
Distributed and Parallel Databases manuscript No.
(will be inserted by the editor)

Adaptive Data Acquisition Strategies for Energy-
Efficient, Smartphone-based, Continuous Processing of
Sensor Streams

Lipyeow Lim ⋅ Archan Misra ⋅ Tianli Mo

Received: date /Accepted: date

Abstract There is a growing interest in applications that utilize continuous
sensing of individual activity or context, via sensors embedded or associated
with personal mobile devices (e.g., smartphones). Reducing the energy over-
heads of sensor data acquisition and processing is essential to ensure the suc-
cessful continuous operation of such applications, especially on battery-limited
mobile devices. To achieve this goal, this paper presents a framework, called
ACQUA, for ‘acquisition-cost’ aware continuous query processing. ACQUA
replaces the current paradigm, where the data is typically streamed (pushed)
from the sensors to the one or more smartphones, with a pull-based asyn-
chronous model, where a smartphone retrieves appropriate blocks of relevant
sensor data from individual sensors, as an integral part of the query evaluation
process. We describe algorithms that dynamically optimize the sequence (for
complex stream queries with conjunctive and disjunctive predicates) in which
such sensor data streams are retrieved by the query evaluation component,
based on a combination of a) the communication cost & selectivity properties
of individual sensor streams, and b) the occurrence of the stream predicates in
multiple concurrently executing queries. We also show how a transformation
of a group of stream queries into a disjunctive normal form provides us with
significantly greater degrees of freedom in choosing this sequence, in which in-
dividual sensor streams are retrieved and evaluated. While the algorithms can
apply to a broad category of sensor-based applications, we specifically demon-

Lipyeow Lim
Information and Computer Sciences Department, University of Hawai‘i at Mānoa
E-mail: lipyeow@hawaii.edu

Archan Misra
School of Information Systems, Singapore Management University
E-mail: archanm@smu.edu.sg

Tianli Mo
Information and Computer Sciences Department, University of Hawai‘i at Mānoa
E-mail: tianli@hawaii.edu

2 Lipyeow Lim et al.

strate their application to a scenario where multiple stream processing queries
execute on a single smartphone, with the sensors transferring their data over
an appropriate PAN technology, such as Bluetooth or IEEE 802.11. Exten-
sive simulation experiments indicate that ACQUA’s intelligent batch-oriented
data acquisition process can result in as much as 80% reduction in the energy
overhead of continuous query processing, without any loss in the fidelity of the
processing logic.

Keywords Mobile data management ⋅ Streams ⋅ Complex Event Processing ⋅
Energy Efficiency ⋅ Activity Recognition ⋅ Mobile Sensing

1 Introduction

There has been a recent explosion in the field of “mobile sensing”, i.e., the use
of personal mobile devices (more specifically, smartphones equipped with an
increasingly sophisticated set of sensors, such as GPS, accelerometer & micro-
phone) for near-real time sensing of an individual’s activity or environmental
context. A major function of the smartphone in this paradigm is to perform
embedded query processing on the sensor data streams to extract appropriate
individual context in near-real time, for use in a variety of applications, rang-
ing from automatic activity updates for social networking applications (e.g.,
[2]) to dynamic threshold adaptation for adaptive remote health monitoring
(e.g., [3]).

Most current sensor-driven context-aware applications are ‘episodic’–they
are activated by the user intermittently, and for short durations. It has been
well documented that the continuous processing of even moderate-data rate
streams (such as GPS or accelerometer) can cause commercial smartphone
batteries to be depleted in as low as 4-5 hours (e.g., see [1]). Continuous
execution of such mobile sensing applications thus requires advances in both
the acquisition and processing of such sensor data, so as to reduce the energy
overheads on the battery-constrained mobile devices. There are at least two
distinct scenarios where the act of acquiring the sensor data streams, from the
sensor sources to the query processing engine on the smartphone, constitutes
a dominant component of this energy overhead, and involves the use of a
Personal Area Network (PAN) or wireless LAN technology:

(A) In various health and wellness applications, the context sensing logic on an
individual’s smartphone utilizes a combination of both phone-embedded
sensors (e.g., GPS, accelerometer, compass and microphone) and external
wearable medical (e.g., ECG, EMG, Sp02) or environmental (e.g., tem-
perature, pollution) sensors. These external sensors transmit data to the
phone using a PAN technology (such as BluetoothTMor IEEE 802.15.4) or
even WiFi (IEEE 802.11).

(B) In recently-proposed social or cooperative-sensing applications (e.g., [13,
14]), the query processing engine utilizes data from sensors embedded in
multiple proximal smartphones, which help to both lower the energy bur-
den on an individual device and to provide better “surrounding” context.

Title Suppressed Due to Excessive Length 3

In these cases, the data from the remote sensors is transferred between de-
vices, using short-range wireless technologies that are either infrastructure-
based (such as WiFi or femto-cellular) or device-to-device (such as Flash-
LinQ [15]).

Our work in this paper thus explores an approach to reduce the energy foot-
print of such continuous sensor data acquisition, primarily by reducing the
volume of sensor data that is transmitted wirelessly between a smart-
phone and its sensor sources, without compromising the fidelity of the
event processing logic.

In current approaches, the data acquisition process is based on a “push”
model, where the sensors simply continuously transmit their samples to the
smartphone (where the query processing engine is executing), and are effec-
tively decoupled from the actual query execution. Our proposed new approach
instead utilizes a phone-controlled “dynamic pull” model, where the smart-
phone selectively pulls only appropriate subsets of the sensor data streams.
More importantly, the process of acquisition of the sensor data is now coupled
to the dynamic query execution state of one or more concurrently executing
queries. This new model exploits the intelligent programming and data filtering
capabilities becoming commonplace on many emerging wearable sensor plat-
forms (e.g., the SHIMMER platform [4]), whose data storage and transmission
algorithms can be programmed ‘over the air’ in near real-time.

In this paper, we introduce a new Acquisition Cost-Aware QUery Adap-
tation (or ACQUA) framework, where the query processing engine on the
smartphone dynamically modifies both the order and the segments of data
streams that it will request from each individual sensor. The ACQUA frame-
work first learns the selectivity properties of different sensor streams and then
utilizes such estimated selectivity values to modify the sequence in which the
smartphone acquires data from the sensors. This modification can potentially
occur at each evaluation instant of the long-running continuous queries, and
is based on the joint consideration of both the communication overheads of
acquiring the sensor data and the selectivity properties.

The principal focus of this paper is on developing and evaluating the algo-
rithmic logic for intelligently modifying the acquisition sequence for a set of
executing complex stream processing queries, given a-priori knowledge of the
communication cost and selectivity properties. We first describe the ACQUA
algorithms for a set of complex long-running queries, consisting of a combina-
tion of disjunctive and conjunctive predicates over ‘tumbling window’-based
stream operators. We then show how the conversion of such queries into a Dis-
junctive Normal Form (DNF) representation enables ACQUA to best explore
the different possible sequences for sequential sensor data acquisition. We then
specifically consider the case ‘[A]’ above (namely, a single smartphone retriev-
ing data from wearable sensors via a PAN interface) to illustrate the specific
characteristics of the communication overheads, and subsequently use an ex-
tensive set of simulation-based studies to quantify the energy savings achieved
by ACQUA in this case.

4 Lipyeow Lim et al.

Key Contributions of this Paper:
We believe the following to be our key contributions:

a) We introduce, and develop an initial set of algorithms for, an ’acquisi-
tion cost’ aware event processing paradigm, where the event engine on the
smartphone dynamically optimizes the order in which it retrieves only rele-
vant blocks of data streams from individual sensors. This order is adjusted
dynamically both at the beginning of each evaluation instant, and also
based on the evolving state of partially-executed query evaluations. We
specifically describe algorithms to optimize the energy overheads of such
data processing, taking into account both the wireless transfer cost and
the query selectivity properties.

b) We subsequently consider the impact that query representation has on
the execution logic of ACQUA, and show how the DNF representation for
our set of permitted queries provides the most flexibility in the ACQUA
sequential stream selection logic.

c) We then focus on the case of a single phone retrieving data from multiple
sensors over a couple of representative PAN links (Bluetooth and WiFi).
We carefully account for and exploit the significant transmission energy
savings that result from the intermittent, “bursty”, scheduled use of the
PAN link between individual sensors and the phone to transfer the sensor
data (as opposed to the continuous transmission of generated sensor data
streams), as this allows the wireless radios to operate on a low duty cycle.
We show how the use of such ‘batched’ data acquisition can be handled by
the ACQUA algorithms.

The rest of the paper is organized as follows. Section 2 provides a brief
survey of the related and prior work and establishes the documented trade-off
between transmission energy efficiency and data ‘batch’ size for two represen-
tative PAN radio technologies. Section 3 captures the key objectives and issues
that the ACQUA framework must consider and describes the component-level
functional architecture of ACQUA. Section 4 provides a formal enumeration of
the event query model and the operator set that we consider. Section 5 details
the ACQUA sequence-computation algorithms and event processing logic. Sec-
tion 6 then describes some of the key features to be considered while establish-
ing the per-sample communication cost for retrieving the sensor streams, and
Section 7 then presents simulation-based studies to evaluate the expected per-
formance benefits, based on this detailed model. Finally, Section 8 concludes
the paper with a discussion of open issues that we are working to address.

