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Abstract—This paper identifies the possibility of using electronic
compasses and accelerometers in mobile phones, as a simple and
scalable method of localization. The idea is not fundamentally
different from ship or air navigation systems, known for cen-
turies. Nonetheless, directly applying the idea to human-scale
environments is non-trivial. Noisy phone sensors and complicated
human movements present practical research challenges. We cope
with these challenges by recording a person’s walking patterns,
and matching it against possible path signatures generated from
a local electronic map. Electronic maps enable greater coverage,
while eliminating the reliance on WiFi infrastructure and expen-
sive war-driving. Measurement on Nokia phones and evaluation
with real users confirm the anticipated benefits. Results show
a location accuracy of less than 11m in regions where today’s
localization services are unsatisfactory or unavailable.

I. INTRODUCTION

Recent years have witnessed the explosion of location based
applications (LBAs). The iPhone App Store now features
3,000 LBAs. The Android community already lists 400
services, with the number growing rapidly every month [1].
Localization technology is projected to play a critical role
in the future, ushering in applications such as location-based
advertising, friend-tracking, micro-blogging, etc. At the outset
of this explosion, GPS was primarily used for localization.
However, Place Lab [2] and Skyhook [3] identified problems
with GPS, including poor indoor operations, short battery
life, and long acquisition time. Alternative solutions were
proposed to exploit pre-existing infrastructure for localization.
The basic idea is to war-drive an area to create a map
of existing WiFi/GSM access points – this map is then
made available to mobile devices. As a mobile device
enters a mapped area, it computes its location by detecting
WiFi/GSM access points, and searching for them in its stored
radio map. Localization became feasible even in indoor
environments while the location acquisition time reduced
significantly. Overall, it has been a valuable enhancement to
GPS based localization. However, the system leaves room for
considerable improvement.

(1) War-driving is an expensive calibration operation, but
offers limited localization coverage. Skyhook currently
employs 500 drivers who continuously war-drive to create
WiFi/GSM maps of new regions and update the existing
ones1[4]. Still, a large portion of space remains uncovered,
including walking paths in university campuses, shopping

1Updates are necessary because WiFi access points change over time as
people shift in/out of apartments, homes and offices.

plazas, apartment complexes, theme parks, etc. War-driving
on these walking paths is impractical while war-walking
is intolerably time consuming. Moreover, the recurring
financial cost of war-driving is excessive, and its impact on
environment is undesirable. Complementary solutions are
necessary that are cheap, environment-friendly, but scale to
regions where Skyhook cannot reach.

(2) Independence from infrastructure. WiFi based localization
is a useful idea in urban regions covered with dense AP
deployments. However, large portions of the world do not
have WiFi coverage, especially rural regions in US and
many developing regions. Cell tower based localization
produces poor localization accuracy while on-phone GPS has
serious energy ramifications discussed next. An infrastructure-
independent solution would be ideal for global scalability.

(3) Energy consumption with GPS and WiFi based
localization. Our prior research showed that GPS and
WiFi pose a serious tradeoff between localization accuracy
and energy [5], [6]. While GPS offers high accuracy (about
10m), it drains a (Nokia N95) phone’s battery within around
10 hours. Skyhook’s solution lasts for 16 hours although at the
expense of a degraded accuracy of 30m (and a high variance).
With continuous usage of location services, energy-efficiency
is an important concern.

In this paper, we present a simple scheme, called CompAcc,
to address the above deficiencies in today’s localization
systems. Our target is to enable energy-efficient localization
over walking paths (outside the purview of Skyhook) without
relying on war-driving or WiFi infrastructure. The main idea
is to leverage the mobile phone’s accelerometer and electronic
compass to measure the walking speed and orientation of the
mobile user. These readings can produce a directional trail
that is matched against walkable path segments within a local
area map. The local map is downloaded based on a rough
location of the phone, easily available from the cell tower.
The path segment with the best match yields the phone’s
approximate location. Using only infrequent Assisted-GPS
(AGPS) readings, the phone can periodically recalibrate its
location, and use it as a reference for subsequent position
estimation. We have implemented CompAcc on Nokia
phones, and have run live experiments in the Duke University
campus. Evaluation results demonstrate that CompAcc
achieves average localization accuracy of around 11m, even
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in areas without WiFi. This is in contrast to Skyhook’s
accuracy of 70m, computed on Duke campus with dense
WiFi coverage. We also observed 23.4 hours of continuous
operation with CompAcc, a 40% battery life improvement
over Skyhook.

