and Tokoro, M., "A Network Architecture Provid
ing Host Migration Transparency," Proc. of ACM-SIGC0MM'91, pp.45-
65, 1991.

[20] Tsukamoto, M. and Tanaka, R., "A Routeing Protocol for Wide Area Mi
gration using Default Address and Remaining Lifetime Parameter," IPSJ-
DPS-Report 58-3, pp. 17-24, 1992 (in Japanese).

[21] Tsukamoto, M., Tanaka, R., and Tsumori, O., "Supporting ES-Migration
within Areas in CLNP Networks," IPSJ-DPS-Report 61-30, pp.227-234,
1993 (in Japanese).

[22] Wada, H., Yozawa, T., Ohnishi, T., and Tanaka, Y., "Mobile Computing
Environment Based on Internet Packet Forwarding," Proc. of 1993 Winter
USENIX, pp.503-517, 1993.

[23] Yuan, R., "Traffic Pattern Based Mobile Routing Scheme," Computer
Communications, Vol.18, No.l, pp.32-36, 1995.

23
THE CASE FOR WIRELESS

OVERLAY NETWORKS
Randy H. Katz and Eric A. Brewer

Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley,

CA 94720-1776.

ABSTRACT

Wireless data services, other than those for electronic mail or paging, have thus far
been more of a promise than a success. We believe that future mobile information
systems must be built upon heterogeneous wireless overlay networks, extending tra
ditional wired and internetworked processing "islands" to hosts on the move over
coverage areas ranging from in-room, in-building, campus, metropolitan, and wide-
areas. Unfortunately, network planners continue to think in terms of homogeneous
wireless communications systems and technologies. In this paper, we describe our
approach towards a new wireless data networking architecture that integrates diverse
wireless technologies into a seamless wireless (and wireline) internetwork. In addi
tion, we describe the applications support services needed to make it possible for
applications to continue to operate as mobile hosts roam across such networks.

1 INTRODUCTION

With the recent award of the PCS licenses (data and otherwise), combined
with the successful rollout of digital direct broadcast satellite services, the dig
itization of cellular services, and the emerging deployments of cellular packet
services, alternative wireless voice and data services are poised to proliferate.
Unfortunately, network planners continue to think in terms of homogeneous
wireless communications systems and technologies, providing either low band
width connectivity over the wide-area (for short messaging or email) or high
bandwidth connectivity over a small area like a building (for conventional In
ternetwork access). Nobody seems to know what will be the "killer" wireless

622 CHAPTER 23

Wide-area Overlay Networks

Regional-Area

Metropolitan-Area

Campus-Area Packet Relay

Figure 1 Wireless Overlay Networks

data application. While the marketing focus is on bandwidth, from an appUca-
tions perspective, packet latency is as important an applications enabler. Yet
latency in wireless data networks has not been well characterized.

Future mobile information systems are Hkely to be built upon heterogeneous
wireless overlay networks^ extending traditional wired and internetworked pro
cessing "islands" to hosts on the move over a wide area. For example, a high
bandwidth in-room infrared (IR) network can be "overlaid" with a more mod
erate bandwidth radio frequency (RF) network to provide connectivity between
areas of IR coverage. Or a low-tier (low mobility) in-building PCS system could
be overlayed with a high-tier (high mobility) PCS system to provide cost effec
tive connectivity bridging local and wide areas. Figure 1 illustrates the general
concept of wireless overlay networks.

Because they are constructed from such diverse wireless technologies with dif
ferent engineering constraints, overlay networks vary widely in bandwidth, la
tency, and coverage. One cannot expect a wide-area system to compete in

Wireless Overlay Networks 623

terms of bandwidth with an in-building system. The transmission power and
methods for handling multipath fading are very different. From our viewpoint,
the key technical challenge is to develop overlay internetwork management and
applications support services that allow mobile applications to operate across a
wide range of network performance, roaming among potentially competing ser
vice providers, and choosing among alternative overlays for best performance
given the current network state and application needs.

To verify the utility of the overlay concept, we are creating a wireless overlay
network testbed in the San Francisco Bay Area as a collaboration with several
network service providers and technology developers, spanning from in-building
wireless LANs to direct broadcast satellite systems over a regional area. We are
developing pilot applications to drive the design and validation of the interfaces
between applications and the network. Our overarching goal is to demonstrate
a scalable architecture that can support wireless access across multiple overlay
networks while delivering high levels of end-to-end performance to applications.

The rest of this paper is organized as follows. In the next section, we illus
trate the value of the overlay concept by giving an applications scenario that
could only be possible were such technologies available. In Section 3, we de
scribe existing and emerging wireless data technologies, and their strengths and
weaknesses for supporting bandwidth and latency-sensitive applications. Our
"gateway-centered" overlay architecture is presented in Section 4. Mechanisms
for network management and handoff are described in Section 5, and our ap
proach for application support services is given in Section 6. Section 7 describes
related work. Section 8 presents our summary and conclusions.

2 APPLICATIONS ENABLED BY
WIRELESS OVERLAYS

Consider the following scenario of future applications made possible by wireless
overlay networks. A traffic helicopter observes a serious auto accident on the
Golden Gate Bridge. It communicates for an emergency medical team to be
dispatched to the scene. The helicopter, using a wide-area overlay network,
transmits low frame rate digitized video of the crash site to the medical team,
to assist them in assessing the severity of the crash and the need for supporting
units. They decide to request backup. The helicopter crew also establishes
a two-way audio conversation with the ambulance driver to direct him to the

624 CHAPTER 23

scene via the least congested traffic route, perhaps forwarding the medical team
a street map with a hand annotated route.

At the scene, the medical team and police units free the victims from the
wreckage, stabilize their condition, and head them to Mount Zion Hospital in
San Francisco. The victims are identified, and one of the injured passengers
has a serious head injury, requiring immediate emergency surgery. The team
requests the preparation of a suitable medical facility at the hospital. Critical
medical information — such as patient reactions to various medications —
is downloaded from a regional computer-based patient care record archive at
the UCSF Medical Center to the medical teams in the ambulances, again via
a wide-area wireless network. Simultaneously, detailed patient records and
archived neuro-images are forwarded to an image file server at Mount Zion via
a high performance wireline network. The in-hospital wireless network allows
the emergency room physicians to retrieve and view the patient's images and
records on their portable multimedia devices while on the move. They decide
that a CAT scan should be performed on the patient upon arrival. The new
scan, combined with existing patient information, will support their planning of
the proper surgical suite and determination of a course of operating procedure.

After the ambulance arrives at Mount Zion, the patient is taken to the CAT
scanner. The archive system automatically appends the new neuro-images
with the victim's existing patient information. The surgical team assesses the
injury's seriousness based on this new information, and decides that a 3-D
reconstruction of the CAT images is needed. Mount Zion Hospital requests
UCSF's high performance computers construct a 3-D visualization of the head
trauma and provide a computer-assisted guide for the surgical procedure. These
are instantaneously forwarded to Mount Zion via the wireline network Hnking
the hospitals, where they are rerouted to the surgeon's portable display via
the wireless in-hospital network while he is enroute to the operating room. Its
unusual nature prompts him to hold an impromptu video consultation with a
distinguished neurosurgeon on his way to a lecture at the UCSF Medical School
across town. Just as the two doctors agree on a course of surgery, the stretcher
is wheeled into the operating room, and the neurosurgeon steps into his lecture
hall.

This scenario illustrates several requirements that we believe broadly charac
terize a wide range of "tactical" applications in emergency response, public
safety/law enforcement, and military operations:

Wireless Overlay Networks 625

Seamless interoperation of wide-area wireless overlay communications for
operational units on the move, able to exploit higher quality communi
cations inside buildings yet still able to provide useful functionality over
wider-area, lower bandwidth, higher latency wireless technologies;

Access by mobile applications to the full computation and information
resources of in-building infrastructures, e.g., distributed processing, visu
alization, and digital library access;

Rapid exchange of media-rich data, including video images, audio com
munications, annotated maps and graphics, handwriting and text, all in
support of decision makers on the move, in real time where possible, and
in near real time otherwise;

Type-sensitive data exchange adapted to the available communications
quality, exploiting mechanisms like bandwidth-adaptive compression, latency-
adaptive mobile host frontend processing and wireline backend processing.

3 APPLICATIONS VIEWPOINT

Wireless data networks, beyond simple paging and messaging, have been con
siderably more promising than successful to date. Some experts believe that
there are no more than 100,000 wireless data users in the U.S. (compared to
25 million cellular telephone users!). No single technology offers the ideal com
bination of network parameters: wide-area coverage, high bandwidth and low
latency, with support for vehicular as well as pedestrian mobility. To yield
flexible connectivity over wide areas, what is needed is a wireless internetwork
formed from multiple wireless overlays interconnected by wired segments.

The marketing literature for wireless is fixated on bandwidth, but there is little
discussion of other equally important quality metrics, such as latency, expected
packet loss rates, probability of packet retransmission, and available bandwidth
per cubic foot (eff'ectiveness of frequency reuse). In addition, it is important
to understand user and applications needs, and how well these are met can be
met by a wireless network. For example, a 10 mbps Ethernet typically supports
50 users; a 1 mbps in-room IR network designed to support 5 users collocated
in the same room might be just as effective. Certain applications, such as
World Wide Web browsing, are reasonably tolerant of latency. Others, like
Eudora-style decoupled mail access, can operate quite well even in a network
environment characterized by high latencies. Critical issues for wireless network
technologies are scaling performance with increasing user densities, handling

626 CHAPTER 23

asymmetric bandwidth (it is frequently the case that downlink bandwidth is
higher than uplink), supporting hybrid networks (diflFerent technologies for the
downlink and the uplink, as is the case in satellite direct broadcast systems),
support for roaming and mobility (e.g.. Mobile IP), and the relative power
consumption of alternative wireless technologies.

Consider the following set of wireless technologies and their relative perfor
mance advantages and disadvantages:

In-Room Infrared: Infrared technology is attractive for providing wire
less connectivity for well defined physical spaces like offices and meeting
rooms (typically 30 m x 30 m). Commercially available diflFuse IR devices
achieve 1 mbps (e.g., Photonics). Observed latencies are comparable to
wireline networks. Research devices have been successfully demonstrated
at 50 mbps [11]. Even more modest megabits per second should allow
reasonable quality compressed video and high quality audio. Directed IR
interfaces are expected to be inexpensive and ubiquitous in future PDAs
and laptop computers (Apple Newton, Sony Magic Link, HP palmtops,
newest generation of IBM Thinkpads, etc.), although they are primarily
being contemplated for interfacing to peripherals and docking stations.
Nevertheless, these could be adapted to networking uses.

In-Building Radio Frequency: Numerous wireless local area networking
products are commercially available using spread spectrum in unlicensed
ISM bands. They yield bandwidth in the 1-2 mbps range, but whether this
bandwidth is really reused among adjacent cells varies among the prod
uct implementations (for example, the popular AT&T WaveLAN devices
cannot reuse frequencies because they do not use orthogonal spreading
codes). Good quality compressed video and high quality audio can be
achieved as long as user densities are kept modest. A typical cell size is a
several hundred feet — enough to cover perhaps half the floor of a mod
ern university building. Picocellular architectures with much smaller cell
sizes are more interesting in terms of aggregate bandwidths, but today's
economics makes the approach somewhat expensive. The newest genera
tion of WLANs support PCMCIA interface cards, making these useful for
truly portable devices like PDAs and laptops. While typically implemented
with a base station/mobile node architecture, the radios can easily support
packet radio techniques. It is simply a small matter of programming!

Campus/Metropolitan Area Packet "Relay" Networks: Metricom is an
example of a deployed packet radio network that supports multihop po-
letop radios, geographical routing, and pedestrian mobility. The routing

Wireless Overlay Networks 627

problem is easier than general packet radio networks since the poletop
infrastructure radios do not move. 100 kbps radio-to-radio transmission
rates are supported, with modem-to-poletop bandwidths in the 20-30 kbps
range. The available bandwidth must be shared among all users in the cell,
which could be 1 to 5 miles in diameter (though for high traffic areas, they
could be as small as 100 feet). Latency is a function of the number of radio
hops before reaching wireline access to the Internet. Assuming an uncon-
gested network, the latency is about 40 ms between modem and poletop,
and 20 ms for each additional hop. 2-3 hops are typical. More poletop
radios help to increase the aggregate bandwidth, but additional wireline
connections are also needed to keep the number of hops less than four
(also, poletop radios around the wireline access point are likely to be "hot
spots," leading to increased congestion).

Wide-Area Packet Switched Data Networks: Cellular Digital Packet Data
(CDPD) is a wide-area data overlay to the analog cellular system now
being deployed. The system is designed for instantaneous transmission
rates at 19.2 kbps, but this will be difficult to sustain, especially during
times of peak demand for cellular voice services. Pricing remains high, in
the range of 10-18 cents per KByte, making the service most cost effective
for short messages and data transactions like credit card authentication.
Latencies will be highly variable, depending on the competing cellular voice
traffic. Other wide-area data systems currently deployed include ARDIS
and RAM Mobile, providing two-way paging-like services under 10 kbps.

Regional-Area Satellite Data Networks: There are numerous low earth or
biting (LEO) satellite proposals on the drawing boards for the latter part of
this decade, planning to offer low data rate services (Teledesic claims it will
support multi-megabit rates, but cost is unclear). Deployed Direct Broad
cast Satellite (DBS) and Very Small Aperture Terminal (VSAT) services
provide shared high data rate downlinks. However, these incur relatively
high latencies due to geosynchronous orbit transit times. Furthermore,
for DBS the uplink is over non-satellite links, adding some complexity to
the system design. The combination of asymmetric communications over
hybrid links yields special challenges for the applications developer.

It may appear that the concept of multiple overlay networks will be seriously
impeded by the mobile host's need for multiple transmitter/receiver systems.
Yet even today it is possible to simultaneously configure a laptop with network
adapters for in-room diffuse IR, in-building RF, campus-area packet radio (con
nected to the serial port) and wide-area CDPD (replacing the floppy drive). The
rapid development of multimode radios, for example as described in [15], will

628 CHAPTER 23

likely yield radios that can integrate such alternatives into a more convenient
package.

4 GATEWAY-CENTRIC NETWORK
MANAGEMENT

4.1 Introduction

We believe that IP and TCP/UDP will provide the basic network and transport
layers upon which overlay and wireline networks will be integrated. Neverthe
less, new interfaces are needed that reveal more about the underlying perfor
mance capabilities of the networks to applications. Effective management of
overlay networks requires protocol extensions that reach down to the network
layer. To build the extendible and scalable mobile information systems, able
to deliver high quality connectivity to mobile applications over the wide area,
the following challenges must be addressed:

Seamless Integration of Overlay Networks: No general network manage
ment architecture exists for effectively integrating multiple overlay net
works. Mobile applications roaming across overlays requires network intel
ligence to determine that the mobile has moved from acceptable coverage
in one network to better coverage in another. But a global network man
agement algorithm is still needed to control handoffs across overlays based
on current mobile connectivity. Link quality is only one metric that de
termines handover; priority of access, applications needs, and relative cost
are equally important. Since overlays may not cooperate with one another
to render such decisions, it is crucial to support mobile assisted handoff in
which the mobile host must be an active participant in handoff processing.

Support Services for Mobile Applications: Handover across overlays will
change an application's network bandwidth and latency. Needed is a new
applications interface to the network management layers to allow them to
initiate handovers, to determine changes in their current network capa
bilities, and to gracefully adapt their communications demands. Mobile
applications and scalable wireline processing and storage capabilities could
be better integrated through agent processing architectures that exploit
data type specific transmissions to manage the communications demands
over dynamically varying wireless links.

Wireless Overlay Networks 629

Figure 2 Network-Centric View

Managing Mobile Connections to Support Latency-Sensitive Applications:
Handoffs must be executed with lower latency than is now possible if (near)
real-time multimedia applications are to be well supported. One strategy
moves the routing and resource allocations to local subnets. For example,
roaming authentications can be cached locally to avoid repeated remote,
latency-intensive transactions. Needed are algorithms that exploit infor
mation about the location of mobile devices, the geographical adjacency
of cells, and the likely routes devices might take, to improve handofF pro
cessing. End-to-end strategies like Mobile IP provide routing, but fall far
short for latency-sensitive connection-oriented services. More hierarchi
cal approaches, which localize information collection to the region or the
subnet containing the users, are more scalable.

Load Balancing for Scalable Mobile Processing: Repositioning within fu
ture wireless networks will be a common event. Traffic patterns will not
be uniform, with high correlations between mobile host location, their
repositionings, and their requests for service. Needed are network man
agement architectures that build on decentralized algorithms to allocate
network and processing resources on demand, avoiding the static and cen
tralized schemes of the past. Furthermore, overlay networks provide an
opportunity to share bandwidth and processing across networks; current
network load is one reason to initiate internetwork handofF.

4.2 The Gateway-Centric Architecture

The design of conventional wireless networks places the mobile host at the
center, with gateways to other networks placed around the boundaries of the
wireless subnetwork. Figure 2 illustrates this concept for a packet radio net-

630 CHAPTER 23

GEO. MEO.
, E 0 VvSAT Nets!

Satellite
Direct

Broadcast Net

In-Room
I IR Network i

Cooperative Overlay^
Networks

Paging
Networks

Cellular
Packet

1 Data Net

Overlay ^ -̂̂
Internetwork

Gateways A ^

1 In-Building m
RF Network ffi

Multi-Hop 1
Packet f-^adio

Network J

Campus-Area
Packet Relay

Network

Figure 3 Gateway-Centric View

work. Such an architecture requires that the wireless network be homogeneous
in terms of technology, i.e., air interfaces or network protocols, an assumption
that is certainly not operative in commercial wireless networks, nor one that is
likely to be the case in many hastily deployed tactical environments.

We describe our approach, on the other hand, as gateway-centric (see Figure 3).
In the gateway-centric view, the subnet-to-subnet gateways are placed at the
center of the architecture. Diverse wireless (and wired) networks are integrated
through software that mediates between the mobile and the networks it could
possibly connect to, supporting the mobile as it roams among the multiple
wireless networks. The figure shows specific instances of commercially available
wireless networks we are building into our gateway-centric architecture; those in
black are networks we currently have access to, those in gray are other networks
of interest. We are considering these other networks, such as the militarily
important multihop packet radio networks and the emerging multiple satellite
systems (MSSs) scheduled for deployment in the latter part of this decade,
during the design of our overlay internetworking architecture.

The figure also introduces the important concept of cooperative wireless overlay
networks. Most wireless networks, deployed by competing service providers (or
in the military context, by somewhat distrusting coalition "allies"), provide
little controllability above the subnet for routing, network management, or
applications support purposes. We call such networks black pipes, because
packets transfer between the wireline gateway at one end and a wireless link
to/from the mobile at the other with no control over routing, priority, quality of
service, etc. Cooperative networks, on the other hand, provide greater visibility
of the network control functions to the gateway as well as application-level
software, enabling management software to balance the network load among

Wireless Overlay Networks 631

Mobile Multimedia Applications
Collaboration Image Exchange Navigation

AudioA/ideo Conferencing Digital Library Access

Applications Support Services
Processor Resource Allocation Agent-based Backend Processing

Transaction Combining to Reduce Latency

A u d l o ^ ^ Video ̂ ^ i m a g e ^ — ^ Maps

Data-type Specific Data Transmissions

Compression/Decompression Multi-layer representations

Session Management

Message Interface over TCP Connections

Overlay Network Management

Wireless TCP

Adaptive QOS Support Connection-Oriented Mechanisms I

Policy-based Network Selection Scalable Network Management|

Network Load-balancing Across Cooperative Overlays

User Tracking Low Latency Handoff
Mobile IP

FT

In-building

Wireless Overlay Subnets

Campus-Area Wide-Area Satellite

18 I I

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 4 Layered Architecture

the cooperating networks or to choose a particular subnetwork for priority
applications, etc.

4.3 The Architecture in More Depth

Figure 4 provides a conceptual architecture for wireless overlay internetworking
and mobile applications support services. Although the functions are arrayed
in layers, we do not believe that a strictly layered architecture is possible. For
example, applications support is likely to need hooks into the transport and
network layers (see Section 5 for more details). Working bottom up, the layers
and the functionality they provide are described in the following subsections.

Wireless Overlay Subnetwork Layer: This corresponds to the physical, data
link, and network layers in the OSI terminology. It represents the independent
wireless networks we are integrating into our overlay architecture. These net
works interface to the rest of the architecture through the standard Internet IP
protocol suite. In general, the details of the underlying physical channels, me
dia access protocols, link-level protocols, and routing protocols are not visible

632 CHAPTER 23

above this layer, because these are provided by a commercial network service
provider, our so-called "black pipe" networks. There is no way for us to take
advantage of them at the next level up, the Overlay Network Management
Layer. However, for in-building RF and IR networks, we have the ability to
fully expose the underlying protocols, including those that control handofF de
cisions.