2 Related and Prior Work

The use of complex event processing of sensor data streams on a smartphone
for detecting context on a smartphone has been previously explored in sys-
tem prototypes such as Harmoni [3] (which used such context to dynamically
change the definition of anomalous medical states) and CenceMe [2] (which

Title Suppressed Due to Excessive Length 5

applied rich operators on audio and accelerometer sensor streams to iden-
tify pre-defined human activities). To further reduce the energy overheads,
the MediAlly prototype [9] used such inferred context to dynamically activate
the collection of data from other external sensors. In contrast, our ACQUA
framework seeks to optimize the data transfer during the process of context
determination itself. There are at least two recent approaches that seek to
optimize the query evaluation logic on a pervasive device, to take into account
dynamic variations in the availability and operational parameters of nearby
sensors. The Orchestrator framework [7] focuses on resource-sharing among
multiple context-aware applications running independent stream queries–it se-
lects an appropriate subset (from the currently available set) of sensors, so as
to maximize the operational lifetime of the continuously executing applica-
tions. The ErdOS framework [13], on the other hand, views smartphone-based
sensors as a shared resource and seeks to intelligently distribute the consump-
tion of such resources–by effectively dynamically altering the tasking sequence
for the sensors, it seeks to lower the energy burden of each individual device.
For example, given a cluster of N GPS-equiped phones, ErdOS will task the
individual GPS sensors in a round-robin fashion, effectively offering an N -fold
reduction in the GPS sampling burden of an individual phone. In contrast to
all these approaches, ACQUA seeks to optimize the actual transfer of data
between the query processing engine & the sensors, rather than the sampling
activity of each sensor.

Researchers have recently also investigated both hardware and software ap-
proaches to improve the energy-efficiency of continuous sensor sampling and
query processing on smartphones. The LittleRock [5] prototype has demon-
strated how the use of a special low-energy coprocessor can result in a two
order-of-magnitude decrease in the computational energy spent in embedded
processing of on-board sensor data streams. Our ACQUA framework can be
viewed as complementary to such hardware or system-level innovations, as we
seek to additionally reduce the communication energy overheads involved in
acquiring the data wirelessly from additional external sensors. To address the
challenges of energy-efficient continuous event processing on smartphones, the
Jigsaw continuous sensing engine [6] has recently developed a pipelined stream
processing architecture that adaptively triggers different sensors at different
sampling rates to meet the context accuracy required by different applications.
More recently, the SociableSense framework [14] has investigated the combina-
tion of cloud-based computation and adaptive sensor sampling to reduce the
computational and sensing overheads during continuous mobile sensing.Our
ACQUA framework can be considered complementary to these approaches, in
that it focuses on optimizing the retrieval of stream segments from external
sensors over a wireless network, rather than on optimizing the sensing fidelity
of on-board sensors. More importantly, approaches such as Jigsaw or Socia-
bleSense consider only extrinsic sensor properties (such as its sampling rate);
in contrast, ACQUA uses both the retrieved values of the sensor data tuples,
and the intermediate query evaluation results, to alter the data retrieval and
processing pipeline.

6 Lipyeow Lim et al.

The BBQ [12] approach is among the closest to ACQUA, in its use of
a model of the selectivity characteristics of each sensor source to optimize
the data acquisition overhead. In particular, BBQ builds a multi-dimensional
Gaussian probability density function of the sensors’ likely data values, and
then uses conditional probabilities to determine, in iterative fashion, the next
sensor whose value is most likely to resolve a given query. ACQUA differs
from [12] principally in its focus on continuous stream queries (as opposed to
snapshot queries) and in the explicit consideration of the impact of batched
acquisition of individual streams both on the wireless acquisition cost and the
selectivity properties.

The exploitation of evaluation order in ACQUA is partly inspired by prior
work on re-ordering expensive predicates in traditional relational database
query processing [16,17]. The key differences from the relational database set-
ting is that (1) ACQUA addresses energy efficiency (as opposed to latency
or throughput), (2) ACQUA’s query processing model is stream-based con-
tinuous queries (as opposed to standard SQL queries on relational data), and
(3) ACQUA exploits not only evaluation order of predicates, but the order of
acquisition of data stream segments as well.

3 The ACQUA Functional Architecture

We now consider the key properties that the ACQUA framework must con-
sider, and then describe how the various functional components of ACQUA
address these key design objectives. We first start by illustrating the basic
principle of how the acquisition energy per sensor sample (i.e., a stream data
tuple) and the selectivity characteristics of such tuples affect the ACQUA
optimization framework.

Consider a hypothetical activity/wellness tracking application that seeks
to detect an episode where an individual “walks for 10 minutes, while being
exposed to an ambient temperature (95tℎ percentile over the 10 minute win-
dow) of greater than 80∘F, while exhibiting an AVERAGE heart rate (over a 5
minute window) of > 80 beats/min”. Assume that this application uses an ex-
ternal wrist-worn device, equipped with accelerometer (sensor S1, sampling at
100 samples/sec), heart rate (S2, sampling at 1 sample/sec) and temperature
(S3, sampling at 1 sample/sec) sensors. We’ll address many of the precise se-
mantic aspects of this query later (e.g., do we use tumbling vs. moving windows
for averaging?) — for now, note that is essentially a conjunctive query, where
the context requires the simultaneous satisfaction of three separate predicates,
related to accelerometer, HR and temperature data streams.

Assume that the probability of the accelerometer readings indicating that
the user was walking for 10 mins, denoted by P (S1), equals 0.95; likewise, the
probability of ‘95tℎ percentile of temp being greater than 80∘F’, P (S2), equals
0.05 and the probability of ’AVG(HR)’ being greater than 80, P (S3), equals
0.2. Furthermore, given the potentially different sample sizes and transmission
rates for each sensor, let us assume that the acquisition energy costs, denoted

Title Suppressed Due to Excessive Length 7

by E(Si) are as follows: E(S1) = 0.2 nJ/sample; E(S2) = 0.02 nJ/sample and
E(S3) = 0.01 nJ/sample.

We then observe that the choice of the best acquisition sequence should
take into account both the acquisition energy cost and the selectivity prop-
erties. More specifically, we should ideally retrieve the data chunk from the
sensor that should have a low acquisition cost and also a high likelihood of
helping to terminate the predicate evaluation. For the conjunctive query, we
note that a single ‘FALSE’ predicate implies that the complex predicate is
FALSE and that the subsequent steps of predicate evaluation can be aborted.
Accordingly, in our formulation, we first compute the ‘normalized acquisition
cost ’ (NAC) as a ratio of the acquisition cost normalized by the ‘predicate
being FALSE’ probability. Accordingly, we get NAC(S1)=100 ∗ 0.02/0.05,
NAC(S2)=5 ∗ 0.02/0.95=0.105 and NAC(S3)=10 ∗ 0.01/0.8=0.125. Based
on these computations, it would follow that the best sequence of acquiring
the sensor data streams for evaluating the conjunctive query above would be
{S2, S3, S1}.

Consider instead the disjunctive query counterpart that seeks to detect
an episode where an individual was either walking for 10 mins OR exposed
to an ambient temperature (95tℎ percentile over the 10 minute window) of
greater than 80∘F, OR exhibited an AVERAGE heart rate (over a 5 minute
window) of > 80 beats/min”. For such a disjunctive query, the processing can
terminate as soon as there is a single ‘TRUE’ predicate. Accordingly, in this
case, the NAC should be computed as a ratio of the acquisition cost normal-
ized by the ‘predicate being TRUE’ probability. Plugging in the values from
before, we have NAC(S1)=100 ∗ 0.02/0.95=2.11, NAC(S2)=5 ∗ 0.02/0.05=2
and NAC(S3)=10 ∗ 0.01/0.2=0.5. Accordingly, the best sequence of acquiring
the sensor data streams is now {S3, S2, S1}.

The above examples illustrate how the ACQUA framework needs to take
into account both the stream’s query selectivity properties as well as the dif-
ferent wireless communication costs (acquisition costs) associated with the
different sensor streams. We next describe some of the additional real-life ar-
tifacts that the ACQUA framework must consider.

3.1 Functional Requirements from the ACQUA framework

– Accommodate Heterogeneity in Sensor Data Rates, Packet Sizes
and Radio Characteristics: Sensor data streams exhibit significant het-
erogeneity in terms of their sensor data rates (the number of sensor sam-
ples/sec), the data sizes (the bytes/sample) as well as the communication
energy costs associated with their radio interfaces. As an illustration, Fig. 1
lists the data rates and sample sizes associated with a number of well-known
medical and non-medical sensor streams. The communication energy costs
will depend not just on the sensor type, but also on the specific wireless
radio implementation on the embedded sensor device platforms. The AC-
QUA framework must thus be capable of incorporating different sensor

8 Lipyeow Lim et al.

data rates and wireless transmission characteristics in the query optimiza-
tion framework.

Sensor Type Bits/ Channels/ Typical
sensor device sampling

channel frequency (Hz)

GPS 1408 1 1 Hz
SpO2 3000 1 3 Hz

ECG (cardiac) 12 6 256 Hz
Accelero-meter 64 3 100 Hz
Temperature 20 1 256 Hz

Fig. 1 Representative Data Rates for Some Common Sensors

– Adapt to Dynamic Changes in Query Selectivity Properties: To
apply ACQUA, it is extremely important to have correct estimates for the
query selectivity properties of different data streams. However, we need to
keep in mind that these selectivity properties are not only individualized,
but also vary dramatically over time due to changes in an individual’s
activity. For example, the likelihood of HR samples exceeding 80 might
be very low when a person is engaged in sedentary office activity, but
will be very high when the person is walking or working out in the gym.
Accordingly, the ACQUA framework must be capable of using context
to accurately predict (albeit statistically) the selectivity characteristics of
different sensor streams.

– Take into Account other Objectives Besides Energy Minimiza-
tion: Operating with a heterogeneous set of sensors implies that energy
minimization, while important, might not be the only objective of interest
to a user of ACQUA. For example, it is possible that one of the N sensors
might have very little battery capacity–in such a case, to extend the overall
operational lifetime of the context detection activity, it might be more pru-
dent to preferentially retrieve and process data from an alternative sensor,
even though the selectivity characteristics of the alternative sensor may
not be the highest.