CompAcc is among the early attempts to jointly utilize
the phone’s accelerometer and compass for infrastructure-
independent localization. Our system is not yet ready for
wide-scale deployment. We are currently planning large
scale testing for detailed parameter tuning, particularly for
(unpredictable) phone orientations inside pockets, bags,
holsters. Nevertheless, results in this paper are adequately
promising to justify this large-scale experimentation effort.
The promise is particularly pronounced because CompAcc
is complementary to existing localization solutions. While
Skyhook targets urban regions near roads and streets,
CompAcc is focussed on areas not close to drivable roads or
devoid of WiFi infrastructure. We believe that in conjunction
with Skyhook, CompAcc may be an important step towards
a complete localization technology.

II. SYSTEM DESIGN

Figure 1 presents the overall CompAcc architecture. We sketch
an overview first, followed by description of the three main
components: (i) generating path signatures, (ii) generating
directional trails, and (iii) matching signatures with trails.

A. Architectural Overview
CompAcc initializes by obtaining the phone’s location
through either GPS or AGPS (we discuss the pros and cons
later). The location is sent to a remote CompAcc server
which then sends back a map of the small area around that
location – we call this a map tile. A map tile is expected
to include all walking paths in that region. Now, if the
phone is detected to be stationary based on its accelerometer
readings, the phone’s location is naturally known from the
initial GPS reading. If the phone begins to move, CompAcc
acts on the accelerometer readings to estimate the user’s
displacement. The estimation algorithm exploits the rhythmic
nature of human walking patterns, and computes the number
of steps walked. The distance traversed can be derived
by multiplying the step count with the user’s step size
possible to approximate based on user’s height and weight
[7]. Alongside accelerometer readings, the phone’s compass
orientations are also recorded. Combining these time-indexed
< distance, orientation > tuples, CompAcc creates a
directional trail of the user. Distance is expressed in meters,
and orientation in clockwise angular degree with respect to
magnetic north. With the starting point at the known AGPS
location, this sequence of tuples presents a natural opportunity
to estimate the user’s position.

With a perfect compass and accelerometer, the user’s location
can be trivially computed over time. Unfortunately, electronic

Fig. 1. Flow of operations in CompAcc.

compasses and accelerometers are highly noisy [11] (unless
extremely expensive). The user’s movement variability and
the phone often jiggling in pockets and backpacks further
add to this noise. Localization becomes erroneous when the
device noise drowns the changes in motion and orientation,
particularly along soft turns on curved paths.

CompAcc approaches this problem by “matching” the direc-
tional trail with possible walking paths around the phone’s
known location. The paths are extracted from Google Maps[8],
and suitably formatted for matching. The best matching path is
declared to be the path of the user. Matching continues, allow-
ing CompAcc to identify when the user turns at an intersection
or moves on a curved path. Even though the approximate
step count may accumulate error over time, direction changes
reset the error. Put differently, CompAcc recognizes the user
making a direction change, and thereby learns the user’s
location with better accuracy. Of course, error can still arise
due to walking up/down stairs, detours from walking paths,
and user’s leaps and jumps. CompAcc occasionally falls back
on AGPS to reacquire its current location.

B. Generating Path Signatures and Map Tiles
Matching the user’s movement against electronically generated
paths eliminates the need for war-driving. The approach scales
globally because the path generation is a faster process at the
server’s side. We describe how a map tile is constructed from
path segments, and is sent to the mobile user.

Digital maps, including Google Maps, represent roads and
paths as polylines. In computer graphics, a polyline is defined
as a continuous line composed of one or more linear segments.
The polylines are superimposed on the map to display direc-
tions. Figure 2 shows an example polyline, with segment ends
marked with large blue icons. The latitude and longitude for
each of the segment markers are available through the Google
Maps API. The intermediate coordinates within each segment
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is computed based on the end points. The curvature of the
earth disallows cartesian formulas for distance computation.
CompAcc employs the Haversine formula [9] known to be
accurate for small distances (equations omitted in the interest
of space). We input the earth’s radius as 6367 km. Figure
2 shows the intermediate points with small black icons. The
separation between the small icons is 20m for visual clarity,
but is actually 1m in our implementation.

