
PASTRY

Dheeraj Kumar Singh, Gautam Kumar, and Rasha Eqbal

Group 4

1 Introduction

Pastry[1] is an object distribution and routing mechanism that is used for wide
area peer-to-peer networks. It is scalable and decentralised and can automatically
reorganise itself at the arrival, departure and failure of nodes. Its good route
locality properties make it even more efficient. The algorithm used by Pastry tries
to minimise the routing distance of a message. A message reaches its destination
in number of steps which is logarithmic in the number of Pastry nodes present.

2 Design

Each node in the Pastry peer-to-peer network is assigned a 128 bit node ID.
This node ID is assigned randomly and could be computed as the cryptographic
hash of the node’s public key or its IP address. The IDs are generated in such a
way that they are uniformly distributed in the node ID space. As a result of this
kind of distribution nodes with adjacent node IDs are widely spread out with a
high probability.

Given a message and a key, the routing takes place as follows. The node IDs
and the key can be thought of as a sequence of digits in the base 2b system, where
b is a network configuration parameter, typically chosen as 2 or 3. When a node
receives the message, it forwards it to a node whose ID shares a prefix longer in
length than the prefix the key shares with the current node ID. If such a node is
not found, the message is forwarded to a node whose shared prefix length is equal
to the current shared prefix length, but which is numerically closer to the key.
As such the message is delivered to the node whose ID is closest to the key in less
than dlog2b Ne steps where N is the total number of Pastry nodes. The system is
pretty robust guaranteeing delivery even in the case of failure of adjacent nodes.
The details of implementation are explained in the next sections.

3 Node State

Each Pastry node maintains a routing table R, a neighbourhood set M and a
leaf set L.

The Routing Table R: The routing table of a node consists of dlog2b Ne rows
and 2b − 1 columns. The row n contains entries for nodes whose IDs share the
first n digits with the current node ID but are different in the n + 1th digit. The
2b − 1 columns correspond to these 2b − 1 different values of the n + 1th digit
except the value of the n + 1th digit of the current node ID. The table entry



contains the IP address of such a node. If there are more than one node with
this property the closest one is chosen based on the proximity metric. If no such
node exists the entry is left blank.

The Neighbourhood Set M : This contains a list of node IDs and their corre-
sponding IP addresses. The nodes are closest to the current node based on the
proximity metric. Though this is not used for the routing purposes, it is used to
maintain the locality properties.

The Leaf Set L: This contains a list of nodes with numerically closest node IDs
with respect to the current node, |L|/2 nodes with node IDs smaller than the
current node and |L|/2 nodes with node IDs larger than the current node. This
list is used for routing. Typical values for |M | and |L| are 2b or 2× 2b.

4 Routing

Whenever a message with a key D arrives at a node the steps followed by the
node are as follows.

The node first checks if D falls in the list of node IDs in its leaf set L. If yes it
directly forwards the message to the required node.

If such a node is not present in the leaf set, the routing table is used to find a
node whose node ID shares a common prefix with the key longer by at least one
more digit than the prefix shared by the current node ID. The message is then
forwarded to this node.

If such a node does not exist, i.e. the corresponding entry in the routing table
is empty or there is a node failure, the message is forwarded to a node whose
ID shares a common prefix with the key at least as long as the current node ID
but is numerically closer to the key than the current node ID. Such a node will
exist in the leaf set unless the message has already arrived at a node with the
numerically closest node ID. And one of these nodes will be alive unless |L|/2
nodes fail simultaneously. So such a node can always be found.

The routing algorithm will converge because at each step we are choosing one
of two types of nodes:

1. Node whose node ID shares a common prefix with the key at least one digit
longer than the common prefix shared by the current node ID.

2. Node whose node ID shares a common prefix with the key at least as long
as the current node ID but numerically closer to the key.

The pseudocode for the routing algorithm is given below. The notations used
are:

– A: the current node ID.
– Ri

l : entry in the routing table R at column i of row l.
– Li: ith closest node ID in the leaf set L. Negative indices indicate smaller

node IDs and positive indices indicate larger node IDs.
– Dl: the lth digit in the key D.
– shl(A, B): length of the prefix shared among A and B.



Pseudocode for Routing:
if (L−|L|/2 ≤ D ≤ L|L|/2) then

//D is in the range of the leaf set
Forward to Li such that |D − Li| is minimal

else
// search for a node with longer shared prefix in the routing table
Let l = shl(A, D)
if (RDl

l 6= null) then
forward to RDl

l

else
// empty entry or failed node in the routing table
forward to T ∈ L ∪R ∪M , s.th.

shl(T, D) ≥ l,
|T −D| < |A−D|

end if
end if

4.1 Performance Analysis

Assuming accurate routing tables and no recent node failures, the expected num-
ber of routing steps given N Pastry nodes is dlog2b Ne. Consider three different
cases:

– When the routing table is used to find a longer common prefix, we reduce
the number of possible nodes by a factor of 2b. Hence the destination can be
reached in dlog2b Ne steps.

– When we have the key within the ID range of the nodes in the leaf set the
destination is just one step away.

– When neither of these cases occurs, a node with the required prefix does
not exist. The likelihood of this happening given the uniform distribution
of IDs depends on |L|. Analysis shows that with |L| = 2b and |L| = 2 × 2b,
the probability that this case arises during a given message transmission is
less than .02 and 0.006, respectively. When it happens, no more than one
additional routing step results with high probability.