For example, IR provides advantageous cell confinement, finer location tracking,
better spectrum reuse, and higher aggregate bandwidth with the potential for
higher raw bandwidth. IR is particularly well suited for confined spaces, Hke
offices and meeting rooms. However, handoff" between IR cells is not easily
accomplished, especially when crossing into large open spaces like corridors. An
RF overlay advantageously provides connectivity for these gaps in IR coverage,
as well as providing an alternative source of bandwidth for areas of heavy traffic.
We can exploit this kind of exposed information, such as the degree to which
network resources are already allocated to mobile hosts, to demonstrate the
capabilities of cooperative management of overlay networks.

Overlay Network Management Layer: The design and implementation of this
layer are crucial for the success of the wireless overlay network concept. This
corresponds to the network and transport layers in the OSI terminology, with
extensions to manage the multiple overlay networks. It builds an internetwork
on top of the independent wireless (and wired) subnetworks. It must handle
the complex issues of routing packets across heterogeneous subnets, while also
choosing the most appropriate wireless network to provide end-to-end connec
tivity to the mobile host given the application's specifications for quality of
service.

Existing protocols, like Mobile IP, provide an initial solution for the mobile
host routing problem. However, Mobile IP was not designed to support contin
uous media streams nor to provide low latency handoflFs. The protocols must
still be extended to exploit user tracking and local geographic information, to
better support low latency handoffs within and between networks with exposed
routing control, and must be better integrated with the emerging protocols for
supporting quality of service concepts for real-time and near real-time data
streams.

Tracking users and managing their handoffs in regions of high user density
generates considerable additional processing load. The key to maintaining low
latency in the network management algorithms is to design these algorithms
to exploit scalable processing techniques, such as harnessing network of work
stations (NOWs). This layer of the architecture should take full advantage of

Wireless Overlay Networks 633

the distributed processing power of NOW clusters, especially for in-building
networks.

Existing handoff algorithms have been designed for homogeneous wireless sub
networks. Algorithms to support handoff between heterogeneous subnets are
considerably more complex. They will need to base the handoff decision on
application-specified policies as well as periodic measurements of the quality of
the underlying network connectivity by the mobile host.

These policies can constrain the feasible handoffs. For example, an application
might specify that high priority traffic traverse the available connections with
the lowest latency, regardless of cost. Less critical traffic might be constrained
to travel over the lowest cost connections currently available. Clearly the goal
is to get the data through, so issues like signal quality, bit error rates, and
the resulting probability of packet loss and retransmission must be considered
as part of the handoff decision process. Under certain conditions, the handoff
algorithm might defer switching its connection to a higher latency channel,
even though it has better signal quality due to stronger signal strength, from
a low latency channel with a weak signal.

Maintaining multiple powered-on network interfaces is an expensive proposition
for the mobile host. For reasons of extending battery life, we assume that only
one network interface is powered on and selected for providing connectivity to
one overlay network at any point in time. Other interfaces will be in a standby
mode, and powered up from time to time to determine the quality of connec
tivity to their respective overlays. A trade-off exists between the frequency
of determining link quality, the power consumed by the operation, and how
up-to-date the information is about the network state to drive handoff decision
making. When the mobile is low on power, a good strategy is to connect to the
network with the lowest transmitter power demands, and the handoff algorithm
in the mobile may scale back the frequency of probing other overlays. System
context may also dictate the frequency of probes. For example, as the mobile
moves towards the fringe cells of its current network overlay, a good strategy
would be to increase the probes to alternative overlays.

We are defining a rules-based languages for describing network selection policy.
Such a specification will identify the application's relative priority of charac
teristics to drive the choice of a particular network for connectivity: highest
raw bandwidth, lowest raw latency, lowest usage cost, best overall reliability of
delivery (i.e., lowest packet loss), lightest network load, etc.

634 CHAPTER 23

Within the network management layer, we must extend existing protocols to
improve reliable transport over wireless links and exploit connection-oriented
strategies to provide better support for real-time and near real-time media
streams. Existing real-time protocols achieve their performance guarantees
through admission-control procedures. Once a link becomes fully subscribed,
no new connections are allowed to use that link. New schemes for link sharing
are being developed to better utilize link bandwidth [7]. Yet even in these
schemes, once a connection is granted to an application, it does not need to
tailor its demand. These approaches are of limited use in wireless overlay
networks, where applications must be able to adapt dynamically to dramatic
changes in the quality of their connectivity as they move between networks.

Since entire subnets are "black pipes," we must depend on end host adaptation
to changes in the network characteristics, rather than strong support from the
network, such as resource reservations. We must extend support for adaptation
beyond the applications-independent protocol stack to the actual applications
running on the mobile host. We are developing a strong coupling between the
underlying networks' capabilities and application demands. This is yielding
new quality of service protocols, methods for characterizing network quality and
availability of alternative connectivity, and call-back service alert mechanisms
to the application.

Session Management Layer: This layer provides applications-independent ses
sion mechanisms. One example of a very useful session level mechanism is a
message-oriented interface built on top of a single TCP connection. Without
such a capability, applications like the World Wide Web that use TCP, but need
a message-oriented interface, are forced to use a separate TCP connection for
each message. The inefficiencies of the standard approaches are considerable.

Data Type Specific Transmission Layer: This layer provides specialized func
tions for applications to manage the transport of data type specific objects.
Multimedia applications process audio, video, image, and other semantically
rich data types. We are implementing mechanisms to support alternative repre
sentations and compression/decompression schemes for commonly encountered
data types for multimedia applications to allow a flexible trade-ofF between
bandwidth and latency, based on the network selected for connectivity and the
relative cost of using that network, such as network load and bilUng costs.

Applications Support Services Layer: This layer provides resource management
and distributed processing services that allow appUcations to migrate compu
tation between the mobile's environment and the backend processing environ
ment. The quality of network connectivity, in terms of bandwidth and latency,

Wireless Overlay Networks 635

as well as the mobile host's processing capabilities and available battery life,
determines how aggressively to partition the application. The management
of backend processing, choice of data representation, and level of compression
are determined by agents running on behalf of the mobile host in the backend
environment.

Certain application-specific mechanisms can also yield improved efficiency. One
idea is to combine multiple TCP connections into a single connection to reduce
round trip latency. For example, all image link references within an HTML
document could be packaged into a single TCP connection, thereby incurring a
single round-trip network delay for a document spanning multiple images. This
is particularly effective when the network exhibits highly asymmetric communi
cations paths or particularly long latencies, which is often the case for satellite
communications channels.

Mobile Multimedia Applications Layer: This layer consists of the actual mobile
applications exploiting the underlying services and network management func
tions. We expect to reuse major pieces of code across a diverse collection of
applications of conferencing, collaboration, and navigation. These code frag
ments will form the basis for a library of mobile computing modules.

5 OVERLAY NETWORK MANAGEMENT

We are developing new protocols, algorithms, and interfaces to enable contin
uous connectivity, low-latency handoffs within and between overlays, network
load sharing between overlays, and dynamic reallocation of network resources
to areas of high user density. This is being achieved by user tracking, vertical
handoffs, overlay cooperation, and connection-oriented strategies.

5.1 User Tracking, History, Geography

Network management exploits the location of users and their physical environ
ment to yield low latency handoffs and better allocation of resources to high
traffic areas. Particularly inside buildings, it is possible to use the layout to
localize the collection and analysis of tracking information, and to drive the
handoff algorithms. Wide-area overlay networks are not as precise in their
ability to locate users; nevertheless cell sites fall into a natural hierarchy con-

636 CHAPTER 23

Figure 5 Exploiting Geographic Constraints to Assist Handoff Processing

strained by geographical proximity. This can be exploited for limiting the
regions over which user information is collected.

Consider a mobile host receiving a continuous media packet stream while mov
ing through a building. Its path is constrained by the building's physical layout.
Figure 5 shows a floor of a typical building, covered by four RF cells. It is not
possible to traverse directly from Cell A to C.

Knowledge of cell adjacency and likely routes enables "soft handoff." Packets
routed to the mobile in cell A is multicast to the cells it can reach, i.e., B
and D. As the mobile comes within range of one of these, the network chooses
when to shift the routes from A to the new cell. The new basestation will
have already been "pre-charged" with the packet stream. See Figure 6. At
the modest expense of additional buff'ering, backbone network bandwidth, and
inter-basestation control communications, the network control is given flexibil
ity in choosing when to handoff.

The tracking and handoff control processes run on processors in the backbone
network and potentially cover multiple cells. To reduce the processing load,
these could be allocated to highly interconnected "regions" of the building, such

Wireless Overlay Networks 637

Multicast backbone

Figure 6 Multiccist-enabled Soft Handoff

as a single corridor and adjacent offices, chosen so that inter-regional handofFs
are significantly less frequent than intra-region handofFs. One could statically
assign a tracking/handoff process per floor, with multiple processes allocated
to different backend processors for those floors with particularly high traffic
areas (e.g., conference rooms, classrooms). More generally, we are developing
load balancing algorithms for network management that allocate processing
resources based on the network's dynamic traffic patterns. For example, the
algorithms provide more processing cycles to manage handoff at the entrance
and egress areas of the building at the beginning and end of the day, the
classrooms in the morning, and the seminar/meeting rooms in the afternon.
These algorithms must be extensible, accommodating new users and cell sites
dynamically, without requiring global reconfiguration.

Support for "Verticar Cooperative Handoffs: Conventional wireless handoffs
are horizontal, i.e., within a homogeneous wireless subnet. The mobile host or
associated basestation detects a degraded signal as it reaches the fringe area
of its cell. In mobile-assisted handoff, the mobile listens for beacon signals
from basestations in adjacent cells, choosing to register with the cell with the
strongest signal.

Vertical handoffs are new, allowing mobile hosts to roam between overlays (see
Figure 7). The mobile host, or higher level network management, determines
when to switch the connections to an alternative overlay network, driven by
signal quality, network load, or the costs of using one overlay versus an al
ternative. A rules-based mechanism for allowing applications to define their
preferred connectivity is one avenue we are exploring.

638 CHAPTER 23

Horizontal Roaming Verticai Roaming

Figure 7 Roaming in Wireless Overlay Networks

When moving between overlays, registration and authentication latencies can
be considerable. This can be reduced if they are cached, for a limited time
set by policy, within the subnet gateways, this reducing multiple, high latency
authentications back to mobile's home system.

For in-building networks, we selectively violate strict network layering to expose
information from below the network layer to higher level overlay management
software. The allows wireless subnets to cooperate in order to reduce vertical
handoff latency as well as to better share connectivity and network loading
between alternative overlays. Our cooperative overlays are formed from inde
pendent in-building IR and RF physical networks. They are treated as logically
independent networks that can only be integrated through overlay management.

Consider a group of mobile users in a meeting room. The in-room IR network
provides the preferred connectivity. But if its bandwidth becomes oversub
scribed, resulting in poor service to the mobile hosts in the room, some hosts
can be forced to handover to the RF network. Furthermore, since the overlays
are cooperating, new connections can be set up in the RF overlay in advance of
actual handoff, thereby ensuring that the handoff is executed with low latency.
Several management mechanisms are possible. The IR network could refuse
new connections to mobiles in the high density area, generating mobile-initiated
handover to the RF network. Or the IR network management algorithms could
"request" assistance from higher level management layers, with a more global
view of the condition of the subnets under its control. Certain mobiles could
then be selected for overlay handoff based on their current network performance
needs.

Wireless Overlay Networks 639

Video Server

Crossover Point

Switch

Base Station

Mobile Host

F i g u r e 8 Connection-Oriented Strategies

Connection-Oriented Services for Mobile Hosts: Connection-oriented services
with performance guarantees provide useful network support for multimedia
applications [6]. The guarantees are typically achieved by reserving network
resources in advance. The dynamic nature of mobile handofFs introduce compli
cations; it is impractical to reserve all future channels. Rather than tear-down
connections only to rebuild them, we pursue an incremental strategy that mod
ifies existing connections by partially re-establishing them after a horizontal
handoff. This method exploits the locality of logically adjacent cells to limit
the amount of work involved to re-establish the connection. Figure 8 shows
the situation for adjacent cells A and B. Since the established channel from the
packet stream source to either cell largely are along the same route, only the
tail of the connection needs to be rebuilt.

For "black pipe" networks with no performance guarantees, it is still desir
able to attempt to characterize end-to-end network performance. The net
work management layer will cooperate with the mobile hosts to inject periodic
measurement packets into the subnet to characterize the route's latency and
variability. This source-based rate control mechanism will be used by the ap
plication support layers in the mobile host to determine how aggressively it can
pursue buffering, prefetching, and compression strategies. Wireless spectrum
is far from "free," so readahead should be applied only when the application
can expect a high hit rate in cached data.

Connection-oriented TCP performance can also be improved for wireless links.
It is well known that the standard protocol interprets lost packets as congestion,
employing mechanisms that unnecessarily decrease the rate of transmission.
Our approach caches the unacknowledged TCP packets in the basestation while
performing aggressive local retransmissions over the wireless link by monitoring
duplicate acknowledgements from the mobile host [2]. It requires no changes

640 CHAPTER 23

to TCP's semantics nor to any implementations of TCP in the wireline portion
of the network, except at basestations under our control.

6 APPLICATIONS SUPPORT SERVICES

6.1 Network Servers

Mobile applications will demand access to the same remote computing power
now available from desktops. An attractive, cost-effective model views the
aggregated computing resource as shared among a community of mobile and
desktop users. We believe that the Berkeley NOW server architecture is the
most flexible way to organize the shared, scalable remote computing resource.

How best to exploit this backend computing resource varies with the perfor
mance and reliability of the wireless link (see the next subsection). Neverthe
less, we believe that shared computing power can enable very powerful mobile
services. For example, the Berkeley InfoPad exploits pooled computing power
to permit a small number of workstations to support a large number of end
users. And unlike a distributed system cobbled together from laptops, it is
much easier to share processing and memory resources on behalf of many users
in a NOW.

For cases where the network performance is poor, we will use the network
servers to execute agents on behalf of the mobile units, and to perform applica
tion- and data-specific compression before transmission over the wireless link.
Agents mitigate poor latency by reducing the number of link crossings, while
compression increases the link's effective bandwidth. Both of these strategies
can require substantial cycles from the network servers.

6.2 Uniform Architecture for Applications
Support

The support architecture and development toolkit will support "data type
aware" mobile applications, characterized by access to multiple databases,
media-rich documents, and global network access. Initial approaches are al
ready being investigated by the InfoPad research project, but these assume
high-quality connectivity. We are developing new mechanisms that dynami-

Wireless Overlay Networks 641

cally adjust the application's bandwidth and latency expectations. Each mobile
device has a proxy, which is a process running on the NOW, responsible for
managing the wireless connection, deciding on its appropriate level of compres
sion and encryption, and performing computation on behalf of the mobile client
both interactively and in the background. The proxy has the same access rights
and security privileges as the mobile end user.

The architecture relies on strongly typed transmissions. A dynamically ex
tendable type system enables type-specific compression levels and abstraction
mechanisms for progressive object transmission, thus husbanding link band
width. For example, depending on link quality, we could send a raw, com
pressed, or lossy/highly compressed bitmap to a mobile client. As an extreme
example, we can perform edge detection and OCR on the bitmap of a topo
graphic map, only transmitting the text and edges. This distillation process
produces a summary version that can be used to evaluate the value of the full
bitmap; in the case of the topographic map, the distilled version is usually suf
ficient for making decisions. These techniques exploit the backbone compute
servers to trade software latency to compress for increased effective bandwidth,
thus reducing overall latency. The compressed forms can also be cached to
further increase their benefit.

The development kit is based on Tcl/Tk. We are extending Tcl/Tk is being
to support (1) strongly typed connections with data-specific compression / ab
straction, (2) continuous media, and (3) Internet, FAX, WWW and SGML
access. For example, we are developing a range of bandwidth/computation
trade-offs for each data type, distinguishing between versions, which are in
dependent, from layers, which are part of one version and form a sequence of
increasing detail useful for progressive transmission of objects. For example,
a PostScript object has at least two versions: ASCII text and full PostScript
description. Images in the document, such as a map, use a corresponding
type known to the application support subsystem. A map data type could
exploit layering for progressive transmission, first sending the major roads and
landmarks, and adding layers of increasing detail with each subsequent trans
mission. Layers/versions can have meaningful names; an application can ask
for specific layers, such as a map's "elevation lines" or "county boundaries."

We are also developing cost models based on link instrumentation and statis
tical model fitting. These techniques, which we first developed for mapping
parallel programs onto a variety of platforms [3], can accurately predict the
overall latency for each transmission option for a given data type. The models
include the link latency and the compression/decompression time, and exploit
knowledge of the cache contents. We can decide the optimal format by sim-

642 CHAPTER 23

ply evaluating the models for each level and picking the one with the lowest
predicted latency. The models typically pick the first version to transmit;
subsequent versions are controlled by the user. We will also experiment with
predictive models to minimize access charges, by selecting the cheapest network
and data representation.

The application architecture also provides for prefetching (also known as spec
ulative downloads) and client-side caching. Prefetching reduces latency in ex
change for bandwidth, which is especially useful for asymmetric communica
tions like satellite downlinks. Client caching is advantageous for high-latency or
low-bandwidth links avoiding round trips at the expense of more client memory.
In fact, the user code on the mobile device will be cached using these mecha
nisms, so that the clients can dynamically download missing decompression or
decryption functions as needed.

We can reduce required bandwidth and round trips by allowing applications
to move computation across the wireless link via agent programs. An agent is
just an instance of a small application, so it has access to the same strongly
typed connections as any other, and can use the same mechanisms to adjust its
behavior depending on dynamic link quality. In fact, user code is just another
transmission type and can be sent in either direction. A key issue is the ability
to download untrusted code safely.

We will employ two approaches to code transmission. First, we support scripts
written in Safe-Tcl, a subset of tcl that is safe because it has very limited OS
and file-system access. Safe-Tcl is good for simple agents written by the end
user.

Consider building an application that combines information from multiple het
erogeneous databases, using a full-text web indexer and on-line library card
catalog. Typically the end user must do the combining. Alternatively, an agent
running on the representative can access, combine, and filter the requested in
formation. The agent uses the card catalog to find relevant documents and
the web-indexer to determine which are on line. The end user then receives an
annotated reference list with hypertext links for the documents. The wireless
link is only traversed to start the search and receive this list; alternatively the
results could returned along an alternative path such as e-mail or FAX. The
agent could prefetch abstracts or whole documents should the end user decide
to view an on-line document. Other examples include combining maps and
intelligence reports from multiple sources, and combining patient information
with medical databases.

Wireless Overlay Networks 643

The second approach for code transmission involves dynamically translating
and linking agent code written in a canonical assembly language. We use to-
kenized MIPS assembly as our download format, since it is easy to generate
quality code from C/C-h-h using gcc as a cross compiler. Given code in this
format, we then perform two transformations (in one pass). First, we convert
the code to native assembly for the mobile device; this is manageable in part
because of the simplicity of MIPS assembly. Second, we use software fault
isolation to add native instructions that prevent the code from reading or writ
ing outside of its assigned memory regions, or from executing unauthorized
OS/library procedures. Thus unt rusted code can affect only a predetermined
range of memory and set of procedures. The transformation can occur on the
proxy if the downlink is trusted (possibly through public-key authentication).

This approach enables arbitrarily sophisticated agents, since we can write ef
ficient agents in C/C-f-l- or other languages. This is crucial for adding new
decompression/decryption modules dynamically, since such modules tend to
be CPU intensive. For example, it would not be practical to write an MPEG
decoder in Safe-Tcl. There is a second more subtle advantage, which is that
only the protocol skeleton needs to be permanently installed on the mobile
device. Thus, sensitive code such as custom decryption software can be down
loaded as needed, which implies that lost or stolen mobile devices need not
contain any proprietary or classified information.

Finally, the proxy architecture allows uniform handling of disconnection, since
it maintains state across sessions. The network management layer will notify
the applications support services layer of a disconnection, whether intentional
or not. This allows the services layer to store results until the user reconnects
without any help from the application. This is particularly useful if a connection
is expensive or unreliable, since the user can start an agent (on the proxy)
and reconnect later to get the results. This also gives us more freedom in
implementing fast handoifs; if we temporarily lose the connection during a
handoff, there are no adverse effects and applications will in fact not even
know (unless they asked to be notified).

644 CHAPTER 23

7 RELATED W O R K

7.1 Packet Radio Networks

Driven by the military's need for communications in regions with poor infras
tructures, ARPA initiated its pioneering packet radio program in the early
1970s [12, 13]. The original program focused on algorithms for self-configuring,
self-managing packet switch networks with support for mobile nodes. The
ARPA Survivable Adaptive Networks (SURAN) program of the 1980s focused
on eliminating vulnerabilities, such as network partitioning, in packet radio
networks. [14] reviews the critical packet radio network design issues at the
physical, data hnk, and network layers, while [10] describes the implementa
tion of the routing and network management protocols. As part of these efforts,
algorithms were developed leading to the Reconstitution Protocol (RP), which
manages the partitioning and coalescing of networks while maintaining com
munications to mobile hosts. Researchers at SRI have recently proposed RP as
an alternative to Mobile IP to support internetwork routing to mobile nodes
[5].