Fig. 2. Large blue icons marks the piecewise segments of the polyline, while
black icons are computed intermediate points. Each location associated with
the latitude, longitude and the angle from magnetic north.

Given the end coordinates of any path segment, the precise
path orientation can be computed using the formulas in [10].
A path running east-west will result in an orientation of 90◦

or 270◦. An ideal mobile phone compass is expected to reflect
this value while the user is walking on this path segment.

When the mobile phone sends its AGPS location, the Com-
pAcc server computes a map tile with that location as the
center. The tile includes all the path segments in a data struc-
ture, each segment consisting of its end markers, intermediate
coordinates, and orientations (a path signature). The tile is
downloaded to the phone, and used to match against the user’s
directional trail. If Internet connectivity is a concern, a large
tile may be downloaded in advance.

C. Generating Directional Trails

Modern phones come equipped with accelerometers, mostly
used to rotate pictures between landscape and portrait mode.
The accelerometer is always on and CompAcc exploits it for
computing the user’s displacement. The natural computation
method is to double-integrate acceleration,

∫ ∫
a(t)dt, where

the first integration computes speed, and the second computes
displacement. Unfortunately, several factors cause fluctuations
in acceleration, resulting in erroneous displacements [11].
Departing from this approach, CompAcc identifies a rhythmic
acceleration-signature in human walking patterns. The rhythm
is evident in the raw measurements in Figure 3; each spike
in the negative direction, roughly corresponding to a step.
Around -300 units of acceleration is due to gravity, g. In
addition to g, we observe two spike patterns. The small ones
(at around -500) correspond to the foot being lifted off the
ground; the large ones (at around -700) are caused by the leg
settling back on the ground. We observed this rhythm across
15 test users, only the height and periodicity of the spikes
varied. CompAcc computes the number of steps using this
signature, and multiplies it with the step size of the individual.

The individual’s step size can be approximately derived from
the individual’s height and weight [7].
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Fig. 3. Accelerometer readings from two users (steps marked with a cross)

The phone’s compass records the user’s orientation, expressed
as an angle with respect to magnetic north. With Nokia 6210
Navigator models, this angle is the direction faced by the
phone’s display, when the phone is held vertically. Ideally,
while the user is moving in a straight line (say towards East),
the readings should be 90◦. However, as with accelerometers,
measurements yield noisy data with random fluctuations
and slow responses to quick/sharp movements. CompAcc
caches a window of previous N compass readings, utilized
in constructing the user’s directional trail.

Forming the Directional Trail:
The directional trail is defined as a series of last N compass
readings and an associated set of displacements between
them. The compass readings are collected with a time
separation of 1 second. Denote the compass trail by a
set CN = {c0, c−1, c−2...c−N}. Here, c0 is the compass
reading at the user’s estimated current location, c−1 is the
previous reading, and so on. Also, let the accelerometer based
displacements between compass readings be denoted by a set
D = {δ0, δ−1, ...δ(−N+1)}. Thus, the user walked a distance
of δj between two compass measurements, cj−1 and cj . The
user covered a total displacement of TD =

∑−N+1
j=0 δj in the

past N seconds.

Similarly, a sequence of compass readings is also obtained
from the path signatures in the tile. Denote this sequence by
PN = {p0, p−1, p−2...p−N} where p0 is the actual orientation
(known from the tile) at the user’s estimated current location.
Similar to the compass trail, the values of pk and pk−1 are
also separated by distance δk. The goal of CompAcc is to
slide the PN window forward and backward, and find the
maximum similarity between PN and CN . Figure 4 shows the
trail and the (sliding) path signature. The details on matching
are explained next.