– Support Multiple Queries and Heterogeneous Time Window Se-
mantics: Mobile sensing & context awareness is now an intrinsic feature
of a variety of smartphone applications, that may be potentially executing
concurrently. Different applications may specify distinct predicates over a
shared set of sensor streams–for example, the accelerometer sensor may
be used to both evaluate step-counts in a wellness monitoring application
and to understand the user’s current mode of transport in a separate so-
cial networking application. The query predicates would differ not just in
their predicate logic, but also in the time windows over which the stream
query semantics are expressed. Accordingly, ACQUA must support a uni-
fied application-independent query representation framework and sequen-
tial data acquisition capability that is able of optimizing the evaluation
sequence across multiple concurrently executing stream queries.

Title Suppressed Due to Excessive Length 9

Fig. 2 Functional Component-Level Architecture of the ACQUA Framework.

3.2 The ACQUA Architecture

Fig. 2 shows the ACQUA functional architecture for supporting the energy-
efficient, dynamically varying, sequential data retrieval from different sensor
streams. The figure describes the logically distinct components of the AC-
QUA architecture — as such, a specific implementation may implement mul-
tiple functional components separately or as a single sub-system (e.g., the
SelectivityTracker component may be implemented either on the smartphone
itself or on a back-end ‘cloud’ component). Moreover, the figure implicitly
shows the interaction between a single smartphone and a single remote sensor;
as mentioned in Section 1, ACQUA is equally applicable when the sensors are
embedded in multiple nearby smartphones.

The heart of the ACQUA framework are the Stream Selectivity Tracker
(SST) and the Adaptive Stream Retrieval Subsystem (ASRS) components. The
SST is responsible for computing and establishing the selectivity properties of
different sensor streams–in effect, computing the likely probability distribution
of the values of each individual stream elements. To compute these values,
ACQUA requires the SST to interface with the embedded Stream Processing
Engine (SPE) to obtain the empirical observations of how the stream elements
(individually or time-windows) satisfy different query predicates. The ASRS
component is responsible for dynamically computing the sequence in which
different (batches of) stream elements are retrieved by the smartphone from
the locally-connected sensor. Note that the Stream Processing Engine (SPE)
and the Sensor Data Adapter are pre-existing and non-ACQUA specific com-
ponents needed to perform the basic functionality of a) performing the appro-
priate query execution on the incoming data streams and b) interfacing with
the remote sensor(s) to retrieve the appropriate sensor samples. The Query
Specification Subsystem is another ACQUA component that is responsible
for receiving the various query specifications (associated with multiple appli-

10 Lipyeow Lim et al.

cations) and for compiling them into a common Predicate Evaluation Graph.
This graph is the data structure used by the ASRS algorithms to determine the
preferred sequence in which data is pulled from individual sensor streams–the
formal model for this graph will be presented shortly (in Section 4). To al-
gorithmically determine the best evaluation sequence, the ASRS also requires
the knowledge of the energy per sample profile associated with different sensor
devices and radios–it receives these specifications from the corresponding Sen-
sor Data Adapter. As mentioned before, the ACQUA framework requires some
degree of embedded data processing and storage capability on each individ-
ual sensor. In particular, the sensor-resident ACQUA components include the
Data Cache, which acts as a temporary local repository for the stream tuples
that may or may not be eventually pulled by the smartphone, and the Selec-
tive Data Transmitter, which is responsible for receiving requests for specific
subsets of the stream tuples and for transmitting (in batches) these requested
subsets.

A fully functional ACQUA-based stream processing framework will require
the implementation and integration of all these subsystems. The focus of this
paper is, however, principally on the ASRS algorithms that determine the
optimal data acquisition sequence, and on understanding the likely benefits of
such selective retrieval of sensor data. Accordingly, for the rest of this paper,
we will focus on the study of the ASRS algorithms, and implicitly assume
the a-priori availability of the a) stream selectivity statistics, b) the predicate
evaluation graph and c) the wireless radio cost models (although we will study
the creation of such cost models in Section 6).

4 The Stream-Oriented Query Model

We now focus on the basic ASRS algorithms for acquisition-cost-aware query
processing. We first need to mathematically rigorously define the types of
queries that we consider.

Query Specification. For this paper, we consider complex stream queries
that are expressed as arbitrary conjunction or disjunction predicates over a
set of stream-oriented SQL aggregate (e.g., MAX or AVG) or user-defined (e.g.,
determining the Fourier coefficients) functions, defined over a time-window of
each individual sensor stream. Mathematically, an individual query specifica-
tion Q can be formally expressed as:

Q ::= Predicate ∣ (Q AND Q) ∣ (Q OR Q)
Predicate ::= AggFunc (SExp, w) CmpOp Const ∣ NOT Predicate
SExp ::= StreamName ∣ StreamExp AritℎmeticOp Numeric

where AggFunction can be any SQL aggregate function or user defined func-
tion applied over a time window (t−w, t) of stream values (t being the current
time), CmpOp can be any comparison operator such as {>,<,=}, Const de-
note a constant of any appropriate type, StreamName uniquely identifies

Title Suppressed Due to Excessive Length 11

C<3MAX(B,4)>100

ORAVG(A,5)<70

AND

(a)

Speed(D,2)<1.0 AVG(A,5)<70 MAX(B,4)>100 C<3

AND AND

OR

(b)

MIN(B,7)<80AVG(A,5)<70 MAX(B,4)>100 C<3

AND AND

OR

(c)

Fig. 3 Query trees for three example queries.

AVG(A,5)

0 5 10 15 20 25
time

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * ** * * * ** * * * ** * * * ** * * * ** * **C

MAX(B,4)

(a) Q1 : !=5

AVG(A,5)

0 5 10 15 20 25
time

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * ** * * * ** * * * ** * * * ** * * * ** * **C

MAX(B,4)

(b) Q1 : !=3

C

0 5 10 15 20 25
time

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * ** * * * ** * * * ** * * * ** * * * ** * **

AVG(A,5)

MAX(B,4)

(c) Q1 : !=7

*

* * * * * * * * * * * * *MAX(B,4)

* * * ** * * * ** * * * ** * * * ** * * * ** * **C

0 5 10 15 20 25
time

* * * * * * * * * * * * * *

*

* * * * * * * * *AVG(A,5)

MIN(B,7)

(d) Q3 : !=5

Fig. 4 Relationship between query evaluation period, predicate time windows, and stream
rates. An asterisk denotes a sampled tuple of a particular stream at a particular time.
The rounded rectangles denote the sample or the time window of samples required in the
evaluation at each evaluation event.

a stream, AritℎmeticOp denotes an arithmetic operator {+,−,÷,×}, and
Numeric denote a numeric constant. Three example queries are as follows:

Q1: AVG(A, 5)<70 AND (MAX(B, 4)>100 OR C<3),
Q2: (AVG(A, 5)<70 AND MAX(B, 4)>100) OR

(C<3 AND Speed(D, 2) < 1.0),
Q3: (AVG(A, 5)<70 AND MAX(B, 4)>100) OR

(C<3 AND MIN(B, 7) < 80),

Query Q2 illustrates a query involving a user defined function for computing
the average speed over the last two seconds of the values of stream D. Stream
D could be displacement samples in the x, y, z axes from an accelerometer.
Query Q3 illustrates a query where stream B appears in two predicates with
different window sizes.

Evaluation Period !. In this paper, we consider queries defined over tum-
bling windows of the individual sensor data streams. Formally, this implies the
notion of a ‘time shift’ value !(Q) associated with a query Q, such that the

12 Lipyeow Lim et al.

query is evaluated repeatedly at the time instants t = (!, 2!, 3!, . . .). Note
that the time-shift value ! is distinct from the time windows associated with
the individual predicates and operators of the query Q. For example, a specific
query may be be defined to perform an AV G(5) operation (i.e., an average
of the last 5 seconds worth of sensor data with ! = 7; in this case, the query
would be evaluated at t = 0 over the stream tuples belonging to the time win-
dow (−5, 0), and then again at time t = 7 over the time window (2, 7). Fig. 4
illustrates this relationship between the query time shift value, the predicate
time windows and the individual stream tuple-generation rates–the first three
figures illustrate different cases for the query Q1 (Fig. 3(a)), while the fourth
figure illustrates the evaluation for query Q3 (Fig. 3(c)) with ! = 5.

An important consequence of this evaluation mode is the fact that the
stream tuples needed for the evaluation of the query at a particular time instant
may or may not be distinct from the tuples needed at a subsequent time instant.
Consider query Q3 for the evaluation schedule in Fig. 4(d). Suppose each
stream is associated with a buffer and the buffers are initially empty. At time
t = 7, suppose the evaluation of Q3 requires the retrieval of the data elements
A : (2, 7], B : (3, 7], C : (6, 7]. Now, at time t = 12, suppose MAX(B, 4) > 100
is evaluated first and is false; we need proceed to evaluate the right subtree of
the top OR node (in Fig. 3(c)). Note now that the evaluation of MIN(B, 7) <
80 requires the stream tuples B : (5, 12). However, a subset of this required
set of tuples has already been previously acquired–only the samples B : (7, 12]
need to be acquired. This example illustrates that, even with tumbling window
queries, the acquisition cost for a particular sensor stream may be different
at different evaluation instants, depending upon the data tuples that may have
been acquired during prior event processing.

5 The ASRS Sequential Retrieval Algorithm

Having formally defined the semantics of our query, we now proceed to de-
fine the algorithm for computing the preferred data retrieval and evaluation
sequence. A query is first compiled into a uniform Query Tree representation.
We will first describe the algorithms using a query tree representation that
directly corresponds to the specified query, and later describe enhancements
that result from the transformation of the query tree to a specific Disjunctive
Normal Form (DNF).

The root of a query tree represents the entire set of concurrent query predi-
cates. An internal node is associated with a Boolean conjunction or disjunction
operator and a leaf node is associated with a predicate. Fig. 3 illustrates the
query trees for the three example queries Q1, Q2, and Q3. For purposes of
simplifying the exposition, we also make the following two assumptions in this
section: a) Each unique sensor stream in the query tree is associated with a
single ‘tumbling window’ value, even though the same window of the sensor

Title Suppressed Due to Excessive Length 13

Algorithm 1 ProcessQuery(q, P, !)