Packet radio algorithms for link determination, discovery of network topol
ogy, packet routing, and route dissemination assume a homogeneous wireless
technology. Wireless overlay networks introduce the additional flexibility (and
complexity!) of alternative physical links, with varying performance, along
which to establish network connectivity and to route packets. For example,
the low cost ARPA packet radio could downgrade its transmission from 400
kbps to 100 kbps when operating over poor quality radio links. With overlay
networks, an alternative strategy is to switch connectivity to a different wire
less subnetwork with higher signal quality even though the network exhibits
worse performance metrics, such as lower bandwidth or longer latencies. Fur
thermore, overlays may be able to reconstitute partitions in one network by
providing connectivity through an alternative overlay network. The gateway-
centric approach described in [14] hsts influenced our conceptual architecture.
New kinds of network management algorithms, along the lines proposed in this
paper, are needed for the heterogeneous environment of overlay networks.

7.2 Wireless Data Technologies

We review some of the wide-area data services we have access to in the San
Francisco Bay Area. Metricom is bringing to market a wireless IP packet relay
network, based on wireless modems, poletop radios, and wired access points to

Wireless Overlay Networks 645

the Internet. Cellular Digital Packet Data (CDPD) is a commercially available
cellular data overlay delivering a medium rate, "moderate" latency IP packet
service [17]. It is offered by GTE Mobilenet in the S. F. Bay Area. Nextel
Communications, Inc., whose underlying technology is based on the Motorola
Integrated Radio System (MIRS), offers enhanced special mode radio (ESMR)
services throughout the West Coast, the Northeast, Florida, and Texas. The
technology supports digital voice and data, including acknowledgment alphanu
meric paging (i.e., messages are held and retransmitted until acknowledged by
the mobile handset). Although the initial data offerings are circuit-switched, fu
ture packet-switched services, likely to be similar to CDPD, are being planned.
The service providers understand the importance of providing connectivity to
customer enterprise networks via the Internet.

Pacific Telesis Corporation has recently acquired PCS spectrum licenses in the
San Francisco Bay Area, as well as in Southern California. The evaluation of
alternative technologies is currently underway, with initial network services to
be deployed in 1996. A likely candidate technology is based is the European
digital cellular standard, GSM. Packet data services for GSM, called GPRS,
are still in the early stages of definition. Existing proposals from Motorola and
Nokia are similar to CDPD, but provide somewhat lower data rates.

The International Telecommunications Union (ITU) is moving forward with
its effort to define Future Public Land Mobile Telecommunications Services
(FPLMTS), which are meant to seamlessly integrate cordless and cellular tele
phone overlays with emerging satellite communications services. A similar
Universal Mobile Telecommunications System (UMTS) is being defined by re
searchers in the European Community countries [4]. Both efforts are focused
on voice rather than data services, but eventually packet data will no doubt be
included in these evolving standards.

The Hughes Direct Broadcast Satellites are currently in operation, providing
coverage to most of North America. It is highly asymmetric, with a shared
12 mbps satellite downlink, a wireline Internet gateway uplink, and latencies
greater than 500 ms. Individual users may achieve up to 400 kbps on the
downlink. The system is wireless, but not mobile; its 24-inch satellite dish,
though rapid to deploy, will not support communications on the move. DBS is
attractive for wide-area data distribution or other applications in which more
information can be usefully broadcast on the downlink than on the uplink.
Many applications can take advantage of broadcast-based and asymmetric ac
cess, e.g., distribution to field depots of updates to maintenance manuals, maps,
intelligence reports, etc., and access to the World Wide Web.

646 CHAPTER 23

7.3 Mobile IP

Mobile IP addresses the mobile routing problem, providing connectionless pa
cket service as nodes move through internetworks. Existing implementations
introduce intolerable latencies during handofF, making it difficult to support
continuous media streams across such repositionings. The protocols take no
advantage of local information to reduce handofF latency or to support media
streams across handofFs. Variations of Mobile IP have been proposed to improve
its performance, using a variety of short cut and tunneling schemes (e.g., [9, 16,
18]), but these have not as yet been included in the IETF Mobile IP protocol
specifications.

7.4 Scalable Network Processing and Handoff
Algorithms

The cellular telephone system, with the network intelligence embedded in large-
scale switching offices, represents the kind of centralized network model that is
inherently difficult to scale. The Intelligent Network (IN) architecture attempts
to package services like handofF management as processes, decoupling them
from the network switching nodes. We believe that a more general distributed
networking architecture, based on NOWs, will be inherently more scalable.

Algorithms for cellular handofF have recently gained in attention by the research
community, motivated by the need to scale up handofF processing for the emerg
ing PCS networks characterized by higher user densities, smaller cells, and
increased frequency of cell crossings. For example, [1] has proposed a "region
alized" scheme for managing handofF in cellular networks. When a connection
is established for a given mobile host, virtual circuits are created and associ
ated with all nearby basestations within its roaming region. The mobile host
then has the freedom to choose among any of these to establish its connectiv
ity, without requiring the intervention of any call processor. The latter only
becomes involved when the mobile crosses between regions. The scheme imple
ments regions as a static concept, as a layer just above the basestation leaves.
Load balancing is achieved only through coarse-grained admission control at
the regional boundaries. We believe that a fully hierarchical approach, allowing
arbitrary nesting of regions that could be defined dynamically based on user
densities, would be much more attractive. Furthermore, load balancing at the
leaf level of basestations will be crucial for reducing latency, since in our model,
mobile hosts make heavy use of wireline processing resources.

Wireless Overlay Networks 647

The above approach focuses primarily on reducing handofF bottlenecks by re
ducing the frequency of interaction with the call processing or connection man
agement components of the network. It makes no attempt to exploit local
information or mobile tracking to reduce the latency of handofF. Initial work
specifically focused on latency reduction for handofF has just begun to emerge.
For example, [8] describes a scheme similar in concept to our approach: dy
namic formation of multicast groups based on adjacent cells through which a
mobile is likely to move, with continuous media packet streams buffered at all
basestation members of the group. Knowledge about the physical structure of
the space is used to define the groups, i.e., only physically reachable cells can be
combined into a group. Although the proposed buffer management schemes do
consider mobile velocity, coarse trajectories, and time within cell, the protocols
do not attempt to exploit likely routes through the space of cells, which may
vary based on the time of day. Furthermore, the proposed algorithms have no
scheme for load balancing or processing resource allocation, which can become
a serious issue in areas of high traffic and user densities.

7.5 Adaptive Applications and Network
Performance Guarantees

Applications built on top of overlay networks must be able to adapt to dramatic
changes in performance as the mobile client moves among alternative networks.
Existing network support is not flexible enough. Early work on performance
guarantees (e.g., [6]) used admission control algorithms to deny service when
applications requirements could not be met. Recent research on packet schedul
ing and controlled link sharing [7] provides mechanisms for better utilization
of links, but a dynamic renegotiation of quality of service, either down as more
applications demand access to link or up as contention for the link is relieved,
is still not supported. Because the bandwidth- and latency-adaptive applica
tions we will develop for our overlay networks, we are in a strong position to
develop more dynamic mechanisms for specifying and negotiating quality of
service guarantees in the underlying networks. Upcall mechanisms from the
network layer are clearly needed, to alert applications to changes in their net
work connectivity.

648 CHAPTER 23

8 SUMMARY AND CONCLUSIONS

In this paper, we have described the wireless overlay network concept as a way
to combine the advantages of wide-area coverage while simultaneously achieving
the best possible bandwidth and latency for mobile devices at any point in
time. If we can demonstrate effective, low latency handover between overlays,
we believe that whole new classes of compelling wireless applications will be
enabled. Furthermore, we are developing support mechanisms that make it
possible for applications to adapt to the changes in the quality of their network
connectivity, either being changing data type representations or by moving the
place where computations are performed. In our model, agents moderate these
changes in network connectivity on behalf of applications

Our network management architecture is being designed, deployed, and eval
uated in a wireless overlay testbed being fashioned in the San Francisco Bay
Area, with wireless technology and network services from AT&T, DEC, GTE
Mobilenet, Hughes Aircraft Corporation, IBM, Metricom, Nextel, and Pacific
Telesis. We call this testbed BARWAN or Bay Area Research Wireless Access
Network. To the extent possible, we hope to discover what happens inside
the "black pipes," to better understand how they might be more cooperatively
controlled by our overlay internetwork management algorithms.

We are exploring the possibilities of integrating BARWAN with the Bay Area
Gigabit Network (BAGNet) or other high speed network testbeds being de
ployed in the Bay Area, such as the ARPA-sponsored 10 Gbps Fiber "Ring
Around S. F. Bay." We are seeking collaboration with other Bay Area sites
mutually interested in mobile/wireless technology, such as SRI, Stanford Uni
versity, Xerox PARC, and UC Santa Cruz, to integrate their research networks
into the testbed, further validating its internetworking capabilities.

We hope to be able to make this testbed available to other members of the re
search community, to demonstrate their evolving mobile and wireless technolo
gies. If successful, it will provide an ideal environment for experimenting with
technology interoperability, especially between operational and experimental
networks.

REFERENCES

[1] A. S. Acampora, M. Naghshineh, "An Architecture and Methodology for

Wireless Overlay Networks 649

Mobile-Executed Handoff in Cellular ATM Networks," IEEE J. on Selected
Areas in Communications, V 12, N 8, (October 1994), pp. 1365-1375.

[2] H. Balakrishnan, S. Seshan, E. Amir, R. H. Katz, "Improving TCP/ IP
Performance over Wireless Networks," ACM Mobile Computing and Net
working Conference, Berkeley, CA, (November 1995).

[3] E. A. Brewer, "Portable High-Performance Supercomputing: High-Level
Platform-Specific Optimization," MIT Ph.D. Dissertation, September
1994.

[4] J. S. DaSilva, B. E. Fernandes, "The European Research Program for
Advanced Mobile Systems," IEEE Personal Communications Magazine,
V 2, N 1, (February 1995), pp. 14-19.

[5] B. Denny, J. Escobar, Presentation on "Mobility" at DARTNet II Meeting,
Xerox PARC, (March 1995).

[6] D. Ferrari, "Client Requirements for Real-Time Communication Services,"
IEEE Communications Magazine, V 28, N 11, (November 1990), pp. 65-72.

[7] S. Floyd, Presentation on "Packet Scheduling Result" at DARTNet II
Meeting, Xerox PARC, (March 1995).

[8] R. Ghai, S. Singh, "An Architecture and Communications Protocol for
Picocellular Networks," IEEE Personal Communications Magazine, Third
Quarter 1994, pp. 36-46.

[9] J. loannidis, D. Duchamp, G. Q. Maguire, Jr., "IP-based Protocols for
Mobile Internetworking," Proceedings 1991 ACM SIGCOMM Conference,
pp. 235-245.

[10] J. Jubin, J. D. Tornow, "The DARPA Packet Radio Network Protocols,"
Proc. IEEE, V 75, N 1, (January 1987), pp. 21-32.

[11] J. M. Kahn, et al, "Non-Directed Infrared Links for High- Capacity Wire
less LANs," IEEE Personal Communications, V 1, N 2, (Second Quarter
1994), pp. 12-25.

[12] R. E. Kahn, "The Organization of Computer Resources into a Packet Ra
dio Network," IEEE Transactions on Communications, V COM-25, N 1,
(Jan 1977), pp. 169- 178.

[13] R. E. Kahn, et al, "Advances in Packet Radio Technology," Proceeding
IEEE, V 66, N 11, (Nov 1978), pp. 1468-1496.

650 CHAPTER 23

[14] B. M. Leiner, D. L. Nielson, F. A. Tobagi, "Issues in Packet Radio Network
Design," Proc. IEEE, V 75, N 1, (January 1987), pp. 6-20.

[15] J. Mitola, "The Software Radio Architecture," IEEE Communications
Magazine, V. 33, N. 5, (May 1995), pp. 26-38.

[16] A. Myles, D. Skellern, "Comparing Four IP-based Mobile Host Protocols,"
Computer Networks and ISDN Systems, V 26, (November 1993), pp. 349-
355.

[17] K. Pahlavan, A. Levesque, "Wireless Data Communications," Proceedings
IEEE, V 82, N 9, (September 1994), pp. 1398-1430.

[18] C. Perkins, "Providing Continuous Network Access to Mobile Hosts using
TCP/IP," Computer Networks and ISDN Systems, V 26, (November 1993),
pp. 357-369.

24
THE DIANA APPROACH

TO MOBILE COMPUTING
Arthur M. Keller, Tahir Ahmad,

Mike Clary*, Owen Densmore*, Steve Gadol*,
Wei Huang, Behfar Razavi*, and Robert Pang

Stanford University, Computer Science Department, Stanford, California 94303

* Sun Microsystems, Mountain View, California
USA

ABSTRACT

DIANA (Device-Independent, Asynchronous Network Access) is a new application ar
chitecture to solve two major difficulties in developing software for mobile computing—
diversity of user interface and varied communication patterns. Our architecture
achieves display and network independence by de-coupling the user interface logic
and communication logic from the processing logic of each application. Such separa
tion allows applications to operate in the workplace as well as in a mobile environment
in which multiple display devices are used and communication can be synchronous or
asynchronous. Operation during disconnection is also supported.

1 INTRODUCTION

People want to access their applications not only while in the workplace but
also while they travel, and while using a variety of devices. Although much
current computer software can provide sophisticated functionality to ordinary
users, the software rarely addresses the special needs of mobile users.

A number of issues limit the usability of software for mobile users. We consider
two particular issues: user interface and communication. Conventional soft
ware is usually developed with implicit assumptions about the kinds of display
devices users have and the communication media available between them and
the users. For example, applications written for the X-windows protocol can
only be used by those users who run X-windows across high-speed computer

652 CHAPTER 24

networks. Such software is useless to mobile computer users with a different
kind of communication environment.

Various computing devices tailored for mobile users are currently available,
such as notebook computers, palmtop computers, and personal digital assis
tants (PDA). The user interface on these devices differs greatly. To make
software accessible to these devices, application developers currently have to
customize their software for each individual type of device. We anticipate an
even greater variety of such mobile devices in the future and such diversity can
put a significant burden on software developers.

On the other hand, the communication networks available to mobile users are
still relatively slow and unreliable, as compared with the high-speed local area
networks that connect workstations, servers, and mainframes. Also, various
communication protocols are used for mobile computing and handling all these
different protocols can be a significant software development cost. Moreover,
mobile users may need to communicate intermittently because of the high cost
or unavailability of communication.

To overcome these two hurdles in software development for mobile computing,
we propose a new application architecture for mobile applications. The DIANA
architecture—Display Independence and Asynchronous Network Access—de
couples the display and communication logic of applications from their pro
cessing logic. The resultant applications will enjoy the benefits of being display
and transport independent. Not only will new applications be able to take
advantage of this architecture, but also we envision that existing applications
designed for directly connected users on particular devices will migrate to our
approach.

1.1 Background

Our work on this project started by looking at workflow systems closely and
trying to understand why people had failed to use them extensively in the
industry. Our study raised the following issues as hindrances in the applicability
of such systems.

P la t form Bindings. One desirable aspect of these systems is that they should
be able to make legacy applications work together in a broader context than
they were originally designed for. However, most of these legacy applications
are bound very strictly to the platform for which they were designed. Porting

DIANA Approach to Mobile Computing 653

these applications to multiple platforms incurs significant development and
maintenance costs.

Network Management. Both the legacy applications and the workflow man
agement systems have embedded assumptions about the underlying networks
and the available communication protocols that they will be using. These as
sumptions provide significant inflexibilities and limitations. Furthermore, net
working across hardware platforms introduces complications such as security.
Also, there may be the unavailability of similar operating system features on
different platforms, e.g., a workflow system relying on RFC (remote procedure
call) to implement triggers becomes ineffective if one participant system does
not provide support for RFC.

Design Complexity. An inherent problem with workflow systems is the com
plexity of designing working workflow models. Most of the systems, in their
bid for providing the designers maximum flexibility, put a lot of responsibilities
on the designers. Designers have to manage the conceptual entities in their
workflow model, such as roles, tasks, jobs. Designers also have to be aware of
the heterogeneity of the physical resources their system will be using and the
restrictions this heterogeneity will impose on their model.

Different Data Representation. Multiple applications comprising a work
flow system often have different views of data, which makes it more diflScult to
develop a generic solution for inter-application workflow.

To address these issues, we developed the DIANA architecture. DIANA uses a
universal, dynamic language understood by all the entities in the system (ap
plications, users, and system components) that is based on the semantics of
interaction. This language can be interpreted on multiple platforms, so that
the same core application becomes accessible from a variety of heterogeneous
devices. The network components of DIANA are capable of switching between
synchronous (e.g., direct connect) and asynchronous (e.g., e-mail based) com
munication modes. Applications can access the responses from clients by using
a simple information-level Application Frogramming Interface. By providing a
single DIANA client to legacy applications, they can be made to interact with
all other entities using the DIANA architecture.

654 CHAPTER 24

1.2 Related Work

Considering display and network independence, we observe that Mosaic and
Telescript [3] have close similarity with DIANA.

DIANA has a significant overlap with Mosaic as far as the interface is concerned.
Mosaic uses Fill-Out Forms to express user interactions and query certain in
formation sources distributed throughout the network. We have implemented
the sample travel authorization application using Fill-Out Forms for a com
parison between DIANA and Mosaic. From our experience of using Fill-Out
Forms, we observe that one key difference between the DIANA approach and
the Mosaic approach is that DIANA uses an interface language based on the
semantics of the user interaction. On the other hand, Fill-Out Form language
part of HTML assumes the presence of an access device with certain layout
characteristics. This semantic representation of interaction in DIANA makes
the system extensible to non-conventional access devices, such as telephones.
However, we can extend FDL by incorporating layout preferences, such as those
in HTML, without sacrificing display independence.

Considering network communication, the World Wide Web, and browsers such
as Mosaic, adopts stateless communication between users and the application.
Where transaction states are needed, they are kept by the application. In
contrast, DIANA's Courier provides connection-based communication, and it
keeps the states for the client applications. We believe this stateful communi
cation can not only reduce setup time and bandwidth requirements but also
facilitates caching information locally. In addition, the Courier provides both
synchronous and asynchronous communication while Mosaic provides only syn
chronous communication currently.

General Magic's Telescript promises network and device independence. Unfor
tunately, very little information about Telescript is publicly available to permit
a meaningful comparison with DIANA. A simplistic comparison is that DIANA
handles the user interface similar to Mosaic and the network interface similar
to Telescript.

Kazman et al., [9] present an overview of some user interface architecture mod
els. The Seeheim model [13], the Arch/Slinky Metamodel, the Presentation-
Abstraction-Control (PAC) model [4] and the Serpent model [1] have some
overlap with the DIANA model in that they all attempt to separate the pre
sentation of a user interaction from its functionality within the application
logic. DIANA proposes a form based solution to implementing a user interface

DIANA Approach to Mobile Computing 655

architecture in which the core application logic is de-coupled from the inter
face logic. The applications in DIANA use a form based approach in which
applications do not have to be responsible for fine grained rendering details
as user's input or retrieve information to and from the forms. The fact that
existing interfaces require most applications to control the presentation on a
very interactive and fine scale is regarded as one of the reasons why human
computer interfaces are hard to design and implement [12].

Imielinski and Badrinath [8] identify some of the issues involved in mobile wire
less computing, including location management, configuration management,
disconnection, cache-consistency, recovery, scale, efficiency, security and in
tegrity. The paper also presents a model of a system to support Mobility.
In this system, Mobile Units are assumed to have wireless e-mail access to
Mobile Support Stations (fixed network hosts with a wireless e-mail interface
to communicate with the mobile units). Most of our discussion assumes the
presence of a similar system for the purposes of wireless e-mail communication.

The Coda File System [16] is a highly available file system designed to suit
distributed and mobile computing. It uses an optimistic replica control strategy
to provide high availability and relies on a dynamic cache manager to provide
disconnected operation. DIANA proposes to use a similar caching strategy to
minimize the network utilization and improve eflftciency in addition to support
disconnected operation. Details of various aspects of the Coda File System are
available in [14, 15, 17].

Java [6] is a language for portable applications that may be disseminated among
a variety of platforms. Hot Java is a browser that allows dynamic fetch of Java
applets over the Internet in a manner that extends the notion of the World
Wide Web. HotJava works best in a connected network environment; it has no
special features to handle disconnected or intermittently connection operation.

1.3 Outline

In this paper, we will describe the proposed architecture and explore the advan
tages of using DIANA architecture in mobile computing. We will also report
on the status of our implementation and our experience in using DIANA. The
organization of the rest of this paper is as follows. Section 2 describes the
overall architecture of DIANA along with an illustrative application. Section 3
discusses how DIANA addresses the display independence problem. Section 4
focuses on the connectivity issues in DIANA. Section 5 describes the applica-

656 CHAPTER 24

tion development methodology. Section 6 discusses the current implementation
of DIANA. Section 7 discusses future work, followed by concluding remarks in
Section 8.