D. Matching Path Signatures with Directional Trails

Matching is triggered only when CompAcc finds that the
user’s estimated location is within a threshold distance from
an imminent direction change. Direction change is possible
not only at path intersections, but also at the end of linear
segments in a polyline. When near a segment end, CompAcc
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Fig. 4. CompAcc slides the path signature to a maximum of Search-Window
steps, forward and backward. The sliding needs to turn into all possible
directions within this window. For every step-wise slide, the “Dissimilarity”
is computed between the given directional trail and the path signature. The
path signature with minimum Dissimilarity yields the user’s current location.

records the current compass trail CN and the corresponding
path signature PN . The “Dissimilarity” φ is computed between
the two sequences using the following simple equation:

φ0 =

√∑−N
i=0(ci − pi)2

N
(1)

Of course, PN is computed based on the user’s estimated cur-
rent location. This estimate can be erroneous (due to step count
inaccuracies), and the user may either be ahead or behind the
estimated location. If the user is actually ahead, then a slide-
forward version of PN is likely to better match CN (and the
vice versa). We use P+j

N to represent a forward slide of j
steps on PN . Similarly, P−j

N represents a backward slide of j
steps on PN . The maximum extent of the forward/backward
slide is called the Search Window where W is the size of this
window. CompAcc computes

k : φk = min{φj} ∀j ∈ [−W,W ] (2)

Given the value of k, CompAcc computes P k
N , and the corre-

sponding value of pk
0 . The location corresponding to pk

0 is the
new estimate of the user’s location. The accelerometer based
step count is reset, and restarted from this point. The next
section discusses parameter choice in CompAcc. Evaluation
results are reported thereafter.

E. Fallback Mechanisms
CompAcc continuously estimates the user’s location. In
certain scenarios, the difference between the estimated and
the actual location (i.e., the localization error) can create
confusion. Consider Figure 5(a) where CompAcc believes that
the user is located between the 5th and 7th Street intersection,
and walking northward. Now, assume that the actual user
has taken a turn, hence, the compass values reflect it. Since
CompAcc will search both forward and backward, the trail
may match “a right turn” onto both 5th and 7th Streets. The
actual user could be ahead or behind the estimated location,
and hence, there is no way of telling the difference.

One way to resolve this is to ensure that CompAcc’s
Search Window covers at most one intersection at any given

Fig. 5. “E” is the CompAcc-estimated user location, and “A” is the user’s
actual location. The scenarios lead to possible confusion (Search Window
shown in gray).

time. Let us denote the minimum distance between two
intersections in a map tile as Lmin. This value can be an
attribute of the map tile, known to CompAcc. If CompAcc
chooses a Search Window, SW < Lmin

2 , then the confusion
in Figure 5(a) will not happen. As long as the location
error is not too large, CompAcc will always search over
the same intersection around which the user actually is located.

If the location error, however, grows large, the SW parameter
choice will not be sufficient to prevent confusion. Consider
Figure 5(b) where the user has actually turned onto 7th Street,
but CompAcc’s estimated location is before the 5th Street
intersection. Observing that 5th Street is imminent, CompAcc
will match its directional trail with path signatures, and is
likely to find a good match with a “right turn on 5th Street”.
Clearly, the estimated location will be on a parallel path to
the actual user, resulting in error.

We propose an AGPS based fallback mechanism to recover
from such situations. Observe that the actual user’s directional
trails are unlikely to continuously match the path taken by
the estimated user. The actual user may take a left turn
while the estimated user has no left turn within its search
window. The minimum matching Dissimilarity (φ) (between
the directional trail and sliding path signatures) will be large
in such situations. Figure 6 computes these distributions for
the Duke University map tile. Essentially, the “Dissimilarity”
is low when the actual directional trail is along the actual
path signature, but much higher when the matching is against
an incorrect path turn. Therefore, when CompAcc observes
a large value of φ (45 in the case of the Duke University
tile), it triggers an AGPS reading. The estimated user is
relocated close to the actual location, step count is reset,
and the operation continues. This ensures that the localization
error does not grow (except perhaps in rare cases such as
a Manhattan grid). Results on walking paths in the Duke
University campus did not require any AGPS reading due to
the inherent (directional) diversity in the walking paths.
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Fig. 6. Dissimilarity is high when the user’s directional trail is matched
against an incorrectly estimated path signature. This is a trigger for AGPS.

III. EXPERIMENTATION AND EVALUATION

A. Experimental Methodology
We implement CompAcc on Nokia N95 and 6210 phone
models using Python as the programming platform. Two
phone models were necessary because N95 does not have a
compass while 6210 does not have WiFi. Newer phones (like
iPhone 3Gs and Android G1) have all the required sensors,
but were not available when we started the project. Hence,
we pretend that the two Nokia phones are the same device,
gather data from each of them, and analyze the consolidated
traces for localization.