Input: Query tree q, probability P of each subquery evaluating to true/false, evaluation
period !
Output: Alert Stream

1: loop
2: t← current time
3: calcAcqCost(q, t, P, C)
4: if evalQuery(q, t, P, C) = true then
5: output alert tuple
6: sleep ! seconds

data can appear in multiple nodes of the query tree and be associated with
multiple predicates, and b) The unique sensor-specific ‘tumbling window’ value
defines the basic batch size in which the smartphone’s Sensor Data Adapter
retrieves data from each sensor. (We will later relax the first assumption, in
Section 5.3.)

5.1 ASRS Query Evaluation Algorithm

Algorithm 1 defines the high-level logic of query evaluation. Intuitively, fol-
lowing the approach discussed in Section 3, the algorithm first computes the
lowest expected cost of evaluating different portions of the query sub-trees,
and thereby determines (using the recursive Algorithm 2 calcAcqCost) the
optimal sequence for retrieving the data from the different sensor streams.
Subsequently, the actual query is evaluated using the recursive Algorithm 3
evalQuery, which essentially follows the specified sequence to evaluate the
sub-trees. As mentioned previously, the actual retrieval of data tuples for a
given stream needs to consider the relevant tuples that have already been re-
trieved (at prior instants or while processing other parts of the query tree):
Line 3 in Algorithm 3 achieves this by adjusting the window of data tuples
that are actually retrieved from the corresponding sensor.

Algorithm 2 calcAcqCost computes the acquisition cost of evaluating a
query subtree according to the evaluation sequence determined by NAC. This
computation uses the per-sample data transmission cost, which we assume has
been provided to ACQUA. At a query tree node with an AND operator, we
recursively calculate the data acquisition cost of the left and right subtrees
(henceforth denoted by L and R respectively). Since the acquisition cost of
the current node is dependent on the evaluation order of its children, we use
the NAC for the left and right children to determine the evaluation order. The
NAC for L and R are computed using the probability of L and R evaluating
to true or false. Note that the NAC for the children can be computed, because
the acquisition cost of the children has already been computed recursively.
Once the order of evaluation (LR or RL) of the children is computed, we can

14 Lipyeow Lim et al.

Algorithm 2 calcAcqCost(q, t, P, C)
Input: Query tree q, current time t, probability function P , data acquisition cost function
C(⋅)
Output: Updates cost function C(⋅)
1: if q is a predicate node then
2: let s be the stream that q operates on, w be the window size of q, ts be the latest

time the buffer for s was updated.
3: C(q)← Calculate cost for acquiring the samples in time interval (max(t−w, ts), t] for

stream s. (This is based on the transmission cost model for the specific wireless tech-
nology. Section 6 will detail this cost model, for WiFi and Bluetooth, in Equations 7
& Eqn 8, respectively.)

4: else
5: calcAcqCost(q.left, t, P, C)
6: calcAcqCost(q.rigℎt, t, P, C)
7: if q.op = AND then
8: C(q)← Eqn. 1
9: else

10: C(q)← Eqn. 2

Algorithm 3 evalQuery(q, t, P, C)
Input: Query tree q, current time t, probability function P , data acquisition cost function
C(⋅)
Output: Truth value of q

1: if q is a predicate node then
2: let s be the stream that q operates on, w be the window size of q, ts be the latest

time the buffer for s was updated.
3: Acquire the samples in time interval (max(t− w, ts), t] for stream s.
4: Update C(⋅) if s is used in multiple predicates
5: trutℎval ← evaluate predicate q
6: return trutℎval
7: else
8: if q.op = AND then
9: leftsℎortcircuits← P (¬q.left)

10: rigℎtsℎortcircuits← P (¬q.rigℎt)
11: sℎortcircuitval← false
12: else
13: leftsℎortcircuits← P (q.left)
14: rigℎtsℎortcircuits← P (q.rigℎt)
15: sℎortcircuitval← true
16: evalorder ← (q.left, q.rigℎt)

17: if
C(q.left)

leftsℎortcircuits
>

C(q.rigℎt)
rigℎtsℎortcircuits

then

18: evalorder ← (q.rigℎt, q.left)
19: for all q′ ∈ evalorder do
20: trutℎval← evalQuery(q′, t, P, C)
21: if trutℎval = sℎortcircuitval then
22: return trutℎval
23: return ¬sℎortcircuitval

now calculate the acquisition cost for a query node with an AND operator as,

C(q) =

⎧⎨⎩
P (q.left)× [C(q.left) + C(q.rigℎt)]

+P (¬q.left)× C(q.left) if LR
P (q.rigℎt)× [C(q.left) + C(q.rigℎt)]

+P (¬q.rigℎt)× C(q.rigℎt) if RL

(1)

Title Suppressed Due to Excessive Length 15

A similar analysis can be applied for a query node with an OR operator,
resulting in a acquisition cost of,

C(q) =

⎧⎨⎩
P (¬q.left)× [C(q.left) + C(q.rigℎt)]

+P (q.left)× C(q.left) if LR
P (¬q.rigℎt)× [C(q.left) + C(q.rigℎt)]

+P (q.rigℎt)× C(q.rigℎt) if RL

(2)

We note that the calculation is dependent on the probability function P (⋅)
for each node in the query tree evaluating to true or false. These probabilities
can be obtained statically from historical executions or more dynamically by
keeping counters for the truth value of the evaluation of each query tree node.

The recursion ends when a predicate node is reached. A predicate node
is associated with a stream and the cost of evaluating a predicate node is
calculated using Eqn 7 or Eqn 8 depending on the transmission type (802.11
or Bluetooth), assuming the current state of the buffer associated with the
stream. No actual data acquisition occurs in this computation. The result of
calcAcqCost is that the acquisition cost function C(⋅) is now updated for
each node in the query tree based on the current snapshot of the buffers for
all the dependent streams. We are now ready to evaluate the query using the
updated cost function C(⋅) and the probabilities function P (⋅) for each node
in the query tree.

The actual acquisition of sensor data and the evaluation of the predicates
occur in the recursive Algorithm 3 evalQuery. The base case occurs at the
predicate (leaf) nodes of the query tree. The required data tuples are retrieved
from the dependent stream if they are not already in the stream buffer (Line 3).
In queries where a particular stream is involved in multiple predicates, a data
acquisition may change the acquisition cost of another predicate on the same
stream. Line 4 updates the cost function C(⋅) for the query tree nodes affected
by the stream buffer update. Finally, the predicate is evaluated and the truth
value returned.

For the recursive case, evalQuery computes the NAC of the query node’s
left and right subtrees using C(⋅) and P (⋅). The subtree with the lower NAC
is recursively evaluated first. If the truth value of the evaluation results in a
short circuit, the other subtree need not be evaluated and hence no data is
acquired for the that subtree.

5.2 Using Disjunctive Normal Form

A key limitation of the binary query tree representation presented thus far is
that it is unable to capture all possible permutations of sensor data acquisition
in the solution space. Consider the following query.

Q4: AVG(A, 5)<70 OR (MAX(B, 4)>100 AND (C <3 AND MIN(D, 3) < 15))

16 Lipyeow Lim et al.

MIN(D,3)<15MIN(D,3)<15

(a) Binary query tree representation

MIN(D,3)<15MIN(D,3)<15

(b) DNF query tree representation

Fig. 5 The binary query tree and DNF query tree representations of query Q4.

Fig. 5(a) shows the binary query tree representation of the query. Since eval-
Query re-orders the left and right children of each internal node according
to the NAC, the number of possible ordering (permutations) for the binary
query tree of Q4 is 2 × 2 × 2 = 8, since each of the three internal node can
permute its left and right children.

Suppose query Q4 is rewritten to an equivalent disjunctive normal form
(DNF) and represented as a DNF tree as shown in Fig. 5(b). A DNF tree
is a three level tree consisting of an OR operator at the root, AND operator
at the second level, and predicates at the leaf level. The number of different
permutations for the DNF tree with two internal nodes is 2× 3! = 12. Hence,
while the two representation are equivalent in terms of the semantics of the
query (i.e. the truth table), they are not equivalent in terms of the space of
possible evaluation order. More specifically, from Figure 5(a), we can see that
ACQUA’s depth-first evaluation algorithm, will be unable to execute the valid
evaluation sequence {(MAX(B, 4) > 100), (MIN(D, 3) < 15), (AV G(E, 7) >
50)}. To address that limitation, we modify our algorithms to use a DNF tree
representation of the query instead.

With the new DNF query tree representation, the main algorithm Pro-
cessQuery requires no modification, but the calcAcqCost and evalQuery
algorithms are modified to accommodate a DNF tree and they are named cal-
cAcqCostDNF and evalQueryDNF respectively.

Algorithm 4 calcAcqCostDNF computes the data acquisition cost of
query evaluation for each node in the DNF query tree. For each node with OR
or AND operator, calcAcqCostDNF recursively computes the data acquisi-
tion cost of all subtrees. Once the acquisition cost of the subtrees are computed,
the NAC of the subtrees are computed using the probabilities associated with
the subtrees, and an evaluation order for the subtrees are computed. Given
an evaluation order of the subtrees, the acquisition cost of the current node,

Title Suppressed Due to Excessive Length 17

Algorithm 4 calcAcqCostDNF(q, t, P, C)
Input: Query tree q, current time t, probability function P , data acquisition cost function
C(⋅)
Output: Updates cost function C(⋅)
1: if q is a predicate node then
2: let s be the stream that q operates on, w be the window size of q, ts be the latest

time the buffer for s was updated.
3: C(q) ← Calculate cost for acquiring the samples in time interval (max(t − w, ts), t]

for stream s using Eqn 7 or Eqn 8.
4: else
5: for all i ∈ q.cℎildren do
6: calcAcqCostDNF(i, t, P, C)
7: if q.op = AND then
8: C(q)← Eqn. 3 & 5
9: else

10: C(q)← Eqn. 3 & 4

denoted by q, is computed using the following recurrence relations,

Cost(q) =

⎧⎨⎩Eqn. 7 or Eqn. 8 if q is predicate
COR(cℎildren(q)) if q is OR node
CAND(cℎildren(q)) if q is AND node

(3)

COR(qi, ..., qj) =

⎧⎨⎩Cost(qi) if i = j
P (qi)× Cost(qi) otherwise

+P (¬qi,j)× COR(qi+1, ..., qj)
(4)

CAND(qi, ..., qj) =

⎧⎨⎩Cost(qi) if i = j
P (¬qi)× Cost(qi) otherwise

+P (qi,j)× CAND(qi+1, ..., qj)
(5)

where cℎildren(q) denotes the collection of children nodes qi, qi+1, . . . , qj of
node q.