2 DIANA—THE OVERALL
ARCHITECTURE

This section presents an overview of the DIANA architecture. We define the
key components of the system, describe their responsibilities and explain how
they work together. Subsequent sections of the paper discuss these components
in further detail.

2.1 User Interface Logic

In order to de-couple the user interface logic from the processing logic of appli
cations, we define a component called the User Interface Logic (UIL) to handle
generic user interface operation on the client on behalf of applications. As a
component of the DIANA system, this UIL is independent of the specific ap
plications. There is a diff'erent UIL for each different type of display devices.
Each diff̂ erent UIL will implement the semantics of forms using the display
characteristics appropriate for the particular display device. For example, ap
plications will be able to communicate with the UIL for a X-windows display
device as they will do so with the UIL for a PDA. The end result will be that
users can use different display devices as clients to the same application without
requiring the application to handle each of those devices separately.

In order to allow applications to communicate with the UIL in a generic way,
we design a Form Description Language (FDL) for applications to express the
types of user interface to UILs. This language is based on the form paradigm
and focuses on the semantics of the information exchange between the appli
cations and the users rather than its aesthetics. A Form or script written in
FDL is called an inFOrm (standing for mfo-form, hence the capitals). Since
FDL focuses on the semantics of information exchange rather than the charac
teristics of display devices, applications which use FDL to describe their user
interface can truly be display independent.

DIANA Approach to Mobile Computing 657

2.2 The Courier

The network manager in DIANA is called the Courier. It supports network
independence through the support of multiple network protocols and both syn
chronous and asynchronous modes. The synchronous communication mode rep
resents direct communication with potentially high bandwidth and low latency.
On the other hand, asynchronous communication is used in the situation when
communication is intermittent or has high latency. For asynchrony, a store-and-
forward information exchange paradigm is more appropriate. Courier makes
this kind of asynchronous communication transparent to applications. We will
discuss these modes in more details in a subsequent section.

There are two components of the Courier: one resides on the network with the
application (Application Courier) and the other resides on the access device
(User Courier). The purpose of having these couriers is to provide an en
capsulation of the underlying communication medium so that both users and
applications can have the same processing logic independent of whether they
are communicating in synchronous or asynchronous modes.

2.3 The Application Replay

In asynchronous communication mode, users may work asynchronously with
applications during disconnection. In order to deliver inFOrms from users
to applications in the sequence as they are generated, we define Application
Replay^ an agent on the applications' side that presents the inFOrms that were
collected during disconnection to applications as if they were generated while
continuously connected.

2.4 Other components

In order to reduce communication traffic, we add an inFOrm cache on the user
device to store those inFOrms which are frequently used. It can also cache
those inFOrms which the user may need during disconnection, thus allowing
the user to continue to work during those periods.

If the application has application-specific processing not encodeable in FDL
that should occur on the client during periods of disconnectivity, then such
processing can be embodied in an Application Surrogate that resides on each
client device. We will discuss the application surrogate later.

658 CHAPTER 24

The inFOrms for all applications are identified in a central registry and are
stored in an inFOrm store. This approach allows users to search for inFOrms
for specific purposes.

2.5 The Life Cycle of an inFOrm

Figure 1 describes the overall DIANA architecture. The following are the dif
ferent phases an inFOrm goes through during its life cycle from preparation,
transfer and processing.

Figure 1 DIANA: Overall Architecture and inFOrm Life Cycle

Extraction

Core Application in the Network Accessing Device

Interaction

Preparation. When a transaction starts, the application first obtains an
inFOrm from a repository (inFOrm Store) and optionally fills in some default
data on it such as the user's employee number and his or her department code.

Transmission. The next phase involves the physical transmission of the in
FOrm from the application to the user by the Courier. The Courier is responsi
ble for connection detection and switching between directly connected operation
and disconnected operation using e-mail. The details of the mechanisms used
during this transmission phase are hidden from the application.

Interaction. The user interacts with the inFOrm in this phase, providing the
necessary information by filling in the form. This process involves the UIL
interpreting the inFOrm script and controlling the user interaction. The user

DIANA Approach to Mobile Computing 659

responds to the application by entering his inputs in the inFOrm rendered by
the UIL on the user's display device.

Response. This phase is similar to the transmission phase, except that the flow
is from the user's device to the application's machine. It involves transmitting
the inFOrm replies to the Application Replay Agent.

Extraction. In this phase, the application receives the inFOrm reply from the
Application Replay Agent and extracts the information from that form using
the DIANA API. The transmission and Extraction phases are asynchronous
from the core application's perspective. The application may then proceed to
process the reply inFOrm and optionally reply to the user through another
inFOrm cycle.

2.6 Application Example

Jeff Jones is a sales representative of ABC corporation. Due to the nature of
his job, he often travels to meet prospective customers. Before going on a trip,
Mr. Jones must use travel authorization software to submit a travel request.
He uses the same application to view the results of his requests and clarify on
his travel details if necessary.

By using the travel authorization software (we will simply call it the "appli
cation" in the following discussion), he first submits his travel request using
a workstation running the X-windows system. The application first sends a
travel request inFOrm to him via the Courier. In this situation, the Courier
uses TCP/IP to transfer the inFOrm from the application to the client.

The UIL for X-windows on his workstation interprets the inFOrm and graph
ically renders it. He then enters his travel details and returns the reply form
back to the application via the Courier using TCP/IP.

When he leaves his ofiice to travel to his customer, he disconnects his User
Courier from the Application Courier. The Application Courier, noticing this
disconnection, forwards the inFOrms to him via electronic mail without affect
ing the application.

While away from his ofiice, he uses a palmtop computer, a character-only device,
to retrieve the status of his travel request. The User Courier first retrieves
those inFOrms sent to him during disconnection from his mail box. They are

660 CHAPTER 24

interpreted by the UIL for this character-only device. Then the User Courier
resumes normal communication with the Application Courier over a serial line.

In this example, we have seen how a user access the same application with
multiple display devices and connects to the application sometimes continuously
and sometimes intermittently.

3 USER INTERFACE AND DISPLAY
INDEPENDENCE

We consider applications that interact with users through a question and an
swer dialog. In this question-and-answer paradigm, applications are considered
to send out questions organized as forms, called inFOrms in DIANA, and users
reply to these forms. The notion of question forms provides an abstraction
of user interfaces to applications. Instead of seeing the heterogeneity of ac
cess devices and user interface, applications see only an abstract interface for
information exchange, but not the actual display devices. This form-based in
teraction helps to separate display mechanism from applications so that they
are display-independent.

In fact, form-based interaction is analogous to form-based service provided by
public service offices like the Department of Motor Vehicles. Someone applying
for a driver's license will fill out an application form. In a similar way, users
are requested to fill out inFOrms to provide inputs to applications that use the
DIANA framework.

To accomplish display independence, inFOrms have no relationship with the
display capability of user devices. They focus on the semantics of the infor
mation being exchanged, rather than the representation of the information on
users' devices. By removing any ties they may have to any display devices, they
become truly display-independent. The final representation of the information
is left to the User Interface Logic which will be discussed in details later.

3,1 Form Description Language

To achieve display independence through the use of generic forms, DIANA
provides FDL for applications to define their user interface as inFOrms. In
Table 1, we show the list of input items provided by FDL for applications

DIANA Approach to Mobile Computing 661

to choose the items which best suit their input needs. More specifically, they
specify the questions and the nature of the replies they expect. For example, an
application may require text input to one question and an integer input within
a range in another one. Notice the difference between the interaction items
listed below and their representation by the GUI. For example, a one-from-
many interaction describes the semantics of a question while a radio button
is a possible implementation for displaying such a question. Figure 2 shows a
travel request form as it appears on an OpenLook interface and Figure 3 shows
the input that created this form.

Notice that some of the interaction items might not be renderable on some
devices. Users who wish to see or hear such items will need to use suitable
devices.

Figure 2 A Travel Request inFOrm on an OpenLook Interface

IHIJ.I.W.' mmmimm tm tnmnmmmmmmmt

I HI p toymm nmmm Jf̂ f I in mm

OlJigr

D$tts^ttfd#iiartiir# 8/2?/!94

Vmm\ S n̂ fr»ncfeo5̂ C*

tm Auitla TX

Cash h^stwm^ SeQiilretf 'I^Su.

3.2 User Interface Logic

Render ing . The User Interface Logic (UIL) interprets inFOrms received from
applications on behalf of end users. UIL renders inFOrms on users' devices
according to the display characteristics of the devices. UIL is also responsible

662 CHAPTER 24

T y p e

Text

input

Command

Menu

One-

from-

many

input

Multiple-

options

input

Yes/No

Bounded

Input

Date/Time

Input

Simple

Display

Propert i e s

Allows user to

enter a string

UI Logic returns

to application

when user

chooses a

command

A group of

commands for

user to execute

User can

choose only one

option. Options

may change

dynamically

User can

choose multiple

options; options

may change

dynamically

User answer yes

or no

User can only

input a value

within a range

Enter

date/t ime; UI

Logic check for

validity of entry

For display only

X - w i n d o w s

Interface

Text Input

Widget

Command

Buttons in

Xview

Menu in Xview

Radio Button in

Xview for short

list, scroll list

for long list

Option Button

in Xview for

short list, scroll

list for long list

Yes and No

buttons

Scroll Bar in

Xview

Text Input,

with arrows, or

menus

Text display in

Xview

D O S Interface

String printf

and scanf, or

text input fields

Initial character

represents the

command

Initial character

as command

Radio Buttons

on an ASCII

screen for short

list, scroll

list for long;

highlight chosen

option

Option Buttons

for short list,

scroll list

for long list;

highlight chosen

options

Y or N key

input

Text input

w/bound, or

graphical scroll

bar

Input fields

with arrows, or

menus

Text display

T e l e p h o n e

In te r face

Touch-tone

encoding (or

speech rec.)

Use dial buttons

(or speech

recognition) to

choose command

Dial buttons (or

speech rec.) to

choose command

Use dial buttons

(or speech

recognition) to

choose option

Use dial buttons

(or speech

recognition) to

choose option

2 special dial

buttons

Dial buttons -

" # " as "enter" (or

speech rec.) with

range-checking

Use dial buttons

to choose from a

list (or speech

recognition)

Speech Synthesis

Table 1 Device-specific interpretations of the types of user interaction

DIANA Approach to Mobile Computing 663

Figure 3 A Travel Request inFOrm

BEGIN FORM newRequestForm

HEADING "Travel Request Form"

BEGIN SIMPLEOUTPUT empName

HEADING "Employee Name"

DATA <TEXT> "Jeff Jones"

END SIMPLEOUTPUT

BEGIN SIMPLEOUTPUT empNum

HEADING "Employee Niimber"

DATA <TEXT> "C-43382"

END SIMPLEOUTPUT

BEGIN ONEFROMMANYFIXED travelType

HEADING "Type of Travel"

BEGIN OPTION business

HEADING "Business"

END OPTION

BEGIN OPTION training

HEADING "Training"

END OPTION

BEGIN OPTION seminar

HEADING "Conference"

END OPTION

BEGIN OPTION other

HEADING "Other"

END OPTION

DEFAULT business

END ONEFROMMANYFIXED

BEGIN SIMPLEINPUT date

HEADING "Date of departure"

TYPE <DATE>

END SIMPLEINPUT

BEGIN SIMPLEINPUT fromPlace

HEADING "From:"

TYPE <TEXT>

DEFAULT <TEXT> ""

END SIMPLEINPUT

BEGIN SIMPLEINPUT toPlace

HEADING "To:"

TYPE <TEXT>

DEFAULT <TEXT> ""

END SIMPLEINPUT

BEGIN SIMPLEINPUT cashAdv

HEADING "Cash Advance Required"

TYPE <MONEY>

DEFAULT <MONEY> $0.00

END SIMPLEINPUT

BEGIN COMMAND apply

HEADING "Apply"

END COMMAND

BEGIN COMMAND cancel

HEADING "Cancel"

END COMMAND

BEGIN COMMAND quit

HEADING "Quit"

END COMMAND

END FORM

664 CHAPTER 24

for getting responses from users and sending these back as user inputs to ap
plications. In other words, UIL can be considered as a local translation tool
of FDL for display devices while FDL is the universal language for informa
tion exchange. On the other hand, inFOrms are the scripts written in FDL to
express a unit of interaction between two DIANA agents.

Each UIL is device-specific. There is an instance of a UIL on each category
of access device. When UIL renders inFOrms, it maps each different type
of interaction item to the corresponding user interface feature available on
that display device. For instance, UIL may use radio buttons to represent
questions that present to users a list of options from which to choose one.
The implementation of UIL for each display device is independent of which
applications the UIL serves.

Grouping. Besides rendering, UIL is also responsible for managing the interac
tion process with the user. Applications may send multiple inFOrms together in
a single interaction, with dependencies described among the various inFOrms.
For example, a travel authorization application may send a top-level menu form
with another travel request form to the user in one interaction. When the user
chooses the travel request submission function in the top-level menu form, she
is directly given the travel request form. Thus, the flow of interaction between
the user and the application can be specified within the inFOrms. When UIL
interprets inFOrms, it understands the flow of interaction and it guides users
through the process.

Extensibility. When applications are being developed in DIANA, they make
no distinctions regarding the particular display devices to be used. Therefore,
when a new access device is used, all that needs to be done is to implement a
UIL for this new device. After that, all applications can work with this device
requiring neither modification nor recompilation. This portability is achieved
by having the applications and UIL be separate entities that communicate using
FDL, which is device independent.

3.3 Implementation

Broadly speaking, the structure of a UIL can be divided into 3 parts: a parser
which parses inFOrms into internal structure, a renderer which maps the input
items listed in Table 1 into the user interface available on the target display
device, and a communication module which talks with User Courier. The
parser and the communication module are the same for all instances of UIL.

DIANA Approach to Mobile Computing 665

To implement a UIL for a new display device, the only implementation needed
is of a new renderer for the user interface on that device.

4 THE DIANA NETWORK
ARCHITECTURE

The network components of DIANA are the Couriers and the Replay Agents.
Each Courier is responsible for the actual transmission of information across
the network, while each Replay Agent deals with managing the inFOrm replies
and passing them to the applications when desired. Before delving into the
architectural details, we will explain our approach of hiding the network details
from the applications.

A significant part of the design and development cycles of many existing dis
tributed applications is spent on dealing with networks and communications.
The network logic is deeply embedded in these applications, which incurs sig
nificant costs for maintenance, upgradability and porting of these applications
to other user platforms.

For example, in a client-server model, the basic client is designed to work with
particular network protocols, such as TCP/IP, UDP, and so on. Even though
the flexibility of choosing a particular network protocol is critical for some ap
plications, there are many applications that are not time critical and would
benefit from independence from the heterogeneity of the networks. These are
the applications that fit very well into our model. We must also mention that
in the DIANA architecture, the performance penalty incurred by a reliable
protocol is mitigated through caching to reduce network traffic. By group
ing multiple one inFOrms in a single interaction, we further reduce network
utilization.

Another reason behind our decision to de-couple communication logic from
applications was the commonality of communication logic among a variety of
applications. The DIANA architecture allows application developers to model
their applications at a higher level—information exchange—and relieves them
from having to deal with the intricacies of network communication.

Our approach also takes into account mobile computing and intermittent con
nectivity. Many computer users are moving to smaller, portable devices. This
migration has led to the evolution of a large variety of portable computing

666 CHAPTER 24

devices from notebooks to palmtops to PDA's. Some of these devices are con
nected to the network through wireless communications, such as wireless e-mail.
Such connectivity is often asynchronous. Other mobile communication can sup
port a continuous connection but with high latency. In this case, if responses
do not arrive in a timely fashion, DIANA will fall back to the intermittently
connected case transparent to the application. By hiding how the information
was transmitted between the user device and the application, DIANA supports
a variety of network protocols between nomadic devices and network resident
applications.

4.1 Issues in Network Management

We begin the design discussion with some of the questions that we answered in
the process of modeling the network components.

Naming . The first question we considered is how different entities in our
system address each other. There are two type of entities that interact with
DIANA - end user clients and applications (we will use the term "agent" unless
we wish to distinguish between these two). These agents can appear at different
places in the network.

Everything directed to a user is directed to the UIL component of DIANA re
siding on the user's device, and everything directed to an application is directed
to the Application Replay Agent at the application's host machine. Also, all
connections between two nodes are made between the User Courier and the
Application Courier, which in turn forward the inFOrms to the appropriate
agents. We use the existing portOhost naming conventions by assigning well
known ports to the DIANA components and using the Internet addressing
mechanisms to identify the hosts (when the application and user device are
directly connected over the Internet).

The entities interacting with DIANA can address a particular agent using
a notation similar to agentQhost. This information is stored in the meta-
information headers of the inFOrms discussed later in this section. The Courier
can look at the meta-information and route the forms locally to the appropriate
DIANA component.

DIANA resolves the issue of the heterogeneity of application naming in the
following manner. In DIANA, the sender application must obtain an inFOrm
script from the inFOrm Repository before sending it to the destination. Ap-

DIANA Approach to Mobile Computing 667

plications can obtain only those inFOrms, which they are prepared to inter
pret and for which they have already registered the scripts with the Courier.
These applications provide their local identifiers at the time of registration and
these identifiers are stored in the meta-information of the inFOrms. Hence the
Courier at the sender's machine resolves the host part of the address and the
Courier at the receiver's machine resolves the agent part.

Delegation. In a corporate environment, the end users of a system perform a
lot of routine work, such as generating weekly progress reports and scheduling
meetings. In many cases, it is desirable to write an application that does some
regular work on the users' behalf.

This notion requires that a system like DIANA provide mechanisms for sorting
inFOrms according to roles or functionalities. The end users should be allowed
to delegate inFOrms to other authorized agents to do some work on their behalf.
This delegation is transparent to the agent sending the inFOrm.

We suggest that the end users provide delegation information to the Courier.
The Courier goes through an extra indirection before determining the actual
destination of an inFOrm. As an example, suppose that the corporate VP has
an automatic meeting scheduler that sends inFOrms to other meeting attendees
requesting that they confirm the schedule. The receivers of these inFOrms
can either complete the inFOrms by themselves or delegate this job to their
secretaries or their own meeting schedulers.

Ultimately, supporting a system based on {agent, role) pairs to resolve the
delegation of inFOrms seems promising. This convention is very important
from the point of view of corporate computing where diff'erent people can have
diff^erent responsibilities under different roles. The details of such a system have
been left for future consideration.

4.2 Meta-Information on InFOrms

Each inFOrm contains a meta-information header, which is designed so that
different components of DIANA can monitor the flow of an inFOrm through
the system. The source and destination addresses are included in the meta-
information header. It is desirable to keep this header as small as possible.
Table 2 presents some of the logical fields that are an essential part of the
meta-information. This list is not complete; we expect it to evolve with time.

668 CHAPTER 24

N a m e

TransferlD

Source
Destination
Delegated to
Time
Priority

Function

identifier specifying the flow of a
particular inFOrm
address of the sender
address of the receiver
address of the actual destination
time fields to monitor flow intervals
urgent/normal/. . . to determine how
time critical this transfer is

Agent Access

read only

read only
read/write
read only
read only
read/write

Table 2 The Meta-Information Headers for FDL

4.3 The User and Application Couriers

In DIANA, the Courier is divided into Application Courier and User Courier,
which handle communication issues for application and users respectively. The
communication between the Application Courier and the User Courier can hap
pen in two basic modes: connected and disconnected.

The Courier components always attempt to establish a direct connection if
possible. The Courier has the capability to run on top of multiple network
protocols, such as TCP/IP and UDP, in connected mode. Once the connection
is established, the Courier components exchange a series of commands as a
result of which the desired action is performed, e.g., the inFOrm is delivered
to the UIL from the application, or an inFOrm reply is sent from the UIL to
the Application Replay agent.

In the disconnected mode, the Courier currently uses e-mail as the medium of
communication. The e-mail messages contain special subject headers and can
be filtered and passed onto the corresponding Courier component at the desti
nation. Time-critical applications which rely on the network for a guaranteed
minimum transfer rate are not compatible with this mode of communication.
However, other protocols for disconnected or intermittently connected opera
tion and may be implemented in the DIANA architecture without change to
applications or other user device software. The Courier provides a mechanism
to determine the communication mode (i.e., connectedness) at any particular
time.

DIANA Approach to Mobile Computing 669

4.4 Application Surrogates

It is important to explore how much useful work can be done on the user's
access device while the accessor is disconnected from the network, or when the
system is operating in the asynchronous mode.

