- 1. Write the complexity of retrieving query
 - a) "Brutus AND (NOT Caesar)"
 - b)"Brutus OR NOT Caesar"

by boolean retrieval merging? Assume size of posting list of brutus and caesar be x and y respectively.

Ans. a) O(x+y) b) O(N)

2. Can skip pointers can be used in every case? Why not?

Ans. Nope, (x or y)

3. Calculate the number of comparisons for merging the following:

4 6 10 12 14 16 18 20 22 32 47 81 120 122 157 180

47

- a. Normal postings lists
- b. Skip pointers

Ans. a) 11 b) 6

* **4**. Derive the complexity for positional index?

L=Total number of occurrences of two terms in document.

K clause phrase

m and n = size of postings list of both words.

Ans. O((m+n)L)

5. State the problem of using conjunction of bigrams with a example.

Ans. mon*h will falsely match moonish.

6. Jaccard Coefficient between bord and sordid (bigram)

Ans. 2/6

7.

For n = 15 splits, r = 10 segments and j = 3 term partitions, how long would distributed index creation take for Reuters-RCV1 in a MapReduce architecture? Base your assumptions about cluster machines on Table 4.1.

SOLUTION.

4.6 For Map-Reduce distributed index creation, Number of splits=15

Number of machines=10, Number of partitions=3

Size of a split Reuters RCV1 to be parsed=(800/15) MB

MAP Phase: 10 machines process simulataneously

Time spent by a machine = $(800/15)*10^6$ bytes * $(10^{-7} (reading) + 10^{-7} (comparison op.))$ s/byte ≈ 10 s

Time to parse entire data= 10*2 (2 stages of MAP Phase are required)=20 s

REDUCE Phase:

For Reuters-RCV1, Number of postings per inverter=(100/3) million

For an inverter, Time spent in reading = (800/3) * 106bytes * 10-7s/byte = 26s

Time spent in sorting = $(\frac{100}{3}*10^6)*\log(\frac{100}{3}*10^6)*10^{-7} = 83s$

Size of the index to be written = $(\frac{4*10^5}{3}*4) + (\frac{100*10^6}{3}*4) = \frac{4}{3}*10^8$

Time spent in writing = $\frac{4}{3}*10^8 bytes*10^{-7} s/byte=13s$

Total Time in Distributed Index Creation = 20+26+83+13 = 162s = 3min.