Algorithm 5 evalQueryDNF is similar to evalQuery except that the
NAC of all the children nodes are computed, the children nodes are ranked
using the NAC, and the children nodes are recursively evaluated according to
the ranked order with shortcircuiting.

5.3 Optimizing for Multiple Predicates on the Same Stream

The ACQUA algorithms presented thus far implicitly assume that a par-
ticular sensor stream is associated with only a single unique predicate in the
query tree (e.g., sensor A is associated only with the predicate AV G(A, 5) < 70
in the query trees illustrated in Figure 3). In reality, especially when the same
sensor is used by multiple concurrent applications, a particular sensor data
stream may participate in multiple predicates in the composite DNF query.
Moreover, these predicates on the same stream may specify different window

18 Lipyeow Lim et al.

Algorithm 5 evalQueryDNF(q, t, P, C)
Input: Query tree q, current time t, probability function P , data acquisition cost function
C(⋅)
Output: Truth value of q

1: if q is a predicate node then
2: let s be the stream that q operates on, w be the window size of q, ts be the latest

time the buffer for s was updated.
3: Acquire the samples in time interval (max(t− w, ts), t] for stream s.
4: Update C(⋅) if s is used in multiple predicates
5: trutℎval ← evaluate predicate q
6: return trutℎval
7: else
8: if q.op = AND then
9: for all i ∈ q.cℎildren do

10: NACAND(i)← C(i)
P (i=false)

11: evalorder← q.cℎildren sorted by NACAND(⋅) ascending
12: for all q′ ∈ evalorder do
13: trutℎval← evalQueryDNF(q′, t, P, C)
14: if trutℎval = false then
15: return false
16: return true
17: else
18: for all i ∈ q.cℎildren do

19: NACOR(i)← C(i)
P (i=true)

20: evalorder ← q.cℎildren sorted by NACOR(⋅) ascending
21: for all q′ ∈ evalorder do
22: trutℎval← evalQueryDNF(q′, t, P, C)
23: if trutℎval = true then
24: return true
25: return false

sizes on that stream. In the top-down evaluation procedures as outlined in
evalQuery and evalQueryDNF (Algorithms 3-5), the evaluation order is
based on sorting the predicates based on the NAC regardless of whether the dif-
ferent predicates are accessing the same data streams. To ensure that the NAC
is accurate for a predicate of which data has already been partially acquired by
the evaluation of a predicate preceding it in the evaluation order, a stop-gap
measure of re-calculating the NAC for all unevaluated predicates which share
data streams with at least one other predicate is used (Algorithm 3, Line 4 and
Algorithm 5, Line 4). Consider query Q5 as an illustrative example. Stream
A is used by the two predicates, AV G(A, 10) > 70 and MAX(A, 3) > 100.
If at time t, the predicate AV G(A, 10) > 70 is evaluated first, then the data
acquisition cost for MAX(A, 3) > 100 is zero, because the buffer contains all
the tuples from time t − 10 to t which subsumes the window required by the
MAX(A, 3) > 100.

Re-calculating the NAC after the evaluation of each predicate is, however,
clearly an inefficient approach and would be impractically expensive for the
Stream Procesing Engine. In this sub-section, we thus investigate an alternate
approach based on bottom-up evaluation of the DNF query tree. The new

Title Suppressed Due to Excessive Length 19

Algorithm 6 processQueryBottomUp(q, P, !)

Input: Query tree q, probability P of each subquery evaluating to true/false, evaluation
period !
Output: Alert Stream

1: loop
2: t← current time
3: SOrder ← sort input streams according to Eqn. 6
4: for all s ∈ SOrder do
5: Acquire the maximum window of data from s
6: for all predicate i dependent on s do
7: Evaluate predicate i
8: Propagate truth value of i up the DNF query tree q
9: if q = true then

10: output alert tuple
11: goto Line 16
12: else if q = false then
13: goto Line 16
14: else
15: continue
16: sleep ! seconds

algorithm, processQueryBottomUp, is outlined in Algorithm 6. The first
key difference with the previous algorithms is that the list of streams required
by the given query is first sorted (Line 3) to get a stream acquisition order.
Intuitively, the stream acquisition order needs to capture two criteria:

1. streams that enable more predicates in the query to be evaluated should
be ranked higher.

2. streams that enable higher probability of shortcircuiting the evaluation
should be ranked higher.

Clearly, a naive approach to search through all possible permutations of stream
acquisition order is impractical, and we design a heuristic ranking function
instead. For a DNF query tree q, let qi denote the i-th AND node, qij denote
the j-th predicate node of the i-th AND node, Q(s) be the set of predicate
nodes that depend on stream s. The rank of a stream s is defined as

R(s) =
1

Cmax(s)

∑
qij∈Q(s)

P (¬qij)× ni, (6)

where Cmax(s) denotes the maximum window size for stream s over all the
predicates that depend on stream s, ni denotes the number of predicate nodes
that are children of the i-th AND node, and N denotes the total number of
predicates or leaves in the DNF query tree. The intuition for the heuristic is as
follows. If there are many predicates that depend on stream s, the size of Q(s)
would be larger, and hence R(s) would be larger. If a predicate qij has high
probability of being false, it would more likely shortcircuit the qi AND node,
hence it should be ranked higher. If a predicate qij can shortcircuit an qi AND
node with a large number of predicates (i.e. ni is large), it should be ranked

20 Lipyeow Lim et al.

higher. There are probably alternate heuristic functions that would work as
well and it is not within the scope of this paper to investigate the spectrum of
heuristic functions.

After obtaining the stream acquisition order, we start to evaluate the query
in a bottom-up fashion. For each stream in the stream acquisition order, we
acquire the maximum window of data that is needed by all the predicates
dependent on that stream. For each of those dependent predicates, we then
evaluate the predicate and propagate the truth value up the DNF query tree
to update the truth value of the nodes in the leaf-to-root path. The truth
value of each node in the DNF tree is initialized to value ‘unknown’ at the
beginning of each evaluation period. Evaluating a predicate is equivalent to
determining the truth value of a leaf node in the DNF tree. This truth value
is propagated up the tree to determine if the truth value of the root node can
be decided taking into account the usual shortcircuiting rules. Once the truth
value of the root node is determined to be ‘true’ or ‘false’, no further sensor
data acquisition and predicate evaluation is needed.

As an illustrative example, consider the following query (Fig. 6 shows the
corresponding DNF query tree).

Q5: (AVG(A, 10)>70 AND B <3 AND (AVG(C, 5)<15) OR
(MAX(A, 3)>100 AND D <10 AND (AVG(C, 3)<15)

Using Algorithm 6 processQueryBottomUp, we first sort the streams using
the heuristic ranking function (Eqn. 6). For query Q5, the input streams are
A,B,C,D. Suppose the ranking is,

R(A) > R(C) > R(B) > R(D).

We then evaluate all the predicates associated with stream A first, followed
by B, then C and D. We first acquire the maximum window of data from
stream A which is max(10, 3) = 10. For stream A, suppose we first evaluate
the predicate MAX(A, 3) > 100. The truth value of the predicate is then
propagated up the DNF query tree. Suppose the predicate is false, the AND-
node (the second AND in the tree) that is the parent of the predicate is
then shortcuited and becomes false. The truth value of the root OR-node,
however, is still unknown. Hence the algorithm proceeds to the next predicate
associated with stream A, namely, AV G(A, 10) > 70. Note that the evaluation
order of the predicates associated with a stream no longer matters from an
energy perspective, because all the data required for their evaluation has been
acquired. Suppose the predicate AV G(A, 10) > 70 evaluates to true, the truth
value is propagated up the tree. This time no shortcircuiting happened and
the truth value of the root is still unknown, so the algorithm proceeds to the
next stream. The maximum window of data, namely 5 seconds, for stream C is
acquired, and the algorithm proceeds to evaluate the predicates AV G(C, 5) >
50 and MIN(C, 3) < 15. Suppose AV G(C, 5) > 50 is false. The truth value is
propagated up the DNF tree. This time the AND-node (the first AND in the

Title Suppressed Due to Excessive Length 21

AVG(C,5)>50 MIN(C,3)<15DBAVG(A,10)>70

Fig. 6 The DNF query tree representation of query Q5.

tree) that is the parent of the predicate is shortcircuited and becomes false.
Since both AND-nodes in the DNF tree are now false, the truth value of the
root OR-node is false. No further data acquisition or predicate evaluation is
required for this evaluation instant !.

6 Wireless Technologies & The Per-Sample Data Acquisition Cost

The ACQUA algorithms described so far assume a specific energy cost associ-
ated with the acquisition of each individual sensor stream tuple. In this section,
we now consider the challenge of characterizing this cost, for the practical sce-
nario where a smartphone is retrieving data from nearby, possibly wearable
sensors, using a local wireless technology. In all practical cases of interest, the
query processing engine will acquire data intermittently and in batches, i.e.,
transfer multiple sensor samples as part of a single transmission activity. We
shall show that the accurate computation of this energy cost is not trivial, and
must consider key technology-specific characteristics of the wireless radios.

