
Freenet

Parin Chheda (07CS3023)
Sarthak Jain (07CS1026)

Ravi Niranjan (07CS3010)
Teacher: Prof. Niloy Ganguly

Department of Computer Science and Engineering
IIT Kharagpur

September 10, 2010

1



September 10, 2010 2 ARCHITECTURE

1 Introduction

Freenet is a peer-to-peer network application that permits the publication,
replication, and retrieval of data while protecting the anonymity of both
authors and readers. Freenet operates as a network of identical nodes that
collectively pool their storage space to store data files, and cooperate to route
requests to the most likely physical location of data. The five main design
goals are:

• Anonymity for both producers and consumers of information.

• Deniability for storers of information.

• Resistance to attempts by third parties to deny access to information.

• E cient dynamic storage and routing of information.

• Decentralization of all network functions.

The system is designed to respond adaptively to usage patterns, transpar-
ently moving, replicating, and deleting les as necessary to provide e cient ser-
vice without resorting to broadcast searches or centralized location indexes.
Freenet does not, however, explicitly try to guarantee permanent data stor-
age. Because disk space is finite, a tradeoff exists between publishing new
documents and preserving old ones.

2 Architecture

Freenet participants each run a node that provides the network some storage
space. To add a new file, a user sends the network an insert message contain-
ing the file and its assigned location-independent globally unique identifier
(GUID), which causes the file to be stored on some set of nodes. During a
files lifetime, it might migrate to or be replicated on other nodes. To retrieve
a file, a user sends out a request message containing the GUID key. When
the request reaches one of the nodes where the file is stored, that node passes
the data back to the requests originator.

2.1 GUID Keys

Freenet GUID keys are calculated using SHA-1 secure hashes. There are two
main types of keys: content-hash keys and signed-subspace keys which are
analogous to inodes and filenames in a conventional file system.

2



September 10, 2010 2 ARCHITECTURE

1. Content-hash keys (CHKs): The CHK is a low-level data-storage
key and is generated by hashing the contents of the file to be stored.
Hence, CHK is unique absolute indentifier for every file. Also, identi-
cal copies of a file inserted by different users would automatically be
coalesced because every user will calculate the same key for the file.

2. Signed-subspace keys (SSKs): The SSK sets up a personal names-
pace that anyone can read but only its owner can write to. You could
create a subspace by first generating a random public-private key pair
to identify it. To add a file you first choose a short text description.
You would then calculate the files SSK by hashing the public half of
the subspace key and the descriptive string independently before con-
catenating them and hashing again.

Signing the file with the private half of the key provides an integrity check
as every node that handles a signed-subspace file verifies its signature before
accepting it. To retrieve a file from a subspace, you need only the subspaces
public key and the descriptive string, from which you can recreate the SSK.
Adding or updating a file, on the other hand, requires the private key in order
to generate a valid signature. SSKs thus facilitate trust by guaranteeing that
the same pseudonymous person created all files in the subspace, even though
the subspace is not tied to a realworld identity.

2.2 Messaging and Privacy

Rather than move directly from sender to recipient, messages travel through
node-to-node chains, in which each link is individually encrypted, until the
message finally reaches its recipient. Each node knows only about its im-
mediate neighbours and the identities of receiver and sender are protected.
Hence it prevents an adversary from destroying a file by attacking all of its
holders.

2.3 Routing

Freenet uses steepest-ascent hill-climbing search: Each node forwards queries
to the node that it thinks is closest to the target. This makes is scalable and
robust.

2.4 Requesting files

Every node maintains a routing table that lists the addresses of other nodes
and the GUID keys it thinks they hold. When a node receives a query, it first

3



September 10, 2010 2 ARCHITECTURE

Figure 1: Request Sequence

checks its own store, and if it finds the file, returns it with a tag identifying
itself as the data holder. Otherwise, the node forwards the request to the
node in its table with the closest key to the one requested. If the request is
successful, each node in the chain passes the file back upstream and creates a
new entry in its routing table associating the data holder with the requested
key.
To conceal the identity of the data holder, nodes will occasionally alter reply
messages, setting the holder tags to point to themselves before passing them
back up the chain. Later requests will still locate the data because the node
retains the true data holders identity in its own routing table and forwards
queries to the correct holder. Routing tables are never revealed to other
nodes. To limit resource usage, the requester gives each query a time-to-live
limit that is decremented at each node. If the TTL expires, the query fails,
although the user can try again with a higher TTL (up to some maximum).
Because the TTL can give clues about where in the chain the requester is,
Freenet offers the option of enhancing security by adding an initial mix-net
route before normal routing. This effectively repositions the start of the
chain away from the requester.
If a node sends a query to a recipient that is already in the chain, the message
is bounced back and the node tries to use the next-closest key instead. If a
node runs out of candidates to try, it reports failure back to its predecessor
in the chain, which then tries its second choice, and so on.

4



September 10, 2010 3 NETWORK EVOLUTION

2.5 Inserting files

To insert a file, a user assigns it a GUID key and sends an insert message to
the users own node containing the new key with a TTL value that represents
the number of copies to store. An insert message follows the same path that
a request for the same key would take, sets the routing table entries in the
same way, and stores the file on the same nodes. Thus, new files are placed
where queries would look for them.
The insert may fail either because the file is already in the network (for
CHKs) or the user has already inserted another file with the same description
(for SSKs). If the TTL expires without collision, the final node returns an
all clear message and each node along the path verifies the data against its
GUID, stores it, and creates a routing table entry that lists the data holder
as the final node in this chain.

2.6 Data Encryption

The node operators might wish to remain ignorant of the contents of their
data store. So, the publisher can encrypt the data before insertion. Thus,
node operators cannot read their own files, but users can decrypt them after
retrieval.

3 Network Evolution

3.1 Adding Nodes

To join the network, a new node first generates a public-private key pair
for itself and sends an announcement message including the public key and
physical address to some existing node with a user-specified TTL. The re-
ceiving node notes the new nodes identifying information and forwards the
announcement to another node chosen randomly from its routing table. The
announcement continues to propagate until its TTL runs out. At that point,
the nodes in the chain collectively assign the new node a random GUID.

3.2 Training Routes

Nodes routing tables should specialize in handling clusters of similar keys so
that it would answer them successfully more often. Nodes data stores should
also specialize in storing clusters of files with similar keys. Because inserts
follow the same paths as requests, similar keys tend to cluster in the nodes
along those paths.

5



September 10, 2010 4 CONCLUSION

3.3 Key Clustering

Because GUID keys are derived from hashes, the closeness of keys in a data
store is unrelated to the corresponding files contents. This lack of semantic
closeness is unimportant, however, because the routing algorithm is based on
the locations of particular keys, rather than particular topics.

4 Conclusion

The Freenet network provides an effective means of anonymous information
storage and retrieval. By using cooperating nodes spread over many com-
puters in conjunction with an efficient routing algorithm it keeps information
anonymous and available while remaining highly scalable.

6


	Introduction
	Architecture
	GUID Keys
	Messaging and Privacy
	Routing
	Requesting files
	Inserting files
	Data Encryption

	Network Evolution
	Adding Nodes
	Training Routes
	Key Clustering

	Conclusion