The introduction of an application surrogate to deal with the disconnectivity
logic of the user interaction is presented as an attempt to address this problem.
A careful study of the behavior of these surrogates will reveal the benefits of
this technique. By caching the inFOrms required for an application and having
a surrogate for that application, the users will be able to do useful work while
disconnected. The Coda File System relies on caching of objects (including the
applications which users are expected to use during the disconnected period) to
support disconnected operation [16]. We expect that an application surrogate-
based approach will be able to use the limited resources on the nomadic devices
in a more efficient manner. Also, the use of application surrogates facilitates
support for multiple platforms as only the surrogates will have to be imple
mented on each user platform, whereas the bulk of the application logic will be
network resident and most of the user interface will be handled by the UIL. A
scripting language, such as TCL, appears useful for constructing Application
Surrogates.

Ideally, we would like to be able to generalize the functionality of the applica
tion surrogates and include them in the UIL. Whether the applications should
be aware of the presence of application surrogates on the remote devices also
remains to be answered.

4.5 Implementation

The Application and the User Courier consist of 2 parts: a communication
manager which handles both synchronous and asynchronous communication
modes, and a connection table which records the information on the pairs of
communicating parties. At this stage, the Replay Agent simply maintains a
first-in-first-out queue of reply forms. In subsequent work, we will explore the
operation of the Replay Agent and its use in disconnected operation.

670 CHAPTER 24

5 APPLICATION DEVELOPMENT
METHODOLOGY

Application development using DIANA framework differs from conventional
application development approach. In conventional application development,
the developer first designs the functionality and infrastructure of the appli
cations. Then she works out the finer details as well as the interface to the
external world. But in the DIANA approach, when the developer designs an
application, she first designs the application's interaction with users in terms
of inFOrms. These inFOrms define inputs requested from users as well as the
application's responses to those users.

After defining inFOrms, the developer can then design the structure of the
application and code it. When coding the application, the developer should as
sume only an asynchronous communication channel with the users, even though
the Courier might establish a synchronous channel with the user.

This approach of first defining the interface with the users before coding allows
the developer to mock-up the application and test the correctness of the inter
face independent of the functionality of the application. Testing can be carried
out at an earlier stage so that some design fiaws can be detected earlier.

5.1 Benefits of DIANA to Application
Developers

The goal of DIANA is to achieve display independence and communication
independence in software development. These are achieved by the separation
of display logic and communication logic from applications. When communi
cating with human users or other applications using DIANA, applications do
not see user interfaces and communication channels. Instead, they merely send
to the Courier inFOrms, which contain the information being exchanged, and
the Courier will take care of the delivery of the inFOrms. In summary, DI
ANA provides an abstract message exchange mechanism (the Courier) with a
universal language for describing the messages (FDL).

There are significant advantages to using DIANA in application development.
First, by separating display logic and communication logic from applications,
developers can be freed from handling display and communication issues and

DIANA Approach to Mobile Computing 671

can concentrate their efforts instead on the design and coding of the application
logic. Thus, application development is speeded up and the quality is enhanced.

Second, with the provision of these display and communication facilities, even
novice programmers can develop sophisticated applications with GUI and com
munication. Without DIANA, the development of these applications will re
quire knowledge of multiple user interfaces and communication mechanisms to
have the same flexibility.

Third, DIANA provides application portability across heterogeneous display
devices. While a number of portable GUI facilities currently available also pro
vide portabiUty, they limit the usability of applications to bitmap-based and
character-based display devices. These portable GUI facilities focus on the
presentation format of information exchanged between human users and appli
cations, and enforce strict representation of such information using graphical
objects like buttons and scroll bars. On the other hand, DIANA focuses on the
semantics of information exchanged but does not presume its representation.
Therefore, it is able to support a greater variety of devices with a varied level
of display capabilities.

Note that it is easy for DIANA to support future display devices that are
presently unforeseen, as DIANA focuses on the semantics of information being
exchanged. Once a new device is supported, all applications using DIANA
can work with that new device, once the common UIL, User Courier, etc., are
developed. Application Surrogates are not required for initial use of the new
device.

As FDL focuses on the semantics of information being exchanged, it serves as a
universal language for applications. Applications can use FDL to talk with one
another. The consequence is that FDL provide a common ground for applica
tions to communicate and collaborate. FDL can be used as a communication
language for distributed applications. Applications share a common protocol,
namely inFOrms, and thus can achieve a greater degree of cooperation not
achievable without a common protocol.

One of DIANA'S main goals is to facilitate mobile computing, where users have
only intermittent communication channels with network-resident applications.
The asynchronous communication mechanism provided by DIANA favors such
intermittent connectivity. Consider the situation when a mobile user has only
5 minutes to connect to a host application but the whole interaction will take
10 minutes. Without DIANA, the user will be unable to continue work after
the first 5 minutes. However, with DIANA, the user can use the first 5 minutes

672 CHAPTER 24

to send an inFOrm to request some job to be done by the host appUcation. He
can then check the results of his work in another inFOrm at a later time.

DIANA supports disconnected operation. When users are disconnected from
host applications, they can still work with the inFOrms stored on their client
devices. There are agents which will record their operations and replay the
whole operations to the applications automatically once the users are connected
again.

Finally, DIANA minimizes network traffic by using inFOrms to exchange in
formation. The inFOrms do not contain extra data on how to represent the
information. Without DIANA, applications will have to send extra detail to a
mobile display device, for example, to render the windows and buttons. The
saving in communication traffic is especially important to mobile computing as
the communication channels have limited bandwidth.

5.2 DIANA'S Application Programming
Interface

From an application's perspective, the whole processing of communication with
the users can be divided into a series of steps. First, the application prepares
the inFOrm it wants to send to the user. At this point, the appUcation can
update the inFOrm by adding a dynamic data part to the inFOrm. Then
it sends the inFOrm to the user. After that, the application can continue
with other operations and asynchronously wait for the reply form from the
user. Alternatively, the application can choose to wait synchronously. After
receiving the reply form, it can access the user's replies from the reply form.

Table 3 describes the API provided by DIANA to do the above actions.

Readers should notice that the list of API calls exported by DIANA is simple
and small. This simplicity compares favorably with the complexity of the API
required to for applications to handle GUI and communication directly. This
simplicity reflects the design goal of DIANA: to provide application developers
with a simple and uniform interface to a great variety of access devices.

DIANA Approach to Mobile Computing 673

Call

i n i tD ianaO

prepareFormO

g e t I t e m 0

s e t A t t r O

sendFormO

getReplyForm()

g e t A t t r O

Descript ion

initializes DIANA and should be called before any
DIANA facilities are used.
reads in an inFOrm given its name. The prepareFormO
procedure should be called first before any dynamic data
can be apply to the inFOrm and the inFOrm can be sent.
gets a pointer to an item within another item, given a
string specifying the item from the other item. This
procedure is useful for navigating through an inFOrm.
sets the attribute of an item. Various attributes of an
item can be set, for example, the name, the heading, the
options, the default value. The s e t A t t r O procedure is
particularly useful for setting the dynamic data part of
an inFOrm before the inFOrm is sent.
sends an inFOrm to an agent, either a human user or an
application.
waits for a reply from the agent. Applications can specify
whether the waiting should be blocking or non-blocking.
A handle to the reply form is returned, which the
application uses to access the user's reply.
gets a particular field inside the reply inFOrm given the
field name. The return type is a pointer to void, which
the application should cast to the proper pointer type
before accessing the value.

Table 3 The description of the DIANA API

5.3 Procedural vs. Object-Oriented Interface

Currently, DIANA uses a conventional procedural programming approach in
both the view exported to application developers and its implementation. Al
ternatively, an object-oriented approach can better model the whole informa
tion exchange mechanism tackled by DIANA. It is possible to develop an object
hierarchy to represent the interaction items and inFOrms; however, recompila-
tion of application programs might be required if the object hierarchy is changed
to encompass new types of data potentially being transmitted. The overload
ing feature of some object-oriented programming languages like C-I-+ avoid the
typing problem in the return value of the getAttr() procedure mentioned above.

674 CHAPTER 24

Based on the type of interaction items passed as the parameter, the right type
of return value can be returned.

6 CURRENT IMPLEMENTATION

At the current stage, we have implemented only a portion of the whole DI
ANA framework. We have implemented a UIL for OpenLook environment. We
have also implemented another UIL for the telephone, which is simulated by a
software whose interface consists of 12 buttons mimicking the dial buttons of
a telephone for input and dialogs are spoken out by a speech synthesizer for
output. The Courier currently supports only TCP/IP synchronous communi
cation. The Replay Agent is a simple first-in-first-out queue of reply forms.

To test and verify DIANA, we have also implemented a travel authorization
application which allows users to submit travel requests, review request sta
tus and approve requests. This application has successfully worked with both
OpenLook and telephone interface without special adaptation to either dis
play device. The OpenLook interface is a good representative interface in the
workplace while the telephone interface is common in a mobile environment.
Though tested in a simulated environment, we believe that the idea of display
independence for mobile computing has been successfully demonstrated in this
exercise.

We have implemented and tested disconnected operation, but the results of this
experiment are beyond the scope of this paper.

7 FUTURE ISSUES

This section discusses some of the outstanding issues we have not yet addressed.

7.1 Workflow Support

The DIANA infrastructure has important features to support business workflow
processing. We feel that one dimension of the evolution of DIANA can lead us
into studying workflow systems and incorporating basic features of workflow
systems into DIANA as default services provided by the Courier, e.g. the

DIANA Approach to Mobile Computing 675

Courier already has the notion of delegation based on different roles of end
users (see section 4.1).

The device and network independence supported by DIANA is essential for
workflow systems where a variety of heterogeneous systems need to interact
with each other.

The universal FDL on the other hand can make all the applications understand
each other. Legacy applications can be incorporated into a workflow system by
providing a single DIANA client which can translate between the FDL and the
applications input and output parameters.

However, minimal work has been done in this direction so far and further study
of workflow systems and their overlap with DIANA is essential.

7.2 Disconnectivity Logic

It is important to explore how much useful work can be done on the user's
access device while the accessor is disconnected from the network, or when the
system is operating in the asynchronous mode.

The introduction of an application surrogate to deal with the disconnectivity
logic of the user interaction is presented as an attempt to address this problem.
A careful study of the behavior of these surrogates will reveal the benefits of
this technique. By caching the inFOrms required for an application and having
a surrogate for that application, the users will be able to do useful work while
disconnected. The Coda File System relies on caching of objects (including the
applications which users are expected to use during the disconnected period) to
support disconnected operation [16]. We expect that an application surrogate-
based approach will be able to use the limited resources on the nomadic devices
in a more eflScient manner. Also, this approach seems more suitable to support
multiple platforms as only the surrogates will have to be implemented across
platforms, whereas the bulk of the application logic will be network resident
and most of the user interaction will be handled by the UIL.

Ideally, we would like to be able to generalize the functionality of the applica
tion surrogates and include them in the UIL. Whether the applications should
be aware of the presence of application surrogates on the remote devices also
remains to be answered.

676 CHAPTER 24

7.3 Replaying Disconnectivity Interaction

A simple scheme can be adapted to record interaction occurring between the
application surrogate and the end user while the network is down. This logged
interaction can be "replayed" to the host application after the network connec
tion is re-established or when this interaction is forwarded through e-mail.

The user may complete several inFOrms on a disconnected device before they
can be transmitted to the application. In this case, the inFOrms need to
be given to the application in the order that the application expects them.
It is possible that an exception arises, so that the application next requests
information not contained in the inFOrms already completed. In particular, the
Application Surrogate has made a different decision from the actual Application
due to a lack of information. The User Replay and Application Replay agents
will allow the additional information to be supplied and the communication to
be resynchronized. If necessary, the inFOrms already completed may be edited.
We call this synchronization process zippering. We have implemented zippering,
but the results of this experiment are beyond the scope of this paper. The goal
of zippering is for the application not to be able to detect such inconsistencies,
particularly when it does not even know about the existence of application
surrogates.

7.4 Customizing Interfaces

An interesting problem is to let the applications customize their interface, but
without re-introducing the device-dependence problem.

According to application developers, 70% to 95% of their efforts are concen
trated on developing and customizing the look and feel of their applications.
This statistic implies that DIANA must address the interface layout and cus
tomization issue. One approach can be that the UIL provide a big percentage
of the above functionality and let the developers write their own surrogates to
customize the remaining part as desirable. In particular, the UIL could utilize
user and application profiles to support user-, device-, and application-specific
customizations.

Extending FDL to include some layout hints about the grouping of several
items on an inFOrm is also possible.

DIANA Approach to Mobile Computing 677

8 CONCLUDING REMARKS

DIANA addresses the issues of platform dependence, network binding, and
interoperability by proposing a simple, semantic-based system. DIANA will
eliminate the effort required to implement application-specific user interfaces
and communication modules, thus significantly reducing the design and imple
mentation cycle of applications. Applications can be implemented and tested
on a simple text interface and then plugged into the DIANA interface. Using
a complete and reliable implementation of DIANA, the application develop
ers will be able to concentrate on testing their applications' processing logic
without having to worry about the intricacies in user interface code or commu
nications code. Also, the design of the user interface can proceed in parallel
with core application development and can easily be changed to adapt to any
new requirements placed on the application. We believe that the ideas intro
duced in this paper will address some of the drawbacks in current workflow
systems, as well as enhance interoperability between incompatible systems and
increase the customer base of applications.

A current prototype of the system exists which supports the inFOrm life cycle.
The network component supports direct connectivity using a TCP/ IP connec
tion and a UIL for the OpenLook environment exists. We have developed a
telephone interface to FDL. We have also experimented with disconnected op
eration and will describe that experiment in future writing. We expect that
many of these ideas will be very important in the world of mobile computing
and heterogeneous systems in the near future.

Acknowledgements

This research was funded in part by Sun Microsystems. We acknowledge the
support and encouragement of Terry Keeley, Bert Sutherland, and Emil Sarpa.

We thank Bob Sproull, and Xinhua Zhao for their thoughtful comments. We
thank Marianne Siroker for her help in preparing this paper.

REFERENCES

[1] Bass, L., Clapper, B., Hardy, E., Kazman, R. and Seacord, R., "Serpent:

678 CHAPTER 24

A User Interface Management System," Proceedings of the Winter 1990
USENIX Conference, Berkeley, CA, January 1990, pp. 245-248.

[2] Bennet, A., "FormlKA: A Form-Based User Interface Management Sys
tem for Knowledge Acquisition," Knowledge Systems Laboratory, Stanford
University, June 1990.

[3] Caruso, D., "General Magic Got Quite a Start," Digital Media, March 29,
1993.

[4] Coutaz, J., "PAC, An Implementation Model for Dialog Design," Proceed
ings of Interact T87, Stuttgart, September, 1987, pp. 431-436.

[5] de Souza C. S., "A Semiotic Approach to User Interface Language Design,"
Center for the Study of Language and Information, Stanford University,
May 1992.

[6] Gosling, J., and McGilton, H., "The Java Language Environment, A White
Paper," Sun Microsystems Computer Company, May 1995.

[7] Guarna, V. A., Jr. and Gaur Y., "A Portable User Interface for a Scientific
Programming Environment," Center for Supercomputing Research and
Development, University of Illinois, Urbana-Champaign, February 1988.

[8] Imielinski, T. and Badrinath, B.R., "Mobile Wireless Computing: Solu
tions and Challenges in Data Management," Department of Computer
Science, Rutgers University, 1993.

[9] Kazman, R., Bass, L., Abowd, G. and Webb, M., "Analyzing the Properties
of User Interface Software," Department of Computer Science, Carnegie-
Mellon University, October 1993.

[10] McBryan, O. A., "Software Issues at the User Interface," Department of
Computer Science, University of Colorado, May 1991.

[11] Myers, B. A. and Rosson, M. B., "Survey on User Interface Programming,"
Department of Computer Science, Carnegie-Mellon University, February
1992.

[12] Myers, B. A., "Why are Human-Computer Interfaces Difficult to Design
and Implement?" Department of Computer Science, Carnegie-Mellon Uni
versity, July 1993.

[13] PfafF, G., (ed.). User Interface Management Systems, Newyork: Springer-
Verlag, 1985.

DIANA Approach to Mobile Computing 679

[14] Satyanarayanan, M. Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H.
and Steere, D. C , "Coda: A Highly Available File System for a Distributed
Workstation Environment," IEEE Transactions on Computers, April 1990.

[15] Satyanarayanan, M., "Scalable, Secure, and Highly Available Distributed
File Access," IEEE Computer, May 1990.

[16] Satyanarayanan, M., Kistler, J. J., Mummert, L. B., Ebling, M. R., Kumar,
P. and Lu, Q., "Experience with disconnected Operation in a Mobile Com
puting Environment," Department of Computer Science, Carnegie-Mellon
University, June 1993.

[17] Steere, D.C., Kistler, J. J. and Satyanarayanan, M., "Efficient User-Level
Cache File Management on the Sun Vnode Interface," In Summer Usenix
Conference Proceedings, Anaheim, June 1990.

[18] Tso, M., "Using Propoerty Specifications to Achieve Graceful Discon
nected Operation in an Intermittent Mobile Computing Environment,"
Xerox Corporation, Palo Alto Research Center, June 1993.

[19] Watanabe, T. and Oketani, I., "Functional Design of Cooperatively Inte
grated Information System," Data Processing Center, Kyoto University,
October 1986.

[20] Zarmer, C. and Canning, P., "Using C-f-f- to Implement an Advanced
User-Interface Architecture," HP Laboratories, Hewlett Packard Com
pany, April 1990.

25
THE CMU MOBILE COMPUTERS

AND THEIR APPLICATION
FOR MAINTENANCE

Asim Smailagic and Daniel P. Siewiorek

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

This paper describes the use of CMU's VuMan wearable computers for maintenance
of military vehicles and their communication mechanisms with the outside world.
The key concepts involve: portable, hands-off access to information; mobility of users
and uploading information yielding increased productivity of maintenance operation.
VuMan is used as a Referential System, replacing large volumes of printed materi
als such as maintenance manuals. The main tasks are Limited Technical Inspections
(LTI) and Trouble Shooting Flow Charts for an Amphibious Motor Vehicle. This
effort included the development of the VuMan Hypertext Language (VHTL), us
ing a forms-based hypertext paradigm that provides quick access to manuals. The
VHTL considerably simplifies the task of creating document systems that integrate
forms, references (hyperlinks), images and complex control structures (such as nested
menus). The User Interface has been designed to provide access to the information
in an intuitive and natural manner. Both the User Interface and the document struc
ture are centered around the concept of fields. When selected by the user, these fields
invoke some action, such as bringing up a menu, following a reference or toggling
a check mark. The User Interface can accommodate two types of input devices: a
three-button mouse and a multiposition rotary dial. Our estimate is that the time
required to perform some typical Marine Maintenance procedures using VuMan will
be cut in half.

1 INTRODUCTION

Mobile computers deal in information rather than programs, becoming tools
in the user's environment much like pencils or reference books. The mobile

682 CHAPTER 25

computer provides automatic, portable access to information. Sensors make
the mobile computer an active part of the environment. Information can be
automatically accumulated by the system as the user interacts with and modi
fies the environment, thereby eliminating the costly and error-prone process of
information acquisition. Several new application areas have been made possible
by this paradigm shift:

Maintenance

See-through reality for manufacturing

Self-guiding navigation

Medical

In this paper we focus on the application of the VuMan wearable computer
for maintenance. As systems become more reliable and more complex, main
tenance and repair become increasingly challenging problems. In maintenance,
the individual field service engineer will not encounter enough failures of the
same type from which to perceive a pattern and thereby develop a shortcut
to diagnose the problem. Rather, each problem has to be time-consumingly
diagnosed from first principles. A portable information system can use high
lighting and animation to identify components and procedures necessary to
replace them.

The mobile user requires substantial processing power, but packaged so that
its weight, size, and thermal properties are almost unobtrusive. The infor
mation that the system provides must be easily and comfortably accessible.
Communication between the mobile computer and distant computers must be
continuously available.

Carnegie Mellon University has built four generations of mobile computers.
Table 1, and work is close to completion on a fifth generation. One class of
applications is referencing large amounts of information while performing an
activity and generating summary status information. The status information
is transmitted to other computers for further processing. This paper describes
the use of mobile computers in the application of vehicle maintenance. First,
the next section gives an overview of the capabilities of the mobile computers.

The CMU Mobile Computers 683

2 CMU MOBILE COMPUTERS AND
THEIR APPLICATIONS

VuMan 1 [1], conceived in 1991, allows a user to maneuver through the blue
prints of a house using three buttons for input, much like the mouse of a desktop
computer. Output is provided on a commercially available head-mounted dis
play, the Private Eye [4], which gives the illusion of viewing a personal computer
screen from about five feet. The VuMan I's electronics include an 8 MHz 80188
processor, 0.5 MB of ROM, and a Private Eye controller board. Table 1 shows
the characteristics and attributes of the CMU mobile computers.