We assume GPS to be the global truth, and obtain location
readings through an high end Garmin 60CSx handheld GPS
receiver. N95 and GPS were placed in the test-users’ pockets,
while the 6210 was carried vertically, either in hand or in
trouser pockets. Map tiles of the Duke University west campus
were generated from Google Maps. Google Maps already
contain a few of the walking paths, so the rest were manually
marked by clicking on start and end points of different
polyline segments (Figure 7). Marking the paths was easy
through Google’s Satellite view, and took less than a minute
to cover a 300m x 300m tile. This projects to less than 5 hours
to cover the Duke University campus (2.9 sqkm). We note
that this is orders of magnitude less expensive (in time and
money) compared to war-walking all paths within the campus.

To evaluate CompAcc, 5 students walked on random paths in
the tile, carrying the equipment described earlier. We collected
25 traces in total covering all segments of the tile. We use two
metrics for evaluation, namely, Instantaneous Error (IE) and
Average Localization Error (ALE), defined as:

IE(ti) = distance(CompAcc(ti), GPS(ti)) (3)

ALE =
T∑

i=1

(IE(ti)
T

)
(4)

Here CompAcc(ti) and GPS(ti) represent the user locations
reported by CompAcc and GPS, respectively. A trace has T
equally spaced discrete time-points, and ti − ti−1 = 5s (i.e.,
we sample the user’s location every 5s).

Fig. 7. A map tile from the Duke University west campus, used for
evaluation. Light gray lines show some of the walking paths created manually.

B. Design Decisions and Parameter Choices

This subsection justifies the parameter choices in CompAcc.

Computing Initial Location through AGPS
CompAcc occasionally needs the phone’s accurate location as
a resetting mechanism. This ensures that undetected direction
changes (or other unanticipated glitches) can be recovered.
GPS is the natural solution, since it is most accurate. Un-
fortunately, GPS can experience a large delay for acquiring
(adequate) satellite locks for localization. This behavior can be
attributed to a variety of factors, including cheap GPS sensors,
cloudy skies, or a “cold start”. Assisted GPS (AGPS), has a
faster acquisition time while retaining comparable accuracy.
Table I compares the location acquisition time between GPS
and AGPS for 10 experiments on 10 different days. Evidently,
AGPS averages 13.1 seconds, in contrast to GPS’s 98.6
seconds. All the experiments were obtained in summer with
clear skies; our experience with GPS is worse in winter. This
motivates the use of AGPS in CompAcc for infrequently cali-
brating the user’s location, as well as for detecting deviations
from walking paths (e.g., when the user walks into a building).

TABLE I
LOCATION ACQUISITION DELAY: AGPS AVG. IS 13.1S, GPS IS 98.6S.

Delay(s) 1 2 3 4 5 6 7 8 9 10
A-GPS 6 14 15 16 16 12 15 11 13 13
GPS 21 216 143 108 117 57 97 53 103 71

How to cope with different walking styles?
The accelerometer signature of human footsteps is
characterized by rhythmic oscillations. We parameterized the
oscillation by two parameters, h and ∆t. Briefly, h is the
minimum height of the oscillation, and ∆t is the minimum
periodicity. With comparable noise in the accelerometer and
variations in walking styles, the values of h and ∆t need to
be chosen empirically. Error in the parameter value will result
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TABLE II
CALIBRATING ∆t BY MEASURING THE TIME INTERVAL BETWEEN SPIKES.

Test 1 2 3 4 5 6 7 8 9 10
count 10 50 56 64 70 71 77 89 113 645
0.3s 12 53 62 64 98 80 101 112 111 661
0.4s 11 53 61 61 77 72 77 88 111 618
0.5s 11 50 60 47 68 62 75 73 85 522

in step count error, however, CompAcc can tolerate part of
this error through signature matching. Thus, an approximate
user-displacement is acceptable.