To study this phenomena in detail, we utilize prior work that accurately
captures the key characteristics of two specific wireless technologies–WiFi
(IEEE 802.11) and Bluetooth. Although the transmission power and energy
associated with data transfers, as well as the link bandwidth, will be unique for
each specific technology, we believe that these two widely-used radio technolo-
gies represent two broad classes of PAN wireless technologies. In particular,
IEEE 802.11 represents a high-power, high-data rate PAN technology, while
Bluetooth represents a low-power, low-data rate alternative.

As we will shortly see, both of these technologies have two distinct modes–a
low-power ‘idle’ mode (where the radio lies dormant and consumes significantly
lower power) and an ’active’ mode (where the radio is actually capable of
engaging in packet transmission or reception activity). In general, let Pa be the
power consumption in active mode, and Pi (Pi ≪ Pa) be the power consumed
in the ‘idle’ mode. Also, let B be the transmission bandwidth (bps) of the
radio link, when active. We consider the case of a generic sensor, operating
under a sampling frequency of f Hz with a sample size of S bits (resulting in a
data generation rate, R, given by R = f ∗S). We consider the communication
energy overhead as a function of N , the number of sensor samples that are
batched by the sensor and then transmitted in a burst to the smartphone.

22 Lipyeow Lim et al.

Fig 8 summarizes the key parameters associated with batched transmission in
802.11 and Bluetooth, which we now discuss.

IEEE 802.11 Commercial IEEE 802.11 radios can operate in two states–a
normal ’active’ mode (when the radio interface receives or transmits packets)
and a Power Save Mode (PSM), where the radio periodically wakes up to check
if there any pending transmissions or receptions. The following are two key
relevant properties associated with 802.11 hardware:

– Due to the switching characteristics of the radio hardware, there is typically
a lower bound on the minimal idle time Tℎidle, below which the radio
cannot enter the PSM mode (typically, this is around 100 ms) [8,10].

– There is a fixed, duration-independent switching energy Eswitcℎ spent when
a radio transitions from the PSM to the ‘active’ mode.

Accordingly, it follows that the total transmission time for the N samples,
generated over a time interval of N

f , equals N∗S
B and the total energy Et

consumed over this time interval equals:

Et =

{
Pi ∗ (N

f −
N∗S
B) + Pa ∗ N∗S

B + Eswitcℎ if N
f −

N∗S
B > Tℎidle

Pa ∗ N
f otherwise

(7)

The second case corresponds to the situation where the ‘idle’ time for the
802.11 radio is not enough for it to switch into the low-power PSM state.
On the other hand, if the idle time is large enough, the energy per sample
progressively diminishes, as the fixed cost of switching to a low power state is
amortized over a longer ‘idle’ time.

Bluetooth Bluetooth radios typically operate in three states: transmit, receive
or sleep, each of which has a different power consumption profile [11]. As we
focus principally on the smartphone, which primarily receives data from an
external sensor, we denote its active energy consumption Pa as the energy
spent in actively receiving data. We consider the Bluetooth version 2.0+ EDR
and assume, for analytical tractability, that a single sensor device attaches as
a slave to the master located on the smartphone. While the low-power mode
results in significantly low power consumption, note that there is a latency
Tswitcℎ involved in switching from the non-associated low-power mode to the
associated-active mode. Accordingly, any data transfer duration would con-
sist of the total time spent in transfer N∗S

B , plus the additional time Tswitcℎ.
Accordingly, the total energy consumed in transmitting the sensor stream in
batches of N samples is given by:

Et = Pi ∗ (
N

f
− N ∗ S

B
− Tswitcℎ) + Pa ∗ (

N ∗ S
B

+ Tswitcℎ) (8)

Title Suppressed Due to Excessive Length 23

Fig. 7 The Impact of Batched Transmissions on the Transmission Energy Overhead per
Sample. The figure plots the energy/sample for both 802.11 and Bluetooth interfaces, as a
function of the batch duration, for a typical accelerometer sensor.

IEEE 802.11 Bluetooth 2.0+EDR

Pa 947 mW 60mW
Pi 231 mW 5 mW
B 54 Mbps 1 Mbps
Eswitcℎ 14 �Joule –
Tℎidle 100 ms –
Tswitcℎ – 6 msec

Fig. 8 The Energy Overheads for IEEE 802.11g & Bluetooth Radios

Fig. 7 plots the resulting energy overhead (energy per sample) for both
IEEE 802.11 and Bluetooth (computed by using Equations 7 and 8), as a
function of the batch size N , for a representative accelerometer sensor, with
S = 192 bits/sample and f = 100 Hz. It is clear that the choice of the batch
size N , for a given radio technology, has a significant effect on the energy
efficiency of the data acquisition process, and is thus an important design
parameter for the ACQUA framework. For the specific accelerometer sensor
considered here, the energy overhead for 802.11-based transmissions becomes
dramatically lower when the sensor tuples are transferred in batches of 500
msecs or greater; for the Bluetooth interface, a batch duration of 5 secs or
higher is more efficient.

7 Performance Evaluation and Results

We now describe the result of simulation-based studies to quantify the perfor-
mance gains (in terms of the reduction in energy overheads) of our proposed
ACQUA algorithms. Our studies are conducted using a Perl-based simulator

24 Lipyeow Lim et al.

which accepts as input both a query tree and probability distributions on the
values of individual data streams. The simulation results use the energy-per-bit
cost models derived in Section 6 for 802.11 wifi and Bluetooth. Synthetic traces
of sensor-generated data tuples were then generated to reflect the probability
distributions and fed into the simulator, which then applied the algorithms of
Section 5 to compute the sequence of data that would be actually retrieved by
an ACQUA-based implementation. Results are presented by averaging over 5
one-hour long traces and also include the 95% confidence intervals.

To quantify our performance gains, we compared five different evaluation
algorithms:

1. Naive: The naive retrieval algorithm requires each sensor to simply upload
(in batched mode) its generated stream tuples to the SPE. Accordingly,
while this algorithm utilizes batched transmission to reduce the energy
overheads associated with the use of the PAN wireless interface, it does
not exploit the selectivity properties to reduce the amount of sensor data
that is actually needed by the SPE.

2. ASRS-dynamic: The ASRS-dynamic algorithm corresponds to the pro-
cedure described in Section 5 and requires the dynamic modification of the
acquisition cost functions after each data retrieval and evaluation, to ac-
count for both the stream tuples already present in the smartphone buffer
and the already-resolved (‘short-circuited’) query subtrees.

3. ASRS-static: While this algorithm’s logic is broadly similar to ASRS-
dynamic, it computes an optimal sequence only once (at the beginning
of the simulation) based on the selectivity characteristics and the com-
munication costs, and then applies the evalQuery procedure to evaluate
the query tree at successive ‘time shift’ instants. Accordingly, it does not
perform the dynamic update of NAC values, based on the dynamically
evolving state of the query processing state.

4. ASRS-DNF: This algorithm is a modification of ASRS-dynamic methods
that uses DNF query trees instead of binary query trees. Since DNF query
trees capture a bigger set of possible evaluation orders, we expect the algo-
rithm to find an ordering that is more energy efficient than ASRS-dynamic.

5. ASRS-MultiPred: This algorithm is fundamentally different from the
previous algorithms in that a bottom-up query evaluation strategy is used
to further optimize the data acquisition order for sensor streams that are
used by multiple predicates.

While Naive helps to quantify the performance gains expected from our se-
quential acquisition strategy, ASRS-static helps us to isolate and understand
the performance gains that arise from the dynamic consideration of the evolv-
ing query state. ASRS-DNF helps us to determine the performance gains from
using a disjunctive normal form representation of the query tree. Whereas
the other algorithms use top-down query evaluation, ASRS-MultiPred uses a
bottom-up query evaluation that exposes additional optimization opportuni-
ties.

Title Suppressed Due to Excessive Length 25

Given our focus on understanding the expected benefits of our proposed
ASRS algorithms, we experimented with a large number of different queries,
both manually crafted as well as synthetically generated. For ease of exposi-
tion, we focus on one relatively-simple but representative query that generates
an alert if:

Q6: (((AVG(SP02,5)<98%) AND (SPREAD(Accel,10)<2g))
AND (AVG(HR,10)<75)) OR ((AVG(SP02,10)<95)
AND (SPREAD(Accel,10)>4g) AND (AVG(HR,10)>100)).

Intuitively, query Q6 generates alerts either if the user’s Sp02 values drop be-
low 98% while the user is resting, or if the Sp02 values drop below 95% while
the individual is engaged in vigorous activity (e.g., running). The accelerome-
ter and Sp02 sampling rates and data sizes are adapted from Fig. 1, while the
heart rate sensor has a sampling frequency of 0.5 Hz and a sample size of 32
bits. We experimented with both 802.11 and Bluetooth-based wireless trans-
mission models. The underlying data traces are generated using the normal
distribution N(�, �) (with appropriate truncation to avoid underflow below 0
or overflow above 100%) on each of these sensors as follows: Sp02 as N(96, 4),
HR as N(80, 40) and Accel as N(0, 10). �, � have been carefully selected on
the basis of real world data. Every sensor data is one-hour(3600secs) trace
according to its own frequency.

