1. Write the complexity of retrieving query
a)"Brutus AND (NOT Caesar)"
b)"Brutus OR NOT Caesar"
by boolean retrieval merging? Assume size of posting list of brutus and caesar be x and y respectively.
Ans. a) $\mathrm{O}(\mathrm{x}+\mathrm{y})$
b) $\mathrm{O}(\mathrm{N})$
2. Can skip pointers can be used in every case? Why not?

Ans. Nope, (x or y)
3. Calculate the number of comparisons for merging the following:

4610121416182022324781120122157180
47
a. Normal postings lists
b. Skip pointers
$\begin{array}{ll}\text { Ans. a) } 11 & \text { b) } 6\end{array}$
*4. Derive the complexity for positional index?
$\mathrm{L}=$ Total number of occurrences of two terms in document.
K clause phrase
m and $n=$ size of postings list of both words.
Ans. $\mathrm{O}((\mathrm{m}+\mathrm{n}) \mathrm{L})$
5. State the problem of using conjunction of bigrams with a example.

Ans. mon*h will falsely match moonish.
6. Jaccard Coefficient between bord and sordid (bigram)

Ans. 2/6

7.

For $n=15$ splits, $r=10$ segments and $j=3$ term partitions, how long would distributed index creation take for Reuters-RCV1 in a MapReduce architecture? Base your assumptions about cluster machines on Table 4.1.

SOLUTION.
 4.6 For Map-Reduce distributed index creation, Number of splits=15
 Number of machines=10, Number of partitions-3
 Size of a split Reuters RCV1 to be parsed=(800/15) MB
 MAP Phase: 10 machines process simulataneously
 Time spent by a machine $=(800 / 15)^{*} 10^{6}$ bytes * $\left(10^{-7}\right.$ (reading) $+10^{-7}$ (comparison op.)) s/byte - 10 s
 Time to parse entire data $=10^{*} 2$ (2 stages of MAP Phase are required) $=20 \mathrm{~s}$
 REDUCE Phase:
 For Reuters-RCV1, Number of postings per inverter $=(100 / 3)$ million
 For an inverter, Time spent in reading $=(800 / 3) * 10^{6}$ bytes $^{*} 10^{-7} \mathrm{~s} /$ byte $=26 \mathrm{~s}$
 Time spent in sorting $=\left(\frac{100}{3} * 10^{6}\right)^{*} \log \left(\frac{100}{3} * 10^{6}\right)^{*} 10^{-7}=83 \mathrm{~s}$
 Size of the index to be written $=\left(\frac{4^{*} 10^{5}}{3} * 4\right)+\left(\frac{100^{*} 10^{6}}{3} * 4\right)=\frac{4}{3} * 10^{8}$
 Time spent in writing $=\frac{4}{3}{ }^{*} 10^{8}$ bytes ${ }^{*} 10^{-7}$ s/byte $=13 \mathrm{~s}$
 Total Time in Distributed Index Creation $=20+26+83+13=162 \mathrm{~s}=3 \mathrm{~min}$.