We inspected 10 traces collected from 5 student test users
(different from those who will evaluate CompAcc later).
After compensating for gravity and simple noise reduction,
we consistently found that step-induced deceleration drops
below −50, i.e., h ≤ −50. The step count was more sensitive
to parameter ∆t, and hence, we monitored its behavior
for different values. Table II shows the results only for
∆t = 0.3s, 0.4s and 0.5s. ∆t = 0.4 was found to exhibit
less than 10% error and proved robust in tests with other
arbitrary users. Thus, CompAcc increments the step count
only when the oscillation has a magnitude less than −50 and
a time separation greater than 0.4s (from the previous spike).
Ongoing work is attempting to learn user-specific parameters
based on step count and a few consecutive AGPS readings.

What if step count error keeps increasing?
As discussed earlier, the step count error is likely to get
reset when users take turns. However, if the user walks
on a long straight segment, the error continues to grow.
An AGPS reading resolves this problem ensuring that the
error is lowered before it exceeds a user-specified threshold.
To meet this threshold, say δ, CompAcc must trigger the
AGPS when the accumulated error is close to δ. We calibrate
the accumulated error due to step count by requesting
test users to walk along a long straight path. Figure 8
shows the variation. Evidently, for any value of δ (on the
x-axis), we can find a corresponding value of step count,
Yδ , on the Y axis. CompAcc takes an AGPS reading if
the user’s compass orientation does not show a turn for Yδ

consecutive steps. In our evaluations, we used δ = 40m,
corresponding to around 472 steps (approximately 400m in
physical distance). If users pause in between, CompAcc is
aware of it, and does not increment the steps unnecessarily.
For our tests in the Duke campus, the longest straight
line path was around 300m, so AGPS was never triggered.
As we shall see later, this is desirable for energy conservation.

What happens if the phone shakes in pockets?
An ideal compass in ship or aircraft navigation is expected to
track the device’s orientation through turns and straight paths.
However, with noisy compasses, swaying human movements,
and the phone jiggling in pockets, the compass output is less
ideal. Figure 9(a,b) show an example recording from a trace
with 7 turns. The compass readings are modulo 360 (i.e., −5
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Fig. 8. The growing error from Step Count observed over a straight walk.

and 355 are along same northward directions). The ground
truth is pre-computed from the map and shown as a solid black
line. Other readings are from three placements of the phone,
namely, handheld, in a trouser pocket, and in a running shorts
(the phone display facing outward). Carrying the phone in
shorts’ pockets induces wide variations (segments III , V and
V I show heavy fluctuations). For our evaluations in this paper,
we assume that the phone is handheld or in a trouser pocket.
Our future work will address the problems with carrying the
phone inside shorts-pockets.
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Fig. 9. Compass readings can be tolerated when phone is handheld or in
trouser pockets. The phone jiggles excessively in shorts pockets.

How large is the Directional Trail?
We select the value of |CN | based on error measurements for
different window sizes (Figure 10). We include 4 out of 25
traces for visual clarity. ALE (Average Localization Error) is
consistently large for small values of SW. This is because small
windows are more susceptible to compass noise, resulting in
degraded location quality. For window sizes 8 or larger, the
compass shows a clearer (statistical) trend, and the ALE value
drops sharply. Twenty one other traces show similar trends,
guiding us to assign |CN | to 10.

C. Performance Evaluation

This section presents the performance of CompAcc in
comparison to Skyhook and WiFi-War-Walk. We downloaded
the Skyhook software from the Internet, and installed it on a
Nokia N95 model (equipped with all the necessary sensors).
Since Skyhook relies on war-driving to create the radio map,
its performance within university campuses and other walking
paths reflects today’s achievable performance. WiFi-War-Walk
is a customized scheme that captures the improvements
if a Skyhook-like scheme was augmented by war-walking
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Fig. 10. Variation of localization error with the size of the directional trail.

the footpaths. Although war-driving is expensive and time-
consuming, this provides an optimistic estimate of Skyhook’s
performance. We war-walked the Duke University west
campus, and implemented Place Lab’s localization algorithm
on the WiFi map (Skyhook’s algorithm is proprietary, but
similar to Place Lab). The metrics of interest are Average
Localization Error (ALE), and energy consumption due
to localization. We also qualitatively contrast localization
coverage through Google Maps.