7.1 Evaluation with a Fixed Time-Shift Value

Fig. 9 plots the total data acquisition energy (in Joules, over the 1 hour eval-
uation duration) for each of the five algorithms, for the case of Bluetooth
and 802.11-based PAN technologies respectively. These results correspond to
a query with a time-shift value of ! = 10secs. We can see that our approach of
sequential retrieval and evaluation of individual sensor streams, while taking
into account their respective acquisition costs and selectivity characteristics,
results in significant energy savings, compared to the naive approach where the
data is pushed (albeit in batches) from each sensor. For 802.11 based trans-
missions, the ASRS algorithms result in ∼ 50% to ∼ 80% reduction in energy
overheads compared to the Naive scheme. For Bluetooth-based data transfers,
the energy reductions are equally dramatic, with ASRS-static, ASRS-dynamic,
ASRS-DNF and ASRS-MultiPred achieving around ∼ 60%, ∼ 65%, ∼ 70%
and ∼ 73% reduction in energy overheads respectively. Fig. 9(c) and Fig. 9(d)
shows the number of bytes of sensor data transferred to the smartphone in
order to process the query and the results validates the effectiveness of the or-
dering the predicates for shortcircuit query evaluation in reducing the amount
of data acquired.

26 Lipyeow Lim et al.

0

500

1000

1500

2000

2500

3000

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
o
ta
l
E
n
e
rg
y
 (
J
o
u
le
s
)

0

500

1000

1500

2000

2500

3000

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
ot
al
 E
n
er
g
y
 (
J
ou
le
s)

0

500

1000

1500

2000

2500

3000

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

0

500

1000

1500

2000

2500

3000

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

0

500

1000

1500

2000

2500

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
)

0

500

1000

1500

2000

2500

3000

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
)

(a) Q6-Total Energy (802.11)

0

10

20

30

40

50

60

70

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
)

(b) Q6-Total Energy (Bluetooth)

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
)

0

1

2

3

4

5

6

7

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
ra

n
s

m
it

te
d

 B
y

te
s

 (
M

B
)

(c) Q6-Total Bytes of Sensor Data (802.11)

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
)

0

1

2

3

4

5

6

7

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

0

1

2

3

4

5

6

7

Naïve ASRS-static ASRS-dynamic ASRS-DNF ASRS-Multipred

T
ra

n
s

m
it

te
d

 B
y

te
s

 (
M

B
)

(d) Q6-Total Bytes of Sensor Data (Blue-
tooth)

Fig. 9 Comparative energy (Joules) and data transfer (Bytes) for processing query Q6 with
! = 10secs. The left column shows the result for 802.11 energy model and the right column
shows the results for Bluetooth energy models.

ASRS-dynamic outperforms ASRS-static by ∼ 30% demonstrating that
changing the data acquisition and query evaluation order dynamically at each
time shift does translate to more energy savings. By taking the dynamic state
of a query and the contents of the data buffer into account, the dynamic ap-
proach is able to further reduce the energy overhead, compared to the static
counterpart. The gains are, however, not as dramatic for the Bluetooth inter-
face (even though ASRS-dynamic has significantly lower variance than ASRS-
static)–this is most likely due to the non-negligible Tswitcℎ overhead in Blue-
tooth, which implies that Bluetooth does not provide as great an advantage
for very short-sized data transfers compared to larger batch sizes. The figures
thus reveal that the relative performance of the algorithms depend significantly
on the fine-grained features of the PAN radio technology, implying that the
ACQUA algorithms need to be carefully tailored to the characteristics of the
specific PAN technology adopted.

ASRS-DNF and ASRS-MultiPred when compared with Naive are espe-
cially impressive with energy savings between ∼ 75% and ∼ 80%. Moreover,
their confidence intervals are much tighter compared to ASRS-dynamic and
ASRS-static demonstrating the consistency of their good performance. That
ASRS-DNF improves on ASRS-dynamic on the average energy consumed and
more significantly on the confidence interval shows that the ASRS method is
indeed able to find a better data acquisition order using the DNF query tree

Title Suppressed Due to Excessive Length 27

representation. We do note that the performance gains are query dependent.
There are some queries whereby the larger permutation space afforded by the
DNF representation does not result in finding a better data acquisition order
and hence does not affect the energy cost significantly.

While the difference in the average energy consumed using the ASRS-
dynamic and ASRS-DNF methods is small, the energy savings of ASRS-
MultiPred are significant compared with ASRS-DNF. This result validates the
effectiveness of using a bottom-up evaluation strategy together with a stream
acquisition order heuristic as opposed to the predicate-based acquisition order
used in ASRS-dynamic and ASRS-static. ASRS-MultiPred optimizes the data
acquisition energy especially for queries containing multiple predicates on the
same sensor stream. In general, we expect real world queries to have multi-
ple predicates on the same sensor stream especially after converting them to
DNF. Hence, the superior performance of ASRS-MultiPred compared to all
the other methods is a very positive and encouraging result.

7.2 Evaluation under Varying Time-Shift Values

We also experimented on Q5 with different values of the ‘time shift’ window
!, i.e., by altering the frequency with which our ‘tumbling window’ query is
evaluated. Figure 10(a) shows the energy overheads for the five algorithms
for three different values of ! = {5sec, 10sec, 20sec}, for the case of IEEE
802.11-based sensor data transfers; ! = 3 implies an overlap of time windows
of successive evaluation instants. Figure 10(b) shows the energy consumed for
the case of Bluetooth. It is interesting to observe that the relative gains are
fairly independent of !. In particular, when ! = 20, there is no overlap between
the evaluation window and the ‘time shift’ values; accordingly, the evaluation
at a subsequent instant always starts with an empty buffer of data tuples.
Nonetheless, the ASRS-dynamic algorithm is able to outperform the static
variant, by better adapting its data acquisition sequence to take account of
the intermediate query evaluations state (i.e., by eliminating data acquisition
for those sub-trees that have already been ‘short-circuited’).

7.3 Evaluation under Varying Query Characteristics

In this section, we investigate how different properties of query affect the
performance of ASRS-DNF and ASRS-MultiPred. In our first experiment,
we hand-crafted the following four queries each with a different number of
predicates on stream A:

Q7: (((AVG(A,5)<98%) AND (SPREAD(B,10)<2g))
AND (AVG(C,10)<75)) OR ((AVG(A,10)>92%)

28 Lipyeow Lim et al.

0

100

200

300

400

500

600

700

800

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

0

5

10

15

20

25

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

0

500

1000

1500

2000

2500

5 10 20

Evaluation Period (seconds)

Naïve

ASRS-static

ASRS-dynamic

DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(a) Evaluation Period (seconds) for 802.11

0

100

200

300

400

500

600

700

800

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

0

5

10

15

20

25

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

0

500

1000

1500

2000

2500

5 10 20

Evaluation Period (seconds)

Naïve

ASRS-static

ASRS-dynamic

DNF

ASRS-Multipred

0

10

20

30

40

50

60

70

5 10 20

Evaluation Period (seconds)

Naïve

ASRS-static

ASRS-dynamic

DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(b) Evaluation Period (seconds) for Bluetooth

Fig. 10 Comparative Energy Overheads, under varying ! values, for 802.11-based and
Bluetooth Data Transfers

AND (SPREAD(D,10)>4g) AND (AVG(E,10)>100)).

Q8: (((AVG(A,5)<98%) AND (SPREAD(B,10)<2g))
AND (AVG(C,10)<75)) OR ((AVG(A,10)>92%)
AND (SPREAD(D,10)>4g) AND (AVG(A,10)<95%)).

Q9: (((AVG(A,5)<98%) AND (MIN(A,7)>95%))
AND (AVG(C,10)<75)) OR ((AVG(AVG(A,10)>92%)
AND (SPREAD(D,10)>4g) AND (AVG(A,10)<95%)).

Q10: (((AVG(A,5)<98%) AND (MIN(A,7)>95%))
AND (AVG(C,10)<75)) OR ((AVG(AVG(A,10)>92%)
AND (MAX(A,3)>99) AND (AVG(A,10)<95%)).

Title Suppressed Due to Excessive Length 29

0

100

200

300

400

500

600

700

800

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y

 (
J

o
u

le
s

)

(a) 802.11

0

100

200

300

400

500

600

700

800

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

0

5

10

15

20

25

2 Predicates 3 Predicates 4 Predicates 5 Predicates

ASRS-DNF

ASRS-Multipred

T
o

ta
l

E
n

e
rg

y
 (

J
o

u
le

s
)

(b) Bluetooth

Fig. 11 Energy overhead for four hand-crafted queries with different number of predicates
on the same stream.

Each of these queries contain exactly six predicates and we vary the number of
predicates that are dependent on stream A. Fig. 11 shows the energy consumed
by ASRS-DNF and ASRS-MultiPred for the above four queries. Observe that
as the number of predicates on stream A increases, the energy consumed by
the two ASRS methods decreases. However, this is expected, because the total
number of predicates in each query remains fixed, so increasing the number
of predicates on stream A reduces the total sensor data required by the query
as well. For 802.11-based transfers, we also observe that when there are two
predicates on stream A, ASRS-MultiPred’s energy overhead is ∼ 14% less than
ASRS-DNF and when there are four predicates on stream A, the difference
increases to ∼ 24%. However, the difference for Bluetooth is less dramatic.
Note that since we keep the number of predicates in the query fixed at six, the
more predicates that use the same stream, the less total input data is required
by the query. Moreover, the window size of the predicates also affects the total
input data required by the query. These complex relationships complicates our
analysis of how different query characteristics affect the ASRS algorithms and
one approach to explore this space is to evaluate the algorithms on randomly
generated queries.

To further investigate the effects of how different query characteristics af-
fect the performance of ASRS-DNF and ASRS-MultiPred, we run our exper-
iments on randomly generated synthetic DNF query trees instead of hand-
crafting queries. The synthetic queries are generated by varying (1) nand the
number of AND nodes, (2) npred the number predicates under each AND node,
and (3) nstream the number of distinct sensor streams. We generate the queries
randomly using the following rules for a given setting of nand, npred, nstream.
Recall that a predicate consists of an aggregation function, a stream, a win-
dow, a comparison operator and a constant value (see definition of predicate
in Sec. 4).

1. The root node must be an OR-node.
2. The second level of the query tree consists of exactly nand AND-nodes.
3. Foreach AND-node generate exactly npref predicate nodes as follows,

30 Lipyeow Lim et al.

4. Randomly pick an aggregation function,
5. Randomly pick one stream from the pool of nstream streams,
6. Randomly pick a window size in a user-specified range,
7. Randomly pick a comparison operator among {>,<,=},
8. Randomly pick a constant value.