In the event of many simultaneous node failures, the number of routing steps
required may be linear in N in the worst case. However in practice, routing
performance degrades gradually with recent node failures and message delivery
is assured given |L|/2 consecutive node IDs do not fail simultaneously. With a
suitable choice of |L| and the expected diversity in node IDs resulting from a
uniform distribution in the node ID space, this failure probability can be made
very low.



5 Self - Organization

5.1 Node Arrival

When a new node arrives it has to initialize its state and inform other nodes
of its presence. We assume that we already have information about a nearby
existing node A according to the proximity metric. Such a node can be auto-
matically located by expanding ring IP multicast, or can be obtained by the
system administrator through outside channels.

The node ID of the newly joining node X is computed usually as the SHA− 1
hash of its public key or IP address. Node X asks A to route a message “join”
with the key X. As is expected, this message is then routed to the node Z whose
ID is numerically closest to X’s. In response to this message routing, nodes A
and Z and all other nodes encountered on the path send their state information
to X. X can then use this information along with state information requested
from additional nodes to initialize its state. Finally it informs all the nodes that
need to be aware of its presence, so that they can update their state tables too.

A is assumed to be in the proximity of X, so X’s neighbourhood list can be
initialized using A’s. Node Z has node ID numerically closest to X, so Z’s leaf
set can be used for the leaf set initialization of X. Now only the routing table of
X needs to be initialized. Let us consider the most general case when the node
IDs of A and X share no common prefix. The zero-th row of X’s routing table
can be the same as that of A’s. Since the zero-th row contains entries for nodes
with no common prefix, it is independent of the node ID. So we can safely copy
A’s zero-th row as X’s zero-th row. The next node encountered on the path to
Z will have an ID sharing a prefix of at least length one with the key. So the
first row of this node’s routing table can be the first row of X’s routing table.
Similarly, the next node in the path will have an ID having common prefix of
length two, so X’s routing table can have as its second row the second row of
this node’s routing table. This process is carried on until the routing table of X
is fully created.

After this, X transmits its state information to all the nodes in its routing table,
leaf set and neighbourhood set, so that they can update their states accordingly.
The total cost for this join, in terms of the messages exchanged, is O(log2b N)
with the constant being 3× 2b.

An optimistic approach is used for concurrent node joins. This is appropriate as
the arrival of a node affects only a small number of nodes in the network. When
an existing node B sends its state information to a new node A, it attaches a
timestamp to it. Node A then initialises its state accordingly and then sends
its updated state back to B with a timestamp. It also appends the previously
received timestamp. Node B then checks if its state has been updated after
the time indicated by the old timestamp received. If yes, it resends its state
information to A. A then restarts its operation accordingly.



5.2 Node Departure or Failure

A node is said to have failed when its immediate neighbours in the node ID
space are no longer able to communicate with it.

To replace a failed node in the leaf set say Li, its neighbour contacts the
node with largest index on the side of the failed node to get its leaf set. Say
−|L|/2 ≤ i ≤ 0, then the leaf set of L−|L|/2 is obtained. This set will contain
nodes overlapping with the current leaf set and some new nodes. A node is
chosen from among the new ones to replace the failed node. First it is required
to check whether the node we are replacing the failed node with is still alive
by contacting it. The leaf sets are thus lazily repaired unless |L|/2 nodes with
adjacent IDs have failed simultaneously. Given the uniform random distribution
of the IDs and the diversity of nodes with adjacent node IDs, the probability of
this happening is very low.

A failure in the routing table occurs when a node tries to contact another one
for forwarding the message and gets no response. We have seen that this causes
no delay in routing; another node is chosen to forward the message. However
we need to update the routing table to maintain its integrity. Suppose a node
corresponding to entry Rd

l has failed. We contact another node with an entry Ri
l

in the same row, and ask for the Rd
l entry in this node’s routing table to replace

the failed node. If no such node is the same row is alive, we move to the next
row and find an Ri

l+1. We continue this until we get a node entry to replace the
failed node. If such a node exists we will most likely be able to locate it using
this procedure.

A failed node in the neighbourhood set does not directly affect routing, but we
need to replace it anyway as it plays a role in exchanging locality information.
Hence a node periodically checks if the nodes in its neighbourhood set are alive. If
a node has failed, it contacts its other neighbours and uses the newly discovered
nodes in their neighbourhood sets, to find a node least distance away. It uses
this to replace the failed node.

5.3 Locality

It is essential, that the route that is chosen is likely to be “good” using a given
proximity metric. Given this property holds before, it should be ensured that it
holds after the arrival of a new node. A new node X asks an existing node A
to route a message with X as the key. Say, the route is A, B, ..., Z. Node X’s
routing table’s ith row is populated by the ith node encountered on this route.

Since entries in row 0 of A’s table are close to A, and A is close to X there-
fore, entries are relatively near A. The same goes for other entries in the table.
However, it is essential that the relative closeness is improved to avoid cascading
errors. For this, there is a second phase in which X asks state from the nodes
in its routing table and neighbourhood set. It compares the distance of corre-
sponding entries in nodes’ routing table and neighbourhood sets and updates its
entries with closer nodes. In this way, however the route selected might not be
the shortest route, it selects relatively good routes. Also, the expected distance



that is traveled by a messages during successive steps is increasing exponentially
since the difference occurs at a more significant digit and due to the distribution
of nodeIds in the network, nodes that differ at more significant digits are more
distant.

References

1. Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware ’01: Pro-
ceedings of the IFIP/ACM International Conference on Distributed Systems Plat-
forms Heidelberg, pages 329–350, London, UK, 2001. Springer-Verlag.