Figure 11 presents the per-trace ALE from all 3 schemes.
The average across all traces for each scheme is included in
the caption. CompAcc outperforms Skyhook by a factor of
6.4; the improvement over WiFi-War-Walk is 2.8. Further,
we note that Duke University is densely covered with WiFi,
and hence, similar comparisons in off-campus areas are
expected to yield wider performance gaps. Figure 12 zooms
into the CompAcc performance and shows the Instantaneous
Error (IE) over time. Two arbitrary segments from distinct
traces are shown – vertical lines denote instants when the
user turned. The trend shows the error increasing as the user
walks downs a path segment, but drops at turns. The error
does not become zero because compass and accelerometer
noise miscalculates the user’s precise position. Nevertheless,
it prevents the error from accumulating.

Figure 13(a,b) visualizes the comparison between CompAcc
and Skyhook on Google Satellite Maps. GPS locations
are shown with a “g”, Skyhook with “s”, and CompAcc
with “c”. The light gray lines joining g–s or g–c denote the
location errors. Figure 14 shows the variation of Instantaneous
Error (IE) over time from 3 randomly selected traces. The
differences between the schemes are visually apparent.
Nevertheless, we make a few important observations:

(1) Skyhook’s localization is biased towards roads and streets
(regions A, B and C). Users walking within the campus were
localized to the nearest street. Often, a street had a dead end
within the university, and a large number of location readings
were found to be clustered at these dead ends. This is an out-
come of Skyhook war-driving only on the streets, resulting in
poor localization on walking trails. CompAcc’s independence

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
LE

 (m
)

Trace Index

CompAcc
WiFi-War-Walk

Skyhook

Fig. 11. ALE for CompAcc, WiFi-War-Walk, and Skyhook. Average
localization errors across all traces and schemes are: CompAcc 10.95m, WiFi-
War-Walk 30.24m and Skyhook 70.6m.

 0
 5

 10
 15
 20
 25
 30

 0  50  100  150  200  250In
st

an
ta

ne
ou

s E
rr

or
(m

)
Time (s)

CompAcc
turn

 0
 5

 10
 15
 20
 25
 30

 0  50  100  150  200  250In
st

an
ta

ne
ou

s E
rr

or
(m

)

Time (s)

CompAcc
turn

Fig. 12. CompAcc’s Instantaneous Error (IE) drops at path turns.

to war-driving is evident in the consistent accuracy.
(2) Skyhook relies heavily on WiFi availability (region E). A
popular campus walking path bordering a wooded region does
not have WiFi connectivity. Skyhook was unable to localize
the phone on this path. Although GSM localization should
have been triggered, we suspect that the time to detect WiFi
failure was too long. CompAcc, however, shows near-accurate
localization.
(3) Skyhook exhibited high error variations (regions B, C).
We are unsure why this occurs, however, open parking lots
may be susceptible to signal strength variations. Labs may
induce similar impacts due to electromagnetic radiations that
interfere with WiFi. CompAcc remains unaffected by such
environmental factors.
(4) Skyhook performed well on a footpath beside a drivable
path (region F). CompAcc too achieved high accuracy in
these regions.

Energy Consumption
We report energy consumption due to localization through
the Nokia Energy Profiler (logging energy usage every 0.25
seconds). AGPS and Skyhook were made to sample the
location every 5 seconds. For CompAcc, the accelerometer
and compass were continuously probed. Figure 15 shows the
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Fig. 13. Visualization of (a) Skyhook’s and (b) CompAcc’s performance in Duke campus. GPS locations shown by “g”, Skyhook by “s”, and CompAcc by
“c”. Straight lines joining s–g and c–g are a measure of the location errors. Some regions do not have a “s” value because Skyhook was unavailable there.
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Fig. 14. Variation of localization accuracy with CompAcc, WiFi-War-Walk, and Skyhook for three test traces

power draw for AGPS, Skyhook, accelerometer, and compass.
The 3G network was enabled for AGPS and Skyhook (GPS
was turned off for SkyHook for fairness). The compass mea-
surements were taken from the Nokia 6210 and superimposed
on this graph. The heavy energy footprint of AGPS (baseline
of 0.4W ) precludes it as a stand-alone localization method.
Skyhook displays periodic spikes of around 1W , separated
by smaller spikes of 0.2W . The accelerometer and compass
sensors have similar power consumption signatures, with a
baseline of around 0.1W . Table III shows the individual
battery life for each sensor/localization scheme, assuming only
the profiler running in the background. The compass measure-
ments were executed on 6210 which has a battery capacity of
approximately 80% of a N95. We combined their individual
recordings proportionately to derive the CompAcc battery life.
Results show an improved battery life with CompAcc.