For the next three experiments, we fix two out of the three query properties
{nand, npred, nstream} and vary the other one. For real world applications, we
expect nand to be no more than 10, npred no more than six, and nstream no
more than 12. The experiments are run on 802.11-based and Bluetooth PAN
technologies for one hour of simulation time and the time-shift value is still
! = 10secs.

Varying nand. In this experiment, we fix nstream=4, npred=4, and vary nand.
Fig. 12 shows the total data acquisition energy (in Joules). Observe that the
growth in energy overhead is relatively stable compared to the number of AND-
nodes which is increasing exponentially. Note that increasing the number of
AND-nodes with a fixed number of predicates per AND-node results in a larger
query tree (linear growth w.r.t nand). A larger query tree is likely to require
more input data for evaluation. However, since the number of streams remain
fixed, the number predicates that depend on the same streams also increases.
For 802.11-based transfers, we do observe a widening gap between ASRS-DNF
and ASRS-MultiPred, but for Bluetooth, the growth of the gap is much slower.

Varying nstream. In this experiment, we fix nand=4, npred=4, and vary nstream.
Increasing the number of streams would mean that the number of predicates
that depend on the same stream decreases – we expect that the performance
gap between ASRS-DNF and ASRS-MultiPred would narrow. Fig. 13 indeed
shows that as the number of streams increases, the difference in energy over-
head for ASRS-DNF and ASRS-MultiPred narrows, because ASRS-MultiPred
is designed specifically to optimize for multiple predicates on the same streams.
We also note that we rarely observe the case when ASRS-MultiPred is worse
than ASRS-DNF in our experiments.

Varying npred. In this experiment, we fix nstream=4, nand=4, and vary npred.
Increasing the number of predicates while fixing the number of streams would
increase the number of predicates that depend on the same stream. We would
expect ASRS-MultiPred to perform better than ASRS-DNF. Fig. 14 shows
that the performance gap between ASRS-DNF and ASRS-MultiPred widens
as the number of predicates increases as expected.

8 Conclusion and Future Work

In this paper, we have motivated the ACQUA framework for energy-efficient
continuous evaluation of complex queries over sensor-generated data on a
smartphone. The key to the ACQUA framework is the sequential retrieval

Title Suppressed Due to Excessive Length 31

T
ra

n
s

m
it

te
d

 B
y

te
s
 (

M
B

)

0

1000

2000

3000

4000

5000

6000

2 4 8

Number of ANDs

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(a) 802.11

T
ra

n
s

m
it

te
d

 B
y

te
s
 (

M
B

)

0

20

40

60

80

100

120

140

160

2 4 8

Number of ANDs

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(b) Bluetooth

Fig. 12 Fix npred = 4, nstream = 4, and vary nand

T
ra

n
s

m
it

te
d

 B
y

te
s
 (

M
B

)

0

1000

2000

3000

4000

5000

6000

4 8 12

Number of ANDs

ASRS-DNF

ASRS-Multipred

0

1000

2000

3000

4000

5000

6000

4 8 12

Number of Streams

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(a) 802.11

T
ra

n
s

m
it

te
d

 B
y

te
s
 (

M
B

)

0

20

40

60

80

100

120

140

4 8 12

Number of Streams

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(b) Bluetooth

Fig. 13 Fix npred = 4, nand = 4, and vary nstream

T
ra

n
s

m
it

te
d

 B
y

te
s
 (

M
B

)

0

1000

2000

3000

4000

5000

6000

2 4 6

Number of Predicates per AND

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(a) 802.11

T
ra

n
s

m
it

te
d

 B
y

te
s
 (

M
B

)

0

20

40

60

80

100

120

140

160

2 4 6

Number of Predicates per AND

ASRS-DNF

ASRS-Multipred

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

(b) Bluetooth

Fig. 14 Fix nstream = 4, nand = 4, and vary npred

of subsets of data tuples from each individual stream, with the preferred se-
quence being determined by considering both the query selectivity properties
of the individual data stream and the sensor-specific energy overheads in-
curred by the sensor in transmitting the data over a PAN wireless network
to the smartphone. We described four algorithms that consider in detail the
transmission costs arising from batched transmission of sensor data tuples.
While ASRS-static determines an optimal retrieval sequence once when the

32 Lipyeow Lim et al.

query is submitted for execution, ASRS-dynamic re-evaluates the optimal re-
trieval sequence at each evaluation instant, taking into consideration the state
of both the stream buffers and the partially evaluated query. ASRS-DNF uses
an alternate disjunctive normal form query tree representation that permits a
richer set of retrieval sequences. ASRS-MultiPred further exploits bottom-up
query evaluation to optimized for multiple predicates operating on the same
stream. Our results on synthetic traces indicate that the ACQUA approach
can result in ∼ 80% reduction in the energy overheads of continuous query
processing. Note that in all cases, there is no degradation in the fidelity of the
processing logic, i.e., the semantics of the queries are completely preserved.

We conclude by emphasizing that the overall ACQUA effort has several
open questions that need to be explored further. The algorithms presented in
this paper assume the availability of the selectivity statistics for each sensor
stream. Our ongoing work encompasses two orthogonal threads.

– Systems Research: We are implementing ACQUA on an Android-based
smartphone platform, with special focus on online-learning algorithms to
estimate the selectivity statistics from the history of sensor-generated data.
Subsequently, user studies with real-life sensor traces will be used to quan-
tify the performance gains of the ACQUA framework using real-life, in-
stead of currently-used synthetically generated, sensor traces. We are also
working to extend ACQUA’s processing logic to the case of distributed
query processing over multiple proximate smartphones [14], where multi-
ple stream processing engines (one on each smartphone) execute over a
shared repository of sensors, offering additional opportunities for query
optimization.

– Algorithmic Research: We are working to extend the ASRS algorithms
to include additional query semantics, such as the support of sliding window
queries and on techniques to further improve the dynamic computation of
the cost functions, given the statistical characteristics of the data tuples
already available in the system buffer. (For example, while the probability
of AV G(S5, 10) > 40 may be generically 0.8, the probability at a specific
instant should be different if 8 out of 10 samples in that evaluation window
are already buffered and are all observed to be less than 10).

References

1. S. Gaonkar, J. Li, R. Roy Choudhury, L. Cox and A. Schmidt, Micro-Blog: Sharing
and Querying Content through Mobile Phones and Social Participation, Proceedings of
ACM Mobisys’08, June 2008.

2. E. Miluzzo, Sensing Meets Mobile Social Networks: The Design, Implementation and
Evaluation of the CenceMe Application., Proceedings of ACM Conference on Embedded
Networked Sensor Systems (SenSys ’08), November 2008.

3. I. Mohomed, A. Misra, M. Ebling and W. Jerome, Context-Aware and Personalized
Event Filtering for Low-Overhead Continuous Remote Health Monitoring, IEEE WoW-
MoM 2008, June 2008.

Title Suppressed Due to Excessive Length 33

4. The SHIMMER sensor platform http://shimmer-research.com.
5. B. Priyantha, D. Lymberopoulos and J. Liu, Enabling energy efficient continuous sensing

on mobile phones with LittleRock, Proceedings of IPSN, April 2010.
6. H. Lu, J. Yang, Z. Lu, N. Lane, T. Choudhury and A. Campbell, The Jigsaw Continuous

Sensing Engine for Mobile phone Applications, Proceedings of ACM Conference on
Embedded Networked Sensor Systems (SenSys ’10), November 2010.

7. S. Kang, et al, Orchestrator: An Active Resource Orchestration Framework for Mobile
Context Monitoring in Sensor-rich Mobile Environments”, Proceedings of the 8th IEEE
International Conference on Pervasive Computing and Communications (PerCom 2010),
March 2010.

8. J. Liu and L. Zhong, Micro Power Management of Active 802.11 Interfaces, Proceedings
of ACM Mobisys’08, June 2008.

9. A. Roychoudhury, B. Falchuk and A.Misra, MediAlly: A Provenance-Aware Remote
Health Monitoring Middleware, 8th IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), March2010.

10. F. Dogar, P. Steenkiste and D. Papagiannaki, Catnap: Exploiting High Bandwidth
Wireless Interfaces to Save Energy for Mobile Devices, Proceedings of ACM Mobisys’10,
June 2010.

11. K. Jang, T. Lee, H.Kang and J. Park, Efficient Power Management Policy in Bluetooth,
IEICE Transactions on Communication, August 2001.

12. A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong, Model driven data
acquisition in sensor networks, in Proceedings of VLDB. Morgan Kaufmann Publishers
Inc., 2004, pp. 144-155.

13. N. Vallina-Rodriguez and J. Crowcroft, ErdOS: Achieving energy savings in mobile OS,
ACM MobiArch 2011,June, 2011.

14. K.Rachuri, C. Mascolo, M. Musolesi and P. Rentfrow, SociableSense: exploring the
trade-offs of adaptive sampling and computation offloading for social sensing, ACM
Mobicom, September 2011.

15. M. Corson, R. Laroia, J. Li; V. Park, T. Richardson, G. Tsirtsis, Toward proximity-
aware internetworking, IEEE Wireless Communications, December 2010.

16. J. M. Hellerstein and M. Stonebraker. Predicate migration: optimizing queries with
expensive predicates. SIGMOD International Conference on Management of Data, 1993.

17. A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunctive
queries with expensive predicates. SIGMOD International Conference on Management
of Data, 1994

	Introduction
	Related and Prior Work
	The ACQUA Functional Architecture
	The Stream-Oriented Query Model
	The ASRS Sequential Retrieval Algorithm
	Wireless Technologies & The Per-Sample Data Acquisition Cost
	Performance Evaluation and Results
	Conclusion and Future Work