The original application of VuMan 2 [2], built in 1992, was to allow a user
to navigate the Carnegie Mellon campus. It has a database of buildings, de
partments, and people, so that a user unfamiliar with the campus can find the
location of an appointment, get information on a faculty member such as a
phone number or oflSce number, or locate a specific building on the campus.
Like VuMan 1, VuMan 2 uses the Private Eye for output and three buttons
for input. Unlike VuMan 1, however, VuMan 2 is not dedicated to a single
application. New applications are loaded via a Flash memory card. A second
application developed for VuMan 2 is an electronic maintenance manual for an
alternator. A user can scan through manual pages and then access the corre
sponding diagram. VuMan 2 has also been used as a test bed for developing the
third application, maintenance of amphibious vehicles, which is ported to the
VuMan Maintenance Assistant (VuMan MA). Table 1 illustrates that VuMan
2, which has over twice the functionality of VuMan 1, is at least a factor of
four better in terms of volume, weight, and power consumption. The savings
were a result of replacing the Private Eye controller board with a single pro
grammable logic device, replacing the glue logic with a FPGA, and replacing
EPROMs with a Flash memory card.

The initial application of the third generation mobile computer. Navigator 1
[3], built in 1993, is as a campus navigation tool, similar to VuMan 2. Unlike
VuMan 2, Navigator can use speech as input, allowing completely hands-free
operation. The Navigator's speech recognition system is speaker-independent
[5], has a 200 word vocabulary, and currently runs at about eight times real
time. A mouse is also available, in case the speech recognition rate is low
or speaking is undesirable. A second major difference between Navigator and
VuMan is that Navigator is a general purpose computer while the VuMan com
puters are embedded. Navigator runs the Mach operating system [6], allowing
applications to be developed on a Unix workstation and then transferred to the
Navigator platform. Software developers can use the standard Unix environ-

684 CHAPTER 25

ment, such as X Windows [7] and Shell scripts, in their applications. A third
difference is that the Navigator architecture is modular, so that the hardware
can be re-configured based upon the application.

For example, in the campus tour application, a Global Positioning System
(GPS) unit is used to locate the user with an accuracy of several meters over
an area of a few square kilometers. In some manufacturing applications, how
ever, a different positioning system could be used to locate the user with an
accuracy of a few millimeters over an area of a few square meters. Other parts
of Navigator that can be re-configured depending upon the application are the
telecommunications and the display.

VuMan MA incorporates a new housing design to withstand shock, tempera
ture, water, and dirt. VuMan MA has been field tested in the Marines vehicles
maintenance environment. It uses an input interface combined of a rotary dial
and a single push-button. The speed and ease for a user to scroll through
many options that may appear on a screen are the reasons for the use of a
rotary dial. A link is provided between VuMan MA and a Logistical Mainte
nance Computer (LMC) so that results from vehicle inspection check lists can
be uploaded for scheduling and planning. VuMan MA includes hardware power
management, and two PCMCIA slots. In addition to a Flash memory card, an
other PCMCIA device can be supported in a modular fashion, such as a radio.
The introduction of programmable micro-controllers for input/output (to allow
reconfiguration of the electronics with mouse, dial, etc.) and power control (to
selectively turn off unused chips) provided a higher degree of flexibility than
our previous designs.

3 VUMAN AS A MAINTENANCE
ASSISTANT

In [8] we have identified several classes of applications for mobile computers,
requiring different capabilities: Referential Systems, Augmented Reality, and
Information Sharing. The first class. Referential Systems, requires access to
a large, relatively static data base for reference in completing a complex task.
Typical referential applications include maintenance and operation procedures.
During the past ten months, site visits were conducted to an oil refinery, an
aircraft maintenance facility in Pittsburgh, and two US Marines vehicle main
tenance operations. A striking similarity was observed between the referential
requirements for maintenance. Based on walk-throughs of a variety of mainte-

The CMU Mobile Computers 685

[| Artifact
Delivery Date

Number of Units

Embedded/GP

Design Style

Custom Boards

Off-the-Shelf Boards

Chip Count

Lines of code

Processor

RAM

Nonvolatile Storage

Input

Display Resolution

Dimensions (inches)

Power (W)

Weight (lbs.)

Design Activity

Magnitude of Design

No. Designers

No. CAD Tools

Person-Mo. Effort

Quantity Fabricated

Part Count

Housing Fabrication

I VuManlT
1 Aug 91

30

embedded

semi-custom

1

1

24

1800

8 0 1 8 8 - 8 M H z

8KB

512KB

3-button

720 X 280

1 0 . 5 x 5 . 2 5 x 3

3.8

3.3

innovative

4

16

12

30

45

vacuum-forming

VuMan 2
Dec 92

7

embedded

fully-custom

1

0

5

4700

8 0 C 1 8 8 - 1 3 M H z

512KB

1MB

3-button

720 X 280

7.75 X 4.5 X 1.37

1.1

0.5

innovative

6

16

6

6

12

SLA/molding

Navigator
June 93

3

general purpose

composition

3

5

14

38000

8 0 3 8 6 - 2 5 M H z

16MB

85MB

speech/mouse

720 X 280

7.25 X 10 X 3

7.5

9

innovative

21

7

28

3

8 boards

pressure forming

VuMan MA [
Dec 94 [

20

embedded

fully-custom

2

0

10

12000

8 0 3 8 6 - 2 0 M H z

2 M B

4 0 M B

dial

720 X 280

5 x 6 . 2 5 x 2

2

1.75

innovative

16

7

42

20

2 boards

molding/machining

Table 1 Attributes of CMU Wearable Computers

nance activities, the following model was generated. Upon receiving a trouble
report or during a periodic maintenance check/upgrade, an initial inspection
checklist is used by experienced maintenance personnel to identify problems.
Information from the checklist is used to schedule personnel and issue task or
ders. Task orders are either accompanied by detailed printed instructions or
require personnel to look up procedures in a set of maintenance manuals. For
example, a typical manual for a DC-9 class aircraft contains over 110,000 pages,
half of which are obsoleted every six months. These manuals frequently cannot
leave the manual library, so maintenance personnel must often return to the

686 CHAPTER 25

library, resulting in much lost time. Often only a small number of manual pages
are required to effect a repair, but these pages may be spread out over several
volumes with several hundred pages per volume. In addition, maintenance ac
tivities are often performed in confined places. The Marines may assign two
people to a maintenance activity in an Amphibious Tractor, one person to read
the procedures from the manual and one to perform the maintenance activity.
A referential mobile computer which provides access to maintenance informa
tion while leaving hands free to perform the required physical operations could
be an effective way to improve productivity. The steps to be performed in a
general maintenance activity, for which VuMan MA is developed, are depicted
as follows:

Vehicle brought in for routine or emergency maintenance

Limited Technical Inspection (LTI)

— Visual inspection

— On-board test systems

— Service checklists

Equipment Repair Order (ERO)

— Specifies maintenance actions to be performed

Trouble Shooting

— Logic charts

Repair/Replace Parts (R&R)

— Order replacement parts

Testing

— Verify repair properly performed

An example of a maintenance document is the Limited Technical Inspection
(LTI). An LTI is a 50-page document including:

Processing a check-list of over 500 items, one for each part of the vehicle
(e.g., left track, suspension, turret)

The CMU Mobile Computers 687

Selecting one of four possible options about the status of the item: Ser
viceable, Unserviceable, Missing or On Equipment Repair Order (ERO)

Entering further explanatory comments about the item as needed, for ex
ample the part is unserviceable due to four missing bolts.

A sample of the LTI application, using screen dumps, is illustrated in Figures
5 to 10. The startup screen. Figure 5, is immediately followed by the Main
Menu, Figure 7, which lists all documents available in the system, as well as
data transfer and system control options. All the options are reference control
points. Selecting any one of the three documents brings up a table of contents
(TOG) of the document. The TOC contains references to all the sections of
the document. The standard screen consists of a command area and data area,
as in Figure 6. The command area contains control points that allow the user
to scroll between screens, follow references, return from references, etc. The
data area of the screen displays the text or graphics. The following are some
illustrative examples of LTI Application functionality:

Online assistance and tutorials. Figure 6, allow for rapid user training
times.

Selecting LTI: AAPV781 option from the Main Menu, Figure 7, brings up
the screen containing the table of contents for the Personnel Transport LTI
document.

User customization options, such as those depicted in Figure 8, allow Vu-
Man to accomodate a wide variety of preferences (including left/right eye
dominance). Also configurable is an indicator of available battery lifetime.

The status for a given item can be entered by selecting the Status control
point beneath that item (Figure 9). The user then categorizes the status
of the item, entering comments as needed. The Status control point will
be highlighted to indicate that the item is completed.

Figure 10 illustrates LTI items which have been inspected and whose status
has been noted.

Our experience with the Marines vehicle maintenance application indicates the
importance of user involvement in the design process. Based on that feedback
from our users, we have been making further improvements in the user interface.

688 CHAPTER 25

4 APPLICATION SOFTWARE

4.1 A Forms-Oriented Hypertext Language

The application software for maintenance of military vehicles is based on a hy
pertext document system for the VuMan wearable computers. The technical
inspection of a vehicle should determine its status accurately and rapidly. The
inspection involves tedious cross-referencing of information and schematics from
several manuals. A hypertext system providing quick access to the manuals is
very useful in these situations. The user performing an inspection is required
to enter data about different parts of a vehicle by filling out a form. This form
needs to be integrated into the basic hypertext system which contains the man
ual information. The data entered by the user can be treated as independent
from the form document itself. Some hypertext languages allow such a mix of
forms and hypertext links. In the HTML language of NCSA Mosaic, for ex
ample, a form can be embedded into a regular hypertext document. The form
filled out by the user can be submitted to a remote computer for an evaluation
and response. This type of client-server approach to form processing leads to a
high computational and network load overhead when dealing with entire docu
ments that are forms. The VuMan Hypertext Language (VHTL) considerably
eases the task of creating document systems which integrate forms, references,
images, and complex control structures (such as nested menus that are used
repeatedly). These control structures allow the document to change in response
to the user inputs. For example, a reference could be followed only if the user
had previously selected some menu option. VHTL has been used to implement
an extensive LTL

The LTI checklist consists of a number of sections, with about one hundred
items in each section. The users have to manually go through each of these
items by using the dial to select "next item," or "next field." The Smart Cursor
feature represents built-in intelligence in the user interface, and was designed
to help automate some of this navigation. This approach is accomplished with
the use of two features:

• An input pattern recognizer, which keeps track of what fields the user
selects on a given screen, which we can call a "working set." If the working
set remains the same over two or three screens, the navigation system
starts moving the cursor automatically to the fields in the working set.
In essence, this is a macro recorder that runs continuously during the
user's work session, and uses a heuristic about when to repeat recorded
keystrokes.

The CMU Mobile Computers 689

A domain-specific heuristic, developed through studies of how users usu
ally navigate through LTI hypertext documents (e.g., their behavior in
the presence of multiple options). A high-level navigation pattern was
found, which the input pattern recognizer could not identify. The knowl
edge about this high-level pattern was encoded in a navigation template.
The system then uses a heuristic to decide when to apply this nagivation
template.

4.2 Communication with a Logistical
Maintenance Computer

The VuMan wearable computer communicates with a Logistical Maintenance
Computer (LMC) by uploading data via an on-board serial port. As an LTI
or checklist is being processed, an user can set toggles, select menu items,
and make comments. After the user is done, all the entered data need to
be uploaded to the Maintenance computer. The option 'Transfer Data' on
the main menu of the LTI application. Figure 7, allows the user to perform
actual data upload. By selecting this option the instructions are given for
setting up the communication program on the LMC which is to receive the
status information. Our current effort is to employ wireless communication
between Vuman and the LMC. Therefore, one of the two PCMCIA card slots
on VuMan 3 provides a radio link. The wireless LAN capability is based on
Proxim's RangeLAN2/PCMCIA adapters, and Access Point. Compared with
the other wireless LAN systems that we considered, the RangeLAN2 has the
lowest power consumption in transmit and sleep modes, and the second lowest
in receive mode (after Xircom's Credit Card Netwave Adapter). Also, it has
doze and sleep modes that significantly reduce power consumption when the
device is idle, fairly good bandwidth (1.6 Mbps), the longest range available,
and solid roaming capability.

5 CONCLUSIONS

The VuMan wearable computers provide portable, hands-off access to text,
images, maps, and other information needed to perform maintenance operation.
One of the user interface main design goals was to provide a minimal training
time, less then five minutes. As a maintenance assistant and advisor VuMan
can provide:

690 C H A P T E R 25

Help in determining vehicle status accurately and rapidly

Easily accessible and extensive expert information for on-the-job support

Job aid to ensure accuracy and diminish need for extensive training

Status information to a fast automated system for problem sorting and
generating work orders

The VuMan wearable computer communicates with a Maintenance computer
by uploading data via an on-board serial port, yielding increased productiv
ity in maintenance operations. The wireless LAN capability based on spread
spectrum PCMCIA adapters is currently being added.

The CMU Mobile Computers 691

6 FIGURES

Figure 1 VuMan 1 used with construction blueprints

692 CHAPTER 25

Figure 2 VuMan 2 configured for an electronic maintenance application

The CMU Mobile Computers 693

Figure 3 Navigator, a modular wearable computer with speech recognition,
GPS and cellular phone.

694 CHAPTER 25

Figure 4 VuMan MA used for an aircraft inspection

The CMU Mobile Computers 695

Wearable Computer

vurnan 3
mobile maintenance assistant

Developed by

The Engineering Design
Research Center
at Carnegie Mellon University
1995

Continue

Controls

Demo

About...

Figure 5 The VuMan 3 (MA) Startup Screen

Tutorial

Main Menu Back to Startup

Current
navigation
status

Selection/
data entry

(boldface
words can
be selected]

4. Check for cracks in the engine: N
Status: none

Comments: none

A

Navigate
between
items and
menus

Navigate
between
multiple

I A screens of
y one item

Figure 6 A page from the onUne user interface tutorial

696 CHAPTER 25

Main Menu
Back to Startup 1

Please choose an

LTIAAPV781

application.

LTIAARV765

Troubleshooting/Flowcharts

Transfer Data

Shutdown
more...

Figure 7 The LTI Main Menu

Control Panel
Main Menu Back to Startup

• Flip Screen

• Screen blank aftc

10min 20min

• Battery alert whe

30min 15min

3r:

30 min

n: 1
5 min 1

Figure 8 Customization options available through the Control Panel

The CMU Mobile Computers 697

1 LTI - sec. 1
15% done

#7.

7b.

7c.

next previous section menu

Bow Pod Port Side. Remove drain
check for water.

Status:
Comment:

Port Final Drive
Status:
Comment:

Outer Housing
Status:
Comment:

none
none

none
none

none
none

plug

more...

Figure 9 Inspection information for the Personnel Transport vehicle LTI

LTI - sec. 2
75% done

43 b.

43 c.

next previous

Check crank shaft

Status: 1 Serviceable
Comment: none

Check engine

Status: 1 Serviceable
Comment: none

section menu

]

Figure 10 Another item from the Personnel Transport vehicle LTI

698 CHAPTER 25

Acknowledgements

For their valuable contributions to the wearable computers project we thank:
Drew Anderson, John Stivoric, Chris Kasabach, Gautam Valabha, Alex Amez-
quita, Michael Malone, Nathaniel Barlow, Arijit Biswas, John Dorsey, DeWitt
Latimer, Tar a Taylor, Eric Zeszotarski, and Elizabeth Zimmerman.

REFERENCES

[1] Akella, J., Dutoit, A. and Siewiorek, D. P., "Concurrent Engineering:
A Prototyping Case Study," Proceedings of the 3rd IEEE International
Workshop on Rapid System Prototyping Research Triangle Park, N. Car
olina, June 1992.

[2] Smailagic, A., Siewiorek, D. P., "A Case Study in Embedded Systems
Design: The VuMan 2 Wearable Computer," IEEE Design and Test of
Computers, Vol. 10, No. 3, pp. 56-67, September 1993.

[3] Siewiorek, D.P, Smailagic, A., Lee, J.C. and Tabatabai, A.R.A., "An Inter
disciplinary Concurrent Design Methodology as Applied to the Navigator
Wearable Computer System," Journal of Computer and Software Engi
neering, Vol. 3, No. 2, 1994.

[4] Becker, A., "High Resolution Virtual Displays," Proc. SPIE, Vol. 1664,
Society of Photooptical Instrumentation Engineers, Bellingham, Wash.,
1992.

[5] Li, K.F., Hon, H.W., Hwang, M.J., Reddy, R. "The Sphinx Speech Recog
nition System," Proceeding of the IEEE ICASSP, Glasgow, UK, May 1989.

[6] Rashid, R. et al. "Mach: A System Software Kernel," COMPCON Spring
'89, San Francisco, CA, March 1989.

[7] Kantarjiev, C.V. et al., "Experience with X in a Wireless Environment,"
Proc. of the Usenix Symposium on Mobile and Location-Independent Com
puting, Cambridge, MA, August 1993.

[8] Smailagic, A., Siewiorek, D.P., "The CMU Mobile Computers: A New
Generation of Computer Systems", Proceedings of COMPCON '94, IEEE
Computer Society Press, Los Alamitos, CA, February 1994.

26
GENESIS AND ADVANCED
TRAVELER INFORMATION

SYSTEMS
Shashi Shekhar and Duen-Ren Liu*

Department of Computer Science

University of Minnesota, Twin Cities, Minnesota

* Institute of Information Management

National Chiao Tung University, Hsinchu, Taiwan

Republic of China

ABSTRACT

Genesis and ATIS are being developed under the umbrella of the Intelligent Vehicle
Highway Systems ^ to facilitate various kinds of travel, including daily commuting to
work via private/public transportation and visiting new places and points of attrac
tion. Travelers are naturally mobile, and the most effective way to aid travelers is
via mobile computing, which is being explored in the Genesis project at Minnesota.
The travelers can use personal communication devices including pagers and portable
computers (e.g. Apple Newton) to avail themselves of the ATIS services provided by
Genesis. This extended abstract presents an overview of the goals and preliminary
design of Genesis. We believe that ATIS provides a very important commercial appli
cation of mobile computing and can bring mobile computing to mass markets. This
paper focuses on describing the application domain rather than evaluating candidate
solutions.

1 INTRODUCTION

Advanced Traveler Information Systems (ATIS) is one facet of the Intelligent
Vehicle Highway System (IVHS) [2], which is currently being developed to
improve the safety and efficiency of automobile travel. ATIS assists travelers
with planning, perception, analysis and decision-making to improve the con-

^ Intelligent Vehicle Highway Systems are also known as Intelligent Transportation Systems
from 1994.

700 CHAPTER 26

venience, safety and efficiency of travel [7, 18, 6, 21, 16]. AXIS applications
create a shared resource for efficient mobile computation and data integration.
As shown in figure 1, ATIS obtains information from different sources, includ
ing traffic reports, scheduled traffic events, sensors and maps, etc. Periodic
sensor data might lead to high update rates. The clients of the database in
clude drivers on the road, mobile persons with handheld or portable personal
communication devices (PCDs), and users who access information via comput
ers at home, the office, shopping mall or information center. A large number
of travelers will query databases over the wireless communication channel to
seek traffic information and driving advisories. Mobile computing is the core
of ATIS.

^^h?^

Personal
Communica t ion
D e v i c e s

Road M a p s
City M a p s
Construct ion
S c h e d u l e
B u s i n e s s Directory

a
Off ice , H o m e
S h o p p i n g Mall
Information Center

Figure 1 Data Sources and Mobile Computing for an ATIS database

1.1 ATIS Services

ATIS provides up-to-the minute information on weather and road conditions,
detours, construction zones, bus schedules and parking. Travel information is
available before your trip or en-route. ATIS performs a variety of functions,
including navigation using digital maps; route selection and guidance; informa
tion on services such as gas stations, restaurants, and hospitals; and real time
traffic information through communication between drivers and the Advanced
Traffic Management System (ATMS). ATMS collects information primarily via
sensors and reporters rather than via communication with drivers. These func
tions are categorized into five services [1].

Genesis and Advanced Traveler Information Systems 701

(a) The Traveler Information Service includes the business directory and
travel information databases which are integrated with the road map database
to provide information about tourist attractions, hotels, restaurants, etc. (b)
The Pre-trip Travel Information Service provides information that is use
ful before the trip begins, such as road and weather conditions. The trip plan
ning service also allows the user to set trip routes using roadway or MTC
(MetropoHtan Transit Commission) bus routes, plan the trip schedule, and re
ceive estimated travel duration and known advisories for the planned trip, (c)
The Route Guidance Service recommends the most favorable routes from
a starting location to any chosen destination. "Favorable" may represent the
shortest distance, minimum travel time, etc. The route guidance service guides
the user from a location to the destination, (d) The En-route Driver Advi
sory Service provides drivers (in-vehicle or roadside) with information such as
construction zones, traffic congestion, traffic incidents, weather conditions and
detours, (e) The Emergency Notification and Personal Security Service
uses pagers, cellular phones or callboxes for "mayday" purposes. When initi
ated by the driver, or initiated automatically in case of accident, this feature
will provide the capability of summoning emergency assistance and provide the
vehicle location.