IV. LIMITATIONS AND FUTURE WORK

CompAcc is not yet ready for deployment. A number of
issues still need to be resolved efficiently.
Map Generation. Currently, map tile generation includes

a manual component of marking out the start/end points
of footpaths. Although significantly less expensive than
war-walking, an ideal system should automate this process.
One option is to design Internet based labeling games as
proposed by Vohn Ann [12]. Another option could be to
launch this into Mechanical Turque [13] where many Internet
users could label paths for small financial incentives. A more
complex approach could be to extract the paths through
sophisticated image processing on Google Satellite view. We
plan to investigate the viability of these and other approaches.

Improved Signature Matching. CompAcc resets a signature
mismatch through AGPS. This is required because CompAcc
keeps no record of possible directions the user may follow.
Particle filters [14], [15] applied to localization systems
operate on movement probabilities in multiple directions.
Employing particle filters may provide further improvements.

Multiplexing between Localization Methods. CompAcc
needs to handoff localization to Skyhook/GPS when the
user is in a vehicle or enters indoors. The control can be
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TABLE III
BATTERY LIFETIME: COMPACC (ACC, COMP), SKYHOOK, AGPS.

Sensor Acc. Comp. CompAcc Sky AGPS
lifetime(h) 39.1 48.7 23.4 16.3 10.6

regained once the user is walking again. Switching between
these localization modes need to be triggered automatically.
The current system can activate handoff when the matching
Dissimilarity is excessive (as used for fallback mechanisms).
However, quicker activation is necessary.

Extending beyond Walking Paths. CompAcc targets regions
that lie outside the coverage of war-driving based local-
ization. However, the system can be extended to vehicular
motions, or even towards micro-mobility within buildings,
malls, stores[16]. Roads and streets’ path signatures can be
extracted directly from Google Maps without any manual
intervention. One part of the ongoing work is focused towards
these extensions. CompAcc (for vehicles) will be an effective
solution for many countries in the world that do not have WiFi
coverage, or remain to be war-driven.

V. RELATED WORK

Previous research on localization makes different assumptions
about infrastructure and calibration effort. In general,
previous localization systems rely on deployed radios (e.g.
APs) or require installation of specialized hardware in the
environment (radio or bluetooth devices). A calibration effort
maps overheard radio signals to location coordinates. Then,
overheard signals are matched with the data recorded during
the calibration phase and the user location is estimated.
Cricket [17], Nokia Labs, VOR [18] and Pinpoint [19]
rely on specially installed hardware for indoor localization.
While effective in high-budget enterprises, these systems
are expensive to deploy and maintain in outdoor environments.

Radar [20], Active Campus [21] and PlaceLab [2] rely on
devices already present in the surroundings for localization.
The Radar system [20] operates on WiFi fingerprints, and is
capable of achieving high accuracy in indoor deployments.
Nevertheless, Radar needs to calibrate WiFi signal strengths
at many physical locations in a building. The calibration

process is time-consuming and may not scale over larger areas.
PlaceLab [2] uses WiFi and GSM signals for localization. A
radio map is created by war-driving car-accessible roads and
mapping APs/GSM towers to GPS coordinates. The radio map
is distributed to mobile devices which localize themselves by
comparing overheard APs/GSM towers with those recorded
in the map. Active Campus [21] is similar to PlaceLab, but
assumes that the locations of the WiFi access points are known
a priori. Unlike the previous systems, CompAcc does not
require war-driving, signal calibration, or deployed infrastruc-
ture for localization. Our approach is straightforward, relying
on digital maps, compasses, and accelerometers, available in
modern mobile phones.

VI. CONCLUSION

The growing popularity of location based services will call for
improved quality of localization, including greater ubiquity,
accuracy, and energy-efficiency. Current localization schemes,
although effective in their target environments, may not scale
to meet the evolving needs. This paper proposes CompAcc,
a simple and practical method of localization using phone
compasses and accelerometers. CompAcc’s core idea has
been known for centuries, yet, its adoption to human scale
localization is not obvious. We believe that CompAcc could
complement current localization technology, taking an impor-
tant step towards a pervasive location service for the future.
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