
IR - Assignment 2 Part-2 (Ranked
retrieval) Deadline: 14/09/2018

In​ ​ this​ ​ assignment,​ ​ you​ ​ will​ ​ implement​ ​ ranked​ ​ retrieval​ ​ using​ ​ two​ ​ simple​ ​ ranking
techniques:
1. Tf-idf​ ​ based​ ​ ranking​ ​ (cosine​ ​ similarity)
2. Unigram​ ​ language​ ​ model​ ​ based​ ​ ranking

You need to retrieve the documents based on the following approach:

Inverted ​ ​ Index ​ ​ way​: ​ ​ Create​ ​ an​ ​ inverted​ ​ index.​ ​ This​ ​ index​ ​ will​ ​ help​ ​ you​ ​ obtain​ ​ the
list​ ​ of​ ​ documents​ ​ which​ ​ have​ ​ at least​ ​ one​ ​ query​ ​ term​ ​ present.​ ​ Then​ ​ only​ ​ those
documents​ ​ will​ ​ need​ ​ to​ ​ be​ ​ processed,​ ​ because​ ​ the​ ​ other​ ​ documents​ ​ are​ ​ not
relevant​ ​ to​ ​ the​ ​ query​ ​ anyway.

For each query-document pair, you also have a relevance judgement (that you manually ranked
in part-1). Using these relevance scores, calculate the NDCG score for the document
set returned by your search engine.

Dataset Description:
1. query.txt contains total 82 queries, which has 2 columns query id and query.
2. alldocs.rar contains documents file named with doc id. Each document has set of sentences.
3. output.txt contains 50 relevant documents (doc id) for each query
Link: ​https://drive.google.com/file/d/1LOW6HJE_Y7lftHg58Zqccq70c_X78bh5/view?usp=sharing

https://drive.google.com/file/d/1LOW6HJE_Y7lftHg58Zqccq70c_X78bh5/view?usp=sharing

Part1:

1. Represent each query and document as ​lnc.ltc tf-idf vector​ where the corpus will be all the
documents in alldocs.rar merged. Use​ ​ their​ ​ cosine​ ​ similarity​ ​ values​ ​ to​ ​ rank​ ​ the​ ​ documents.

2. For each query first retrieve top 50 documents using your code. Report precision, recall,
f-measure for each query (in a table format) as well as the average.

3. Report the average time of retrieval for Inverted index way

Part2:
1. Compute​ ​ the​ ​ P(q|d) ​ ​ for​ ​ each​ ​ document​.​ The​ ​ documents​ ​ with​ ​ a ​ ​ higher​ ​ probability​ ​ of​ ​
generating​ ​ the​ ​ query ,i.e.,​ ​ higher​ ​ value​ ​ of​ ​ P(q|d) ​ ​ will​ ​ be​ ​ ranked​ ​ higher.

2. For each query first retrieve top 50 documents using your code. Report precision, recall,
f-measure for each query (in a table format) as well as the average.

3. Report the average time of retrieval for Inverted index way.

Deliverables:
Submit​ ​ a ​ ​ tar.gz​ ​ file​ ​ on​ ​ moodle​ ​ containing​ ​ the​ ​ following:
|-src
|-results

1. Your​ ​ src​ ​ folder​ ​ containing​ ​ your​ ​ python​ ​ code.
2. Under results there should be text​ ​ files​ ​ for​ ​ the​ ​ following​ ​ information:

a. A table containing the NDCG score for each query (as shown below).
b. A​ ​ table​ ​ containing​ ​ the​ precision, recall, score​ ​ for​ ​ each​ ​ query​ .
c. Time taken for Naive search and Indexed search

Name​ ​ your​ ​ file​ ​ as​ ​ A2_<RollNumber>.tar.gz

Reference:
● NDCG is Normalised Discounted Cumulative Gain. It is used for measuring the quality of

retrieved results. You can use the scikit-learn library function for computing this. (You will
have to understand NDCG first however, in order to be able to use that :))

● Go through the chapter-11 of Manning for understanding “Unigram language model
based ranking”