1.2 Mobile Computing in ATIS/IVHS

ATIS will assist many kinds of travel, including the daily commute to work
via private/public transportation, occasional visits to points of attraction in
a familiar/new geographic area, trips involving multiple points, etc. Since
travelers are naturally mobile, mobile computing plays a central role in assisting
different kinds of travel and tasks related to travel. For example, driving to a
point of attraction in a new city can be facilitated by a portable route-guidance
device and navigator (see Table 1 for products) that contains information about
road maps, points of interest, traffic restrictions, etc., and is available on a
portable mobile computer coupled with a global positioning system and wireless
communication. Now that coupling to real-time traffic information, business
directories and other ATIS services is possible, mobile computing issues are
becoming more important. Several functions and services of ATIS, including
route guidance, en-route driver advisory and emergency notification, require
mobile computing. Other functions of ATIS, such as the traveler information
and pre-trip travel information service, might also require mobile computing.

While many of the current products for route guidance are special-purpose
computers, the next generation ATIS products are being designed for general

702 CHAPTER 26

Product

Zexel's GuideStar, Oldsmobile
Siemen's Ali-Scout
Motorola's Arrow, Envoy
A R D I S
R A M Mobile Data
G T E Personal Communication Services
Sony Mobile Navigation Sys tem

In-Vehicle
Route Guidance

•

•

•

•

•

•

•

Business
Directory

•

•

•

•

Table 1 Navigation and Routing Guidance Products

purpose mobile portable computer platforms. The market for ATIS products
is likely to grow rapidly in the US, and a widening market for route guidance
systems already exists in Japan [4]. ATIS is an application naturally suited for
mobile computing technology.

1.3 ATIS Projects

Many on-going projects are being carried out to develop and test ATIS fea
tures [2, 3, 7]. Some ATIS operational test projects have been completed [2, 3].
We describe some of the representative projects. More comprehensive sur
vey of ATIS projects can be found in [2, 3]. TravTek was a joint pubUc
sector-private sector project to develop, test and evaluate an ATIS in Orlando,
Florida. TravTek provided traffic congestion information, tourist information
and route guidance, etc. Route guidance reflected real-time traffic conditions
in the TravTek traffic network. A traffic management center collected real-time
traffic information from various sources and transmitted it to test vehicles via
digital data radio broadcasts.

Pathfinder was a cooperative effort by California Department of Transporta
tion, Federal Highway Authority (FHWA), and General Motors. In the Los
Angeles Smart Corridor, Pathfinder provided drivers of specially equipped in-
vehicle navigation systems with real-time traffic information, and suggested
alternate routes. A control center managed the communication, detected traf
fic density and vehicle speeds, and transmitted congestion information to the
special vehicles in the form of an electronic map on a display screen or digital

voice.

Genesis and Advanced Traveler Information Systems 703

Travlnfo is a joint project between the California Department of Transporta
tion, the Bay area ad hoc IVHS committee and FHWA. Travlnfo will provide
comprehensive traveler information both before and during trips. A multi
modal transportation information center will collect transportation information
from various sources and make the information available to the general public,
public agencies and commercial vendors.

SWIFT (Seattle Wide-Area Information for Travelers) is a joint public sector-
private sector project to test an ATIS in Seattle, Washington. SWIFT will
test the delivery of traveler information via three devices: the Seiko Receptor
Message Watch, an in-vehicle FM subcarrier radio, and a palm-top computer.
SWIFT will also expand ATIS service currently being developed under the
Seattle Smart Traveler project.

A variety of projects are also underway in Europe and Japan [2, 3, 7]. ALI-
SCOUT/LISB uses infrared transmitters and receivers to transfer navigation
information between roadside beacons and equipped vehicles. The Autogu-
ide being developed in British is similar to ALI-SCOUT. Other collaborative
projects being developed in Europe are the DRIVE with the goal of supporting
such needs as route guidance, improved travel safety and efficiency, etc. CACS,
RACS and AMTICS are projects being developed in Japan.

1.4 Genesis, Related Work and Scope

Genesis [1, 22] is an ATIS operational test project currently being developed
in Minnesota. It is a partnership between the University of Minnesota, the
Minnesota Department of Transportation and private sector companies. The
goal of Genesis is to test the effectiveness of an advanced portable traveler
information service to provide comprehensive, real-time travel data. Traveler
information, including trip planning, transit, traffic and parking information,
etc., will be provided via a family of fully portable personal communications de
vices (PCDs). Initially, three types of devices are being evaluated: an alphanu
meric pager, a notebook computer and a personal digital assistant. PCDs are
being evaluated in a multi-phase operational test throughout the Minneapolis
- St. Paul metropolitan area. The first phase is a pilot project providing re
ports on incidents only. Later phases will examine the provision of additional
information via PCDs.

The TravLink project will implement an ATIS and Advanced Public Trans
portation System (APTS) along the 1-394 corridor in downtown Minneapo-

704 CHAPTER 26

lis. TravLink will provide real time traffic information and transit schedules
through a combination of kiosks and terminals at home, work, transit stations
and shopping centers.

Genesis is likely to open up an application requiring mobile database technol
ogy. Mobile database technology such as caching, data replication, indexing
strategies, and tracking strategies including location updates and queries for
mobile users, etc. [12, 5, 10, 14, 13, 11], are relevant to the design of Gen
esis. We note that Genesis is still in the preliminary design phase, so it is
premature to compare it with other related work in mobile databases. This pa
per attempts to describe an important application which may showcase mobile
database technology. We focus on describing the application rather than eval
uating the technology.

Outline : Section 2 defines the ATIS system components. Section 3 presents
data management in Genesis. Query processing issues in Genesis are discussed
in section 4. Finally, section 5 summarizes our discussions.

2 GENESIS SYSTEM

In this section, we first describe the components of the Genesis system and then
present the Genesis system functions. Genesis is a dynamic project such that,
as the program progresses, the functions and capabilities of Genesis will need
to continually improve to accommodate advances in technology and changing
user requirements. To provide a more comprehensive understanding of the
ATIS system, we not only describe the current functions of Genesis, but also
include other ATIS functions which will be the future goals of Genesis.

2.1 Components of Genesis

The Genesis system includes data collection stations such as the Traffic Manage
ment Center (TMC) and the Metropolitan Transit Commission (MTC), along
with the fixed-end ATIS database server, the wireless communication service
provider and mobile PCDs (Personal Communication Devices). Figure 2 shows
an operational view of Genesis [1].

The TMC is the communications control and computer center for managing
traffic on Twin Cities Metropolitan Area Freeways. The TMC is equipped

Genesis and Advanced Traveler Information Systems 705

Figure 2 Genesis Operational View

with video and radio monitoring and broadcasting equipment, as well as traffic
management workstations. The TMC uses networks of sensors, communication
channels, and information sources to acquire traffic data. The MTC collects
data about current locations of busses (public transportation) and schedule
exceptions.

The fixed-end ATIS server is the functional data processing element. Real
time data is collected, converted, processed and stored by the fixed-end server.
Data is transmitted to the mobile clients via a communication service. Data
transmission occurs at the request of mobile clients, or is sent by the fixed-end
server as a result of a pre-determined data transaction.

The communication service provider has the responsibility of transmitting data
from the fixed-end server to mobile clients (PCDs) and transmitting requests
from the clients to the server. PCDs will, through a tightly coupled interface,
communicate to the Genesis fixed-end server via the communication service
provider. PCDs are divided into three categories, an alphanumeric pager, a
hand-held PDA (Personal Device Assistant) and a PDA ofF-the shelf informa
tion device.

2.2 Genesis System Functionality

Figure 3 shows the functions of the Genesis system, including application func
tions, communications, user interfaces, I/O drivers and operating system, and
other ATIS functions. Genesis application functions include the user profile.

706 CHAPTER 26

GENESIS FUNCTIONS

* User Profile
* Trip Management

* Incident Reports
* Planned Events
* Transit

OTHER ATIS FUNCTIONS

* Navigation

* Location Determination

* Route Optimization

* Business Information

COMMUNICATIONS API

USER INTERFACE (GUI)

I/O DRIVERS

OPERATING SYSTEM

Figure 3 Detailed Functional Decomposition

trip planning, trip scheduling, trip status, travel time advisory, real-time advi
sory, planned events and transit applications [1].

The User Profile function allows the user to maintain default travel time
preferences, alarm parameters and advisory recognition preferences. Travel
time preferences include desired starting or stopping time of trip, travel dura
tion, etc. Advisory parameters include travel duration, bus exceptions, real
time, and planned event advisories. User-specific information such as preferred
routes, trip origin and destination, etc., are also maintained.

The Trip Management function provides trip planning, trip scheduling, trip
status, and route layout. Trip planning allows the user to plan trips using
primary and alternate routes to destinations, receive estimated travel durations
and known advisories for planned trips, etc. Trip scheduling allows the user
to select a planned trip as the active trip, receive current and estimated travel
duration and known advisories for the active trip, etc. Trip status allows the
user to receive travel duration, real-time, planned event, and bus exception
advisories, etc. Figure 4 shows the Trip Management function [1] in Genesis.

The Incident Reports function receives and displays real-time location-speci
fic incident information from the fixed-end server. Incident information includes
potential hazards or delays due to unusual occurrences such as traffic accidents
or excessive congestion. Incident reports include travel duration advisories and
real-time advisories. A travel duration advisory is the dissemination of the
manipulated difference between the current travel duration of a link and the
historical average travel duration of the link for the current time period. A real-

Genesis and Advanced Traveler Information Systems 707

Trip Management

Route

9 Preferred |

O Alternate 1 |

O Alternate 2 |

Travel

01
\m
îi

Time

1
1

_J

View Advisories

Start Trip Now 1

O Arrival Time

O Departure Time
Date of trip

How often I take this trip

Estimated Time from to niin

Estimated Time from to min

Time I need to get ready for a trip min

How much earlier I would be willing to start getting ready for trip min

Get Ready Alarm [\ Start Trip Alarm | | Complete Trip Time [_

Help I I Cancel Changes | | Save j | Previous Screen | | Main Screen j

F i g u r e 4 Trip management function in Genesis

time advisory is the dissemination of current abnormal conditions for specific
links.

The Planned Events function provides the user with a planned event advisory.
A planned event advisory is the dissemination of planned abnormal conditions
for specific dates and times. The types of conditions to be reported by the fixed-
end server are construction, lane closures, maintenance and special events.

The Transit function provides bus exception advisories and fixed bus informa
tion. A bus exception advisory is the dissemination of the current delay for a
specific bus route. Fixed bus information includes the bus schedule, fare and
bus route information.

The Communications function supports the data transmissions between the
fixed-end database server and PCDs. Several approaches to wireless communi
cation are being explored, including Infrared and RF beacon technologies, FM
sideband technology. Mobile satellite services, Cellular phone technology and
Radio-Frequency (RF) data communication networks [16].

The User interface function communicates with the user (driver), accepting
requests for service and delivering driving directions and other information.

708 CHAPTER 26

Direction screens present simple, highly stylized graphics that can be taken in
at a glance. The system can be augmented with digitized or synthesized voice
for traffic information and route guidance. Alternatively, head-up displays
provide more flexible and useful guidance.

The Navigation function displays digital road maps. First, the navigation
method needs to determine the vehicle's location and path of travel. Then, as
the vehicle moves, its position on the screen remains fixed and the map moves
around it, providing a view of the roadway ahead. The driver may view a
particular area in greater or lesser detail by zooming the display in or out.

The Location Determination methods include dead-reckoning, map-match
ing and GPS (Global Positioning System). Dead-reckoning with map-matching
uses a magnetic compass, wheel speed sensors, and algorithms which match the
vehicle's motion to the map network. A GPS receiver in the car triangulates the
vehicle's position on the basis of transmissions from a satellite network deployed
by the U.S. Department of Defense. GPS is most effective when combined with
dead-reckoning sensors and the map-matching algorithm.

The Route Optimization function determines "favorable" routes from the
vehicle's current position to a chosen destination. Route evaluation capabili
ties are also supported to evaluate a set of alternate routes between origin and
destination, based on the current travel-time, congestion, restrictions and other
attributes of the transportation network. The in-vehicle processor is able to re
ceive traffic information on incidents, including travel times on aff̂ ected routes,
from the TMC. The system determines if the driver's selected route is aff'ected,
calculates a new route if necessary, and informs the driver that a revised route
is available.

The Business Information function supports various service functions for
the business directory and travel information inquiry, etc.

3 DATA MANAGEMENT IN GENESIS

In this section, we describe the data and queries in the Genesis system. Some of
the data and queries are not included in the current stage of Genesis design, but
are common in the ATIS system, and thus are very likely to be accommodated
by Genesis in the future.

Genesis and Advanced Traveler Information Systems 709

Figure 5 Minneapolis Road Map (major streets)

3.1 Data

We examine the data-set in the Twin Cities area. ATIS information data
includes driving and public transportation data that are available to the traveler
or commuter. Those data are categorized into the following.

Digital Road Maps are represented as a collection of road segments. Each
road segment has a beginning node and an ending node. Since road maps are
embedded in a geographical space, each node has x, y coordinates. There are
about 100,000 road intersections and 300,000 road segments. Data set sizes
are 10 Mbytes for the metropolitan area. Figure 5 shows the major streets in
the Minneapolis road map as an example. The road-map of interest to Genesis
includes all the roads in the seven counties around the Twin-Cities area.

Transit Information includes Schedules, Route Maps, Fares, Bus Stop Sched
ules, Real Time Status, Messages, Park and Ride Parking, Downtown HOV
parking, Ridesharing, Elderly and Handicapped Service, Transit Itinerary Plan
ning, etc. Data-set sizes are about 30 Kbytes per minute for the metropolitan
area.

710 CHAPTER 26

Traffic and Roadway Information includes Incidents, Construction and
Detours, Highway Segment Information, Highway Trip Information, Highway
Itinerary Planning, etc. Data set sizes are about 30 Kbytes per minute for
simple sensor data and incident information.

The Business Directory contains information about hotels, restaurants, and
services, etc. Data set sizes are 50 Mbytes for the administrative units of the
metropolitan area.

3.2 Queries

User queries include querying traveler service information, pre-trip travel infor
mation, route guidance, en-route driving advisories and emergency notification.

Range Queries

Since the transportation networks (road maps) are embedded in geographical
space, users might issue a range query. The following example demonstrates a
range query. This query utilizes a predefined geographic boundary, the "down
town area", to search for all the road segments within the downtown area which
are currently under construction.

Query#1 : Which roads are under construction in the downtown area?

Route Optimization

In a road-map database, the most frequent queries will be route-related queries.
A driver might want to know how to get from location A to destination B.
This kind of query requires applying path computation algorithms such as the
iterative, Dijkstra [8, 15, 19] or A*" [9, 19] to find the routes.

Query#2 : Find the shortest travel-time path from EE/CSci building to the
Mall of America?

The sample query demonstrates the use of path-computation algorithms to find
routes that satisfy an AGG function. AGG is an aggregate function defined
to retrieve the aggregate properties that are specified over the set of routes

Genesis and Advanced Traveler Information Systems 711

in the road networks. Typical AGG functions are shortest distance, minimum
travel time, etc. In the IVHS application, there may exist thousands of road
intersections between two geographical locations. Therefore, path computation
often leads to heavy computation and I/O overhead.

Mixed Queries

Instead of finding routes from a source to a destination, drivers might want to
find routes from a source to a set of destinations, as in the following example.
The following query first applies range and join queries over road maps and
business directory databases to find certain county parks, then applies route
computation to find corresponding routes.

Query#3 : Display the locations of all county parks within the Twin Cities
area, along with the minimum travel time routes from the EE/CSci building to
them.

Route Evaluation

One variant of route computation is route evaluation. A simple example of
a query is presented below, where the current travel time for a specific road
segment is requested.

Query#4 : Find the travel time on 1-35 W between 62 and Diamond Lake Road.

The goal of route evaluation is to find the aggregate properties of a given
route or set of routes between two locations. These aggregate properties may
include travel time, travel distance and traflSc congestion information. The set
of possible candidate routes are those familiar routes selected by travelers, or
the most frequently used routes automatically recorded by ATIS. As shown
in figure 6, Genesis provides the route planning function [1], which uses route
evaluation to estimate the travel time on routes.

The following two examples illustrate the route evaluation queries. Route eval
uation requires less computation and I/O overhead than route computation,
since only a very small number of routes are examined.

Query#5 : Evaluate the travel time from Home to the EE/CSci building by my
preferred major route 1-494-

712 CHAPTER 26

Route Planning

Route Description | Usual route to work

Starting Point

•
o
o

HOME

WORK

OTHER

Destination

O

•
o

HOME

WORK

OTHER

Preferred Travel

•
o
o

CAR

BUS

HOV

Preferred Major Route

I 1-494

Entered At:

1 Carlson

Estimated Time from

Estimated Time from

HOME

1-494

to

to

Exit At:

1 York

1-494

WORK

15

5

• minutes

• minutes

m
Route:

Carson
York

Help I I Save | [Previous Screen! [Main Screen

Figure 6 Route planning function in Genesis

Query#6 : Evaluate the travel time for my three preferred routes from Home
to EE/CSci building.

Emergency Service

One very important feature of AXIS is its emergency notification and per
sonal security service. Users issue emergency requests by using pagers, cellular
phones, or callboxes for "mayday" purposes. The emergency request requires
an in-vehicle transceiver to transmit the emergency service request and vehicle
location information. The digital messages can be transmitted over the traffic
message channels or over the cellular telephone network.

Query#7 : Emergency service request.

3.3 Triggers

In Genesis, events such as traffic accidents, traffic congestion and road hazards
need to be persistently monitored. Since events do not occur predictably, it

Genesis and Advanced Traveler Information Systems 713

is more appropriate to model them as triggers so that the system can warn
drivers once the system detects an incident. Such Genesis functions as real
time advisory and trip status can be modeled as triggers.

A real-time advisory is the dissemination of current abnormal conditions for
specific road segments or a route which is usually the primary route selected by
the driver. The type of conditions to be reported are: traffic incidents, traffic
congestion, weather conditions and road hazards. For example, the driver would
like the system to inform him/her if there is any traffic congestion on his/her
primary route home.

Trigger#l : Whenever any traffic congestion occurs on the primary route,
inform me.

In addition. Genesis will provide a route status function that is triggered auto
matically by a change in traffic conditions on the primary route, or triggered
manually by a primary-route status request. Figure 7 shows the trip status
function [1] in Genesis.

Tr ip Status

Trip

Start Trip

Route Travel Time

9 Preferred | U 1
O Alternate 1 | P
O Alternate 2 |

i||||ii|||||||^^i|;^^
m\ 1

Cancel Trip |

Resume Trip |

Pause Trip

Trip Conapletej

Change Route |

Trip Date Get Ready Time Start Trip Time Complete Trip Time

I I I I I I

Help Main Screen

F i g u r e 7 Trip status function in Genesis

A driver might specify the following trigger to change the primary route if the
travel duration on the primary route drops below a threshold. This trigger uses
route evaluation to find the travel duration for routes.

714 CHAPTER 26

Trigger#2 : If the travel duration for an alternate route is less than the primary
route travel duration by a differential threshold, then suggest the alternate route
as the new primary.

3.4 Dynamic Routing Problem

ATIS has to manage constantly changing travel times, which can alter the route
of choice during travel. Optimal (e.g. minimum time) route selection by the
individual driver, using real-time information disseminated by the TMC, will
need to account not only for current traffic conditions but also for predicted
traffic conditions and the routes of other drivers in the road network. Drivers
provided with real-time traffic information will change selected routes to avoid
congestion and incidents of which they are alerted. The current preferred or
optimal route might no longer be the best choice as travel proceeds. Path
computations need to be continually performed to select the preferred path
from the driver's current location to the requested destination. Path compu
tations in ATIS also become time-critical because a lengthy turnaround time
may cause the drivers to miss their next turn. For example, path computations
must be completed well in advance of the driver reaching the decision point
(intersection). The distance to the decision point and the average travel speed
may determine the time constraint.

Figure 8 shows a dynamic routing example with given source node A and
destination node F. The originally preferred route was A-B-C-D-E-F. Let us
assume that an incident occurs on road-segment B-C when the vehicle is at
point M, before the driver reaches node B. In order to avoid the incident, the
driver may divert to an alternate route. In this example, the system suggests
an alternate route B-P-Q-R-F, before the driver reaches the decision point B.
The path computation must be performed between point M and node B to
alter the preferred route and avoid blockage.

The responsiveness of dynamic route guidance depends upon the cost and ef
ficiency of accessing new information such as incidents and changes in travel-
time. It is desirable to explore methods to improve the response-time of in
cremental route evaluation and incremental route optimization via techniques
such as materialization and the maintenance of dependence between events and
the ranking of routes.

Genesis and Advanced Traveler Information Systems 715

A Source

Destination

F i g u r e 8 Dynamic Routing Problem in ATIS

4 PERFORMANCE ISSUES IN GENESIS

At present, the preliminary requirement specifications of Genesis has just been
finalized. Several different strategies for supporting query processing, advi
sories, and communications are being considered. We list some of the strategies
in this section, without any particular preference or evaluation.

4.1 Metrics of Performance

There are a number of factors that should be considered in designing query
processing strategies. Those factors are discussed below.

