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Introduction 

As we know P2P systems have democratic nature, which means there is no central authority to 
mandate or coordinate the resource that each peer contributes. Because of voluntary 
participation, the distributed resources are highly variable and unpredictable. Recent research 
shows that many users are simply consumer and do not contribute much to the system. In 
particular, they found that user sessions are relatively short; 50% of the sessions are shorter 
than 1 hour, and many users are free riders that is, they contribute little or nothing. Short 
session means that a large portion of the data in the system might be unavailable for large 
period of time. When the growing number of free riders, the system starts to loose the sprit of 
peer to peer and becomes a traditional client server system. 

How to build a reliable P2P system 

If the peer to peer systems are to become a reliable platform for distributed resource sharing, 
they must provide predictable level of service. So, in order to let peer makes contribution as 
much as possible, there are two economic methods that can be used monetary payment needs 
a imaginary currency and requires a accounting infrastructure to track various resource 
transaction and charges for them using micro payments. But as written in the paper, it is highly 
impractical because of network pricing Reputation reflects the overall contribution to the 
system 

Modeling interaction of peers by Game Theory 

Because all peers are strategic and rational player, it is very intuitive to model the interaction of 
peers in game theory. 
We say player are strategy players because users compete for shared but limited resources and 
at the same time they restrict others download from their server by deny access or not 
contribute anything.  
So it is actually a Non-cooperative game among peers: each player wants to maximize his utility. 
Utility is a notion from game theory.Utility depends on benefit and cost. Utility depends not only on his 

own strategy but everybody else’s strategy.From a peer’s point of view, he might decide to 
unilaterally switch his strategy to improve his utility. This switch in strategy will affect other 
players‘utility and they might decide to switch their strategy as well. So you see it is dynamic 
iterative process. The collection of players is said to be at Nash equilibrium if no player can 
improve his utility by unilaterally switching his strategy. So it is converged. 

Incentive model (measure contribution) 

Before we start to  find Nash equilibrium, it is necessary to define some notion.  

• P1,P2,P3…PN as peers          

• Utility function for Pi is Ui  

• Contribution of Pi is Di (D0 is absolute measure of contribution) 
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• Dimensionless contribution: 

• Unit cost ci  

• Total cost:  ciDi  

Incentive model (Benefit matrix) 

Each peer’s contribution to the system will potentially benefit all other peers, but perhaps to 

different degree.  

In order to express this different degree, an NxN benefit matrix B is introduced. Bij denotes 

how much the contribution made by Pj is worth to Pi (measured in dollars) 

Bij = 0 means i not interested in j’s contribution. 

bi is the total benefit that Pi can get from the system 

 

 

 

We shall show that there exists a critical value of benefit bc such that if 
bi < bc, then Pi is better off not joining the system.  
bav is the average of benefit(bi) for the whole system. 
In case of differential service (game of expectations) a peer rewards other peers in proportion 
to their contribution. A simple approach to implement this idea is to say Pj accepts a request for 
a file from peer Pi with probability p(di) and rejects it with probability 1-p(di) So, if Pi’s 
contribution is small, its request is more likely to be rejected. Each request is tagged with di as 
metadata. We use this probability function, actually any probability function is ok if it is a 
monotonically increasing function of the contribution 

The function written below has nice properties that when contribution is 0, the probability the 
other peer accepts the request is 0 
When contribution is infinitive, then the others peers are most likely to accept his request 
Incentive model (A peer reward other peers in proportion to their contribution) 
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Incentive model (Utility function) 

• Utility function 

 

• Dimensionless utility function 

                                                                                             ………………………(A) 

 

The first term is the cost to join the system, while the second term is the total expected benefit 
from joining the system. 
After we do normalization, we get Dimensionless utility function ui. 
The first term is Pi’s cost to join the system and it increases linearly as peer contributes more 
disk/bandwidth to the system. Pi’s benefit depends on how much the other peers are 
contributing to the system (dj ), how that contribution is worth to him (bij), and the probability 
that he is able to download that content p(di) or in other words, whether the other would like 
to accept his request. 
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Utility vs. contribution (different benefit) 

 

 

This figure show different utility function for different level of benefit. 
Unless there is a critical value bc, the utility is always less than 0. 

Homogeneous System of Peers 

We define a homogeneous system of peers to be a system where bij = b for all  
In the homogeneous system, the model of equation A reduces to 

 

In a homogeneous system of two players, Equation 6 reduces to 

 

If we take p(d) as following 

 

 

We expect that if the benefits that the peers derive from each other, i.e. b12 and b21 are too 
small then it will be best for the peers not to join. The question to ask at this point is whether a 
Nash equilibrium exists for large enough values of benefits where both peers can derive non-
zero utility from their interaction. 
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Suppose P2 decides to make a contribution d2 to the system. Given this contribution d2, 
naturally the best thing for P1 to do is to tune his d1 such that it maximize his utility u2. 
Maximizing u1 with respect to d1, we immediately find that the best response d1 is given by 

 

 

Similarly d2 can be obtained. 

Nash equilibrium 1 exists if there is a set of                such that they form a fixed point for above 
equations i.e.the fixed points satisfy 
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The Nash equilibrium contributions for the two peer system plotted as a function of scaled 
benefit (b –bc)/bc. For b < bc, there are no equilibria. For all b > bc there are two possible 
equilibria. 

Critical benefit value bc 

For  

b = bc, the only solution is d1 = d2 = 1.For b < bc, there are no equilibrium. For all b > bc there are 

two possible equilibrium.  
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Nash Equilibrium in Homogeneous System of Peers(N player game) 

• Replace b(N-1) to b, this formula is two player game. 

 

 

 

Courtnot learning & convergence process 

 

As we see we have two solutions here. Now the question is which Equilibrium will be choosed 
by the system in practice. 
Suppose the user P2 sets his contribution to some d2 to start with. In this situation, P2 can use 
the reaction function r1(d2) to set his optimum contribution at d1. Seeing this contribution P1 
adjusts his own contribution and each peer takes turns in setting their contribution. If this 
process converges, then naturally that level of contribution for P1 and P2 will constitute a Nash 
equilibrium. 
From the figure we see that under this learning process, either the peers will quit the game 
(zero utility) or they will converge to the equilibrium dhi. 
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Nash Equilibrium in Heterogeneous System 

In a heterogeneous system, we need to deal with the full complexity of the model. The fixed 
point equations for α = 1 can be immediately derived in analogy with the two player game as 
aIterative learning model 

                            ………………………………(B) 

Since it is not possible to solve this set of equations analytically, we use an iterative learning 
model to solve these equations. 

Let us consider the interaction of users in a real P2P system. Any particular peer Pi interacts 
only with a limited set of all possible peers — these are the peers who serve files of interest to 
Pi. As it interacts with these peers, Pi learns of the contributions made by them and to 
maximize its utility adjusts its own contribution. Obviously this contribution that Pi makes is not 
globally optimal because it 

is based only on information from a limited set of peers. But after Pi has set its own 
contributions, this information will be propagated to the peers it interacts with and those peers 
will adjust their own contribution. In this way the actions of any peer Pi will eventually reach all 
possible 

peers. The reaction of the peers to Pi’s contribution will affect Pi itself and it will find that 
perhaps it will be better off by adjusting its contribution once more. In this way, every peer will 
go through an iterative process of setting its contribution. If and when this process converges, 
the resulting contributions will constitute a Nash equilibrium. 

Algorithms: iterative learning model 

1. di = random contribution 

2. While (converge  == false){ 

3.     new_di = computeContribution (d, b); 

4.     if (new_di == di) { 

5.         converge = true; 

6.     } 

7.     di = new_di; 

8. } 

The iterative learning algorithm that we have chosen to solve equation (B) mimics this learning 
process. To start with, all the peers have some random set of contributions. In a single iteration 
of the algorithm, every peer Pi determines the optimal value of di that it should contribute 
given the values of d for other peers and the values of bij . At the end of the iteration the peers 
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update their contribution to their new optimal values. Since now the contributions di are all 
different, the peers need to recompute their optimal values of di and we can start the next 
iteration. When this iterative process converges to a stable point, we reach a Nash equilibrium. 
In the following numerical experiments we demonstrate that for heterogeneous system of 
peers, the iterative learning process does converge to the desirable Nash equilibrium dhi and 
we compare the results with the analytic results for the system of homogeneous peers. 

Convergence of learning algorithms

 

The two data sets correspond to different values of average benefit. Higher the average benefit, 
faster is the convergence process to equilibrium. As the value of bav approach the critical value 
bc, approach to equilibrium becomes slower and slower. 

 

 

 

 



Simulation: dav vs. (bav/bc-1 

 

Above figure shows the equilibrium average contribution by the peers as a function of average 
benefit. The solid line is the solution from the homogeneous system. As expected, the 
equilibrium contribution increases monotonically with increasing benefit. For average benefit 
bav < bc, the iterative algorithm converges to di = 0. Note that the two sets of results for 500 and 
1000 peers almost coincide with each other. So the results are essentially independent of 
system size. 

 

 

 

 

 

 

 

 

 



Simulation: leave system 

 

 

Above fig. shows the effect of some peers leaving the system. If some peers leave the system, 
the benefit per peer would be reduced. As the fraction of active peers decrease, the 
contribution from each of the peers decrease and at some point, the benefits are too low for 
the peers and the whole system collapses. The system can be pretty robust for high benefits : 
for a benefit level of (bav − bc)/bc = 2.0, the system can survive until 2/3 of the peers leave the 
system. In contrast to traditionally fragile distributed systems, we see that for P2P systems 
robustness increase with size : as the system grows bigger and bigger, benefits for each peer 
increases and the system becomes more robust to random fluctuations. 

 

 

 

 

 

 

 



Summary 

• Differential service based incentive model for p2p system that eliminating free riding 
and increasing availability of the system 

• If the benefit bi is larger than a critical benefit bc, then the peer’s best option is to join 
the system and operate at the Nash equilibrium value of contribution. If on the other 
hand bi < bc, the peer is better off not joining the system. When bi = bc, the peer is 
indifferent between these two options. These properties are robust and do not depend 
on the details of the particular incentive mechanism that is used. 

 

 

Average contribution at Nash equilibrium plotted against fraction of uncooperative peers. Total 
number of peers is 1000. The labels specify the average contribution of uncooperative peers. 
Average benefit is bav/bc − 1 = 0.5. 