Query Response Time : Query processing needs to be efficient to guar
antee reasonable query response time, especially for en-route real-time ad
visories.

Data Currency : For example, traffic delay information should not be
more than 1 minute old.

Scalability : The system should have the capability of scaling up to
accommodate a large number of travelers.

716 CHAPTER 26

Autonomy : If a communication failure occurs due to weather, tunnels,
etc., the system should be able to provide some basic functions.

Cost Models : Should include fixed and variable service charge to the
user for communication, the ATIS service, etc., as well as strategies to
minimize cost.

4.2 Challenges

In this section, we compare mobile computing in ATIS to other types of mobile
computing in the following aspects. Mobile computing involves problems in the
access and storage of real-time traffic data, in response to constantly changing
traffic information.

Highly concurrent real-time access :
The access to real-time traffic information is highly concurrent. For exam
ple, there are 200,000 drivers (on average) on the road during rush hour
in the Twin Cities Metropolitan area. Managing a reasonable response
time during a large number of concurrent accesses will be a key issue. The
other issue will be how to distribute the CPU-process load between the
server and the clients. Some ATIS functions such as path optimization
queries require CPU-intensive computations. The overhead will be too
large for the server to process large numbers of path optimization queries.
A more reasonable choice will be to let clients share the load of processing
queries such as path optimization queries. However, centralized (server)
path optimization can achieve global optimization and avoid having most
drivers choose the same routes, which would result in congestion in the
near future.

Network computations :
ATIS requires more complex computations such as path evaluations and
shortest path computations, besides simple data accesses. Query process
ing not only needs to consider issues involved in the retrieval of data from
wireless limited bandwidths, but also needs to take into account the char
acteristics of the network data and network computations.

Managing triggers for dynamic routing :
Triggers need to be persistently monitored and reported as soon as possible.
Pager networks in Genesis can guarantee the delivery of generic trigger
information (e.g. incident) within 2 minutes of occurrence. It would be

Genesis and Advanced Traveler Information Systems 717

interesting to explore techniques to reduce the delay. Another challenge is
how to manage custom triggers for the 200,000 drivers during rush hour.

User interface for drivers :
Drivers have a limited time to interact with the computer during driving.
For example, manipulating mouses or keyboards during driving may not be
safe. The use of voice recognition, thumb-controlled switches on steering
wheels etc., needs to be explored along with headup displays and simple
information displays (e.g, icons) to convey the results. Pre-trip information
can be more elaborate. Providing effective route guidance and driving
advisories through limited-size display screen is also a key issue.

Bandwidth, caching vs data accuracy :
The communication and caching policies used can take advantage of the
data-accuracy requirements of ATIS. Several dynamic attributes in ATIS
are continuous functions of time. The frequency of changes in these at
tributes may be quite high; however, the drivers may not be interested in
every change. For example, if travel-time on a road-segment changes by
few micro-seconds, the change may not be interesting. Thus, it is not desir
able to ensure complete consistency between server database and caches at
the mobile clients. Clients need to be informed about traffic changes only
when traffic differences exceed some thresholds which might be defined on
the basis of various qualities of service provided by ATIS. A higher quality
of service will provide more accurate traffic information and require higher
communication overhead, which implies a higher charge. ATIS should be
able to provide different qualities of service to meet different clients' needs.

Disconnection :
It is often assumed that mobile clients may frequently be disconnected to
save power [5, 12], and effective caching algorithms need to be designed
based on the disconnection time. Extended disconnection to save power
may not be an issue in ATIS, since the vehicle can provide adequate power.
However, disconnection may occur due to tunnels and other obstructions
to communications. It would be interesting to characterize disconnection
in ATIS environments to select appropriate caching algorithms.

Power consumption :
Power consumption is not an issue in ATIS because computers can be
powered using the electricity supplied by the vehicle. For users carrying
portable palmtops, energy efficient data management techniques are often
considered to save power consumption [12]. However, this issue is less
critical in ATIS.

718 CHAPTER 26

While issues in location management, data replication and caching strate
gies, etc., are being explored now, these have not been linked to impor
tant real-world AXIS applications which will be used by a large number
of mobile clients such as commuters and travelers. An ATIS applica
tion benchmark can be quite useful towards comparing methods in mobile
databases.

4.3 Strategies for Query Processing

Standard Client-Server

Query processing is performed on the servers. A driver (client) issues a query
to the server. The server processes the query, then sends back the query result.
This strategy centralizes the database operations on the servers and distributes
only application and interface processing to the clients. Since the query pro
cessing is done in the server, the PCD can be simple. For an ATIS with a
large number of drivers, this strategy will place a very heavy burden on the
communication system and servers. Therefore, fixed-end server design becomes
one of the main issues.

The main computations in ATIS are route computation and route evaluation.
In a page-based environment, data is stored in the system's secondary stor
age, which consists of fixed, uniform-size pages. The main overhead during
route computation or route evaluation is disk I/O. We have evaluated the per
formance of path computation algorithms on road map databases [19]. The
choice of clustering techniques affects the performance of query processing [20].
Lastly, parallel processing [17, 23] may be used to scale up to a reahstic number
of traveling events and to provide each with a reasonable response time.

Enhanced Client-Server

Query processing can be executed locally by the clients (PCDs). The work
load in the server is reduced by distributing database operations to clients.
Clients cache data and query results in local disk storage that is available to
clients. This strategy requires the PCD to be capable of processing queries such
as route guidance, route computation and evaluation, etc. Caching strategies
using broadcasting and signature, etc., are discussed in [5].

Genesis and Advanced Traveler Information Systems 719

In an enhanced client-server architecture, the client will request data from the
server if data is not available in the client caches. In a page-based environment,
the server will not just return the requested data, but will return all data stored
in the same page as the requested data. After the client receives the page
containing the requested data, the client can access all the data in that page.
A clustering technique that can reduce the number of pages accessed from
secondary storage during route evaluation will also reduce the communication
load and server overhead [20].

4.4 Strategies to Handle Triggers

As described in section 3.3, triggers are used to model events that need to be
persistently monitored. We discuss strategies to handle triggers in the following.

Triggers are placed at the server site. Once the server monitors any trigger
in effect, the server transmits warning or advisory messages to the specific
driver or broadcasts the warning/advisory messages.

Triggers are cached in the client (PCD) site. The server broadcasts incident
data and the client caches broadcast data. The client checks the triggers
for any effect on the primary route and provides warnings or advisories if
the trigger is activated.

A hybrid of the above two methods is to put common and important
triggers (e.g. severe weather conditions or earthquakes) in the server site,
and to put driver-specific triggers (e.g. If traffic congestion occurs on the
primary route, then suggest alternate routes) in the client site.

4.5 Broadcasting Strategies

When considering the periodic broadcasting of dynamic traffic information,
the broadcast period (T) needs to be carefully chosen. A longer T lowers the
communication load, but provides less accurate (up-to-time) traffic information
to the client. In addition, since ATIS often covers very wide geographic areas
and since many vehicles participate, data volume to be broadcast will be very
large. We discuss the following possible approaches to reduce data volume and
thus reduce the communication load.

720 CHAPTER 26

Decompose Geographically : People driving in the northern area might
not need traffic information in the southern area. Therefore, server coverage
could be geographically decomposed into different zones or cells, such that
each zone has a particular server site to serve drivers in that zone. Only traffic
information in that particular zone then needs to be broadcast. This scheme
will need to handle situations where drivers enter different zones or travel across
nearby zones.

Checkpointing : Traffic changes are broadcasted at checkpoints. Traffic
information is examined at checkpoints to determine traffic changes, i.e., when
traffic difference exceeds thresholds. Increasing thresholds will reduce commu
nication load, but at the same time will decrease the accuracy of the traffic
information. Checkpointing operates every t times (t <C T).

5 CONCLUSIONS

ATIS requires that large amounts of data be continuously collected, stored and
retrieved. Throughput requirements and the capacity of the wireless communi
cations channel will dictate many of the other parameters. Due to the massive
number of drivers and the geographic area to be covered, an ATIS will require
high throughput demands on the wireless communications system. Channel
capacity requirements for real-time traffic information should be investigated.
Efficient wireless communication architectures and technologies need to be ex
plored to support full-scale ATIS features.

Communication overhead, caching strategies, data currency, scalability, com
puter cost and service charges, etc., need to be carefully evaluated in designing
ATIS. In addition, efficient routing algorithms should be investigated for min
imum travel time (or other selectable criteria) that takes into account current
traffic conditions and traffic network travel times.

ATIS is a very promising application requiring mobile database technology.
Since it is limited by current technology, the current stage of Genesis will only
test the effectiveness of some ATIS features. As the technology advances, the
functions and capabilities of Genesis will continually improve to accommodate
advances in technology and changing user requirements. In the future, a wide
variety of personal and business related ATIS services will be fully provided
that are based on the success of mobile database technology.

Genesis and Advanced Traveler Information Systems 721

Acknowledgment

Genesis represents cooperation among the public and private sector and aca-
demia [22]. Public sector institutes such as the Minnesota Department of
Transportation and the Federal Highway Authority are involved in the project,
along with private sector companies such as IBM Federal Systems Company,
BRW, JHK, Battelle, Barrientos and Associates, Motorola etc.

REFERENCES

[1] "GENESIS : Personal Communication Device". GENESIS 191A321 Doc
ument, 1993.

[2] "Intelligent Vehicle Highway Systems Projects". Department of Trans
portation, Minnesota Document, March 1994.

[3] "Intelligent Transportation Systems Projects". Department of Transporta
tion, Minnesota Document, January 1995.

[4] J. Arlook and Randall Jones. "Tracking IVHS : Where It is and Where It
is Going". In Geo Information Systems^ November/December 1993.

[5] D. Barbara and T. Imielinski. "Sleepers and Workaholics: Caching Strate
gies in Mobile Environments". In Proc. of SIGMOD Conference on Man-
agement of Data, pages 1-12. ACM, 1994.

[6] J. L. Buxton and et. al. "The Travelpilot: A Second-Generation Automa-
tive Navigation System". IEEE Trans, on Vehicular Technology, 40(1):41-
44, February 1991.

[7] W. C. Collier and R. J. Weiland. "Smart Cars, Smart Highways". IEEE
Spectrum, pages 27-33, April 1994.

[8] T. H. Cormen, C. E. Leiserson, and R. Rivest. "Introduction to Algo
rithms", chapter 25. The MIT Press, 1990.

[9] D. Galperin. "On the optimality of A*". Artificial Intelligence, S{l):69-76,
1977.

[10] Y. Huang, P. Sistla, and O. Wolfson. "Data Replication for Mobile Com
puters" . In Proc. of SIGMOD Conference on Management of Data, pages
13-24. ACM, 1994.

722 CHAPTER 26

[11] T. Imielinski and B. R. Badrinath. "Querying in Highly Mobile Distributed
Environments". In Proc. of Intl Conference on Very Large Data Bases^
pages 41-52, 1992.

[12] T. Imielinski and B. R. Badrinath. "Mobile Wireless Computing". Com
munication of ACM, 37(10), 1994.

[13] T. Imielinski, S. Viswanathan, and B. R. Badrinath. "Energy Efficiency
Indexing on Air". In Proc. of SIGMOD Conference on Management of
Data, pages 25-36. ACM, 1994.

[14] T. Imielinski, S. Viswanathan, and B. R. Badrinath. "Power Efficiency
Filtering of Data on Air". In Proc. of 4ih Intl Conference on Extending
Database Technology, pages 245-258. EDBT, 1994.

[15] B. Jiang. "I/O Efficiency of Shortest Path Algorithms: An Analysis". In
Proc. of the Intl Conference on Data Engineering. IEEE, 1992.

[16] A. M. Kirson. "RF Data Communications Considerations in Advanced
Driver Information Systems". IEEE Trans, on Vehicular Technology,
40(l):51-55, February 1991.

[17] D. R. Liu and S. Shekhar. "A Similarity Graph Based Approach to Declus-
tering Problems and its Application towards Parallelizing Grid Files". In
Proc. of the Eleventh Intl Conference on Data Engineering. IEEE, March
1995.

[18] J. H. Rillings and R. J. Betsold. "Advanced Driver Information Systems".
IEEE Trans, on Vehicular Technology, 40(l):31-40, February 1991.

[19] S. Shekhar, A. Kohli, and M. Coyle. "Path Computation Algorithms for
Advanced Traveler Information System". In Proc. of the Ninth Intl Con
ference on Data Engineering, pages 31-39. IEEE, April 1993.

[20] S. Shekhar and D. R. Liu. "CCAM : A Connectivity-Clustered Access
Method for Aggregate Queries on Transportation Networks : A Summary
of Results". In Proc. of the Eleventh Intl Conference on Data Engineering.
IEEE, March 1995, (An extended version is also accepted for IEEE Trans,
on Knowledge and Data Engineering).

[21] R. von Tomkewitsh. "Dynamic Route Guidance and Interactive Transport
Management with ALI-SCOUT". IEEE Trans, on Vehicular Technology,
40(l):45-50, February 1991.

Genesis and Advanced Traveler Information Systems 723

[22] James L. Wright, R. Starr, and S. Gargaro. "GENESIS - Information on
the Move". In Proc. of Annual IVHS America Conference, pages 334-336,
1993.

[23] Y. Zhou, S. Shekhar, and M. Coyle. "Disk Allocation Methods for Paral
lelizing Grid Files". In Proc, of the Tenth Intl Conference on Data Engi
neering. IEEE, 1994.

INDEX

Active badge, 402, 408, 410, 413,
418, 421, 423

Active document, 36, 376
Ad-hoc networking, 19, 33, 192
AFS (Andrew File System), 30,

372, 508
AMPS, 7, 10, 142-143
Antenna diversity, 4
ARDIS, 12, 300, 627, 702
Audio, 51, 233, 271, 277, 399, 413,

623

427, 440, 538, 563, 621, 645,
693, 701

Client-server, 18, 21, 35, 260, 302,
333, 341, 358, 520, 531, 564,
665, 688, 719

Coda, 29, 32, 37, 364, 507, 537,
655, 669, 675

Color, 25, 57, 104, 184
Compression, 35, 247, 258, 272,

274, 289, 293, 440, 564, 625,
634

Congestion, 5, 19, 29, 34, 39, 92,
156, 163, 176, 207, 214, 223,
243, 248, 260, 627, 640, 701

CSMA, 199, 201

Battery, 2, 15, 49, 184, 201, 184,
201, 446, 633

Bit-error rate, 4, 275
Broadcast, 15, 53, 149, 155, 184,

210, 231, 299, 331, 387, 595,
621, 702

Cache, 25, 67, 107, 134, 155, 299,
331, 368, 434, 445, 509, 587,
618, 655, 717

CD-ROM, 16
CDMA, 8
CDPD, 6, 28, 142, 152, 249, 300,

628, 645
Cellular, 1, 52, 104, 129, 207, 219,

248, 253, 272, 278, 332, 410,

D

Database, 2, 29, 36, 67, 143, 301,
335, 401, 420, 518, 571, 600,
641, 683, 700

DataMan, 26, 36
DBS, 627, 645
Device driver, 428
Disconnection, 22, 29, 230, 250,

266, 326, 364, 444, 508, 540,
587, 643, 651, 717

Downlink, 14, 23, 56, 301, 626, 642
Doze mode, 16, 305, 317

E

Electronic mail, 2, 15, 37, 77, 81,
95, 425, 621, 659

726

Embarc, 12, 318
Energy, 3, 27, 80, 146, 302, 399,

423, 449, 717
Ethernet, 54, 63, 81, 232, 245, 393

Fading, 4, 233, 274, 623
Failure, 31, 81, 91, 133, 171, 237,

265, 431, 444, 507, 540, 580,
682, 716

FCC, 11, 14
FDMA, 7
File systems, 29, 32, 357, 508, 531,

537, 563
Flash-memory, 1, 37
Flow control, 19, 67, 234, 249, 264,

441

Interference, 4, 83, 156, 225, 274,
281, 297

Internet, 103, 125, 151, 180, 186,
223, 239, 248, 258, 300, 616,
621, 644

IP, 18, 103, 130, 167, 18, 103, 130,
167, 210, 229, 257, 305, 321,
442, 460, 597, 620

IR, 38, 52, 359, 366, 416, 622, 625,
632, 638-639

ISDN, 82, 146, 426, 538, 650

K

Kernel, 264, 425, 453, 515, 527,
542

G
GEOS, 13
GPS, 6, 410, 423, 693, 708
GSM, 9, 143, 152, 254, 269, 576,

589, 645

H

HandoflF, 10, 107, 143, 207, 238,
314, 367, 572, 623

Hidden terminal, 12

IETF, 33, 103, 125, 139, 269, 646
Indirection, 21, 35, 233, 249, 405,

412, 667
InfoPad, 42, 640
Infrared, 13, 46, 63, 82, 90, 104,

169, 184, 201, 225, 393, 622,
703

LAN, 1, 11, 53, 145, 157, 176, 201,
249, 254, 300, 328, 366, 426,
538, 563, 623, 649, 689

LEO, 14, 627

M

MAC, 12, 156, 160, 171, 176, 192,
204, 242

MACA, 156
Memory, 1, 16, 64, 77, 81, 95, 199,

219, 232, 333, 358, 426, 435,
522, 527, 538, 640, 683

Mobidata, 42
Mobile IP, 147, 231, 239
Modem, 6, 10, 302, 377, 440, 538,

576, 627, 644
Mosaic, 89, 237, 377, 386, 393,

654, 688
MPEG, 35, 273, 643
Multicasting, 19, 26, 110, 188, 301,

412

Index 727

Multimedia, 271, 297, 444, 574,
593, 624

Multipath fading, 4, 272

N

Nano-cell, 93, 403, 421
Nearcast, 26
Newton, 17, 377, 450, 626, 699
NFS, 237, 442, 508, 567

O
Operating system, 2, 49, 393, 425,

449, 566, 653, 683, 705
OSI, 2, 17, 305, 597, 610, 632
Overlay network, 38, 621, 628, 644

Packet loss, 5, 19, 34, 146, 207,
215, 233, 243, 258, 625,
633-634

PCMCIA, 37, 393, 425, 626, 684
PCS, 8, 14, 276, 571, 8, 14, 276,

571
Pen, 17, 32, 45, 58, 122, 259, 326,

348, 358, 367, 452, 520, 545,
665

Personal digital assistant, 1, 45,
50, 573, 652, 703

Picocell, 2, 143, 300
Power, 1, 45, 103, 155, 184, 208,

229, 253, 274, 298, 332, 337,
425, 451, 507, 538, 577, 623,
682, 717

Primary copy, 30
Privacy, 8, 117, 178, 278, 397
PRMA, 15, 304
Proxy, 21, 27, 176, 262, 641
Publishing, 23, 299

Query, 21, 31, 38-39, 77, 106, 299,
356, 430, 595, 654, 700

R

Radio, 3, 49, 104, 151, 209, 274,
298, 356, 421, 532, 592, 598,
622, 661, 684, 702

Rayleigh fading, 4
Recovery, 63, 218, 243, 258, 317,

522, 550-551, 579, 655
Relay network, 644
Replication, 3, 30, 37, 132, 310,

358, 509, 540, 704
Resolution, 25, 30, 46, 127, 179,

184, 289, 287, 398, 414, 453,
514, 566

Routing, 34, 39, 63, 104, 130, 154,
183, 210, 229, 258, 387, 412,
597, 606, 627, 714

RPC, 63, 72, 237, 404, 653

Satellite, 1, 12, 104, 275, 300, 333,
440, 621, 707

Scheduling, 16, 35, 322, 449, 647,
667, 684, 706

Security, 21, 36, 121, 130, 178, 279,
440, 511, 538, 553, 641, 653,
712

Serial line connections, 37, 442
Shadows, 4
Signal strength, 4, 233, 633
Socket, 236, 255
Speech, 7, 43, 662, 674, 683, 693
Spin down, 37, 456
Spread spectrum, 9, 11, 209, 626,

690

728

TCP, 19, 114, 147, 165, 207, 229,
255, 269, 443, 628, 659

TDMA, 8
Telephone, 7, 130, 142, 248, 253,

278, 410, 440, 575, 625, 654,
674, 712

Telescript, 654
Transaction, 31, 38, 147, 268, 356,

408, 423, 522, 539, 571, 627,
654, 705

Transport layer, 6, 17, 29, 147,
226, 229, 628, 632

U

Ubiquitous computing, 43, 209,
397, 425

Unix, 36, 63, 210, 232, 253, 404,
425, 508, 539, 551, 683

Uplink, 7, 14, 56, 146, 241, 301,
626, 645, 301, 626, 645

User interface, 57, 365, 391, 444,
652, 688, 705

Video, 15, 35, 78, 233, 271, 333,
378, 623-624, 705

Voice, 7, 129, 146, 271, 278, 532,
576, 621, 645, 702

VSAT, 627

W
WaveLAN, 209, 225, 303, 626
Wearable computer, 681
World-Wide Web, 1, 17, 266, 270

