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Despite their importance for urban planning [1], traffic for ecasting [2], and the spread
of biological [3, 4, 5] and mobile viruses [6], our understading of the basic laws govern-
ing human motion remains limited thanks to the lack of tools b monitor the time resolved
location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone
users whose position is tracked for a six month period. We findhat in contrast with the
random trajectories predicted by the prevailing Lévy flight and random walk models [7],
human trajectories show a high degree of temporal and spatiaegularity, each individual
being characterized by a time independent characteristicdngth scale and a significant prob-
ability to return to a few highly frequented locations. After correcting for differences in
travel distances and the inherent anisotropy of each trajetory, the individual travel patterns
collapse into a single spatial probability distribution, indicating that despite the diversity of
their travel history, humans follow simple reproducible patterns. This inherent similarity
in travel patterns could impact all phenomena driven by human mobility, from epidemic
prevention to emergency response, urban planning and agebiased modeling.

Given the many unknown factors that influence a populatior@bility patterns, ranging from
means of transportation to job and family imposed restntiand priorities, human trajectories
are often approximated with various random walk or diffasioodels [7, 8]. Indeed, early mea-
surements on albatrosses, bumblebees, deer and monké&@$ §&d more recent ones on marine
predators [11] suggested that animal trajectory is apprated by a Lévy flight [12, 13], arandom
walk whose step sizAr follows a power-law distributiod(Ar) ~ Ar~0+% with 3 < 2. While
the Lévy statistics for some animals require further stiidy, Brockmannet al. [7] generalized

this finding to humans, documenting that the distributiodisftances between consecutive sight-
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ings of nearly half-million bank notes is fat tailed. Givdrat money is carried by individuals,
bank note dispersal is a proxy for human movement, suggestat human trajectories are best
modeled as a continuous time random walk with fat tailed ldigments and waiting time dis-
tributions [7]. A particle following a Lévy flight has a sigitant probability to travel very long
distances in a single step [12, 13], which appears to be siméiwith human travel patterns: most
of the time we travel only over short distances, between hantework, while occasionally we
take longer trips.

Each consecutive sightings of a bank note reflects the catepuostion of two or more indi-
viduals, who owned the bill between two reported sightinfsus it is not clear if the observed
distribution reflects the motion of individual users, or sohitero unknown convolution between
population based heterogeneities and individual humaectaies. Contrary to bank notes, mo-
bile phones are carried by the same individual during hisdagy routine, offering the best proxy
to capture individual human trajectories [15, 16, 17, 1§, 19

We used two data sets to explore the mobility pattern of iddi&ls. The first D) consists of
the mobility patterns recorded over a six month periodifir, 000 individuals selected randomly
from a sample of over 6 million anonymized mobile phone us&gach time a user initiates or
receives a call or SMS, the location of the tower routing thi@@unication is recorded, allowing
us to reconstruct the user’s time resolved trajectory (Riggnd b). The time between consecutive
calls follows a bursty pattern [20] (see Fig. S1 in the SMilicating that while most consecutive
calls are placed soon after a previous call, occasionadlyetiare long periods without any call
activity. To make sure that the obtained results are noteg#teby the irregular call pattern, we
also study a data sebg) that captures the location 266 mobile phone users, recorded every two
hours for an entire week. In both datasets the spatial resolis determined by the local density
of the more thanl0* mobile towers, registering movement only when the user mdetween
areas serviced by different towers. The average servieeadeach tower is approximatekm?
and over30% of the towers cover an area bkm? or less.

To explore the statistical properties of the populationghitity patterns we measured the dis-
tance between user’s positions at consecutive calls, Bagtue, 264, 308 displacements for the
D; and10, 407 displacements for th®, datasets. We find that the distribution of displacements

over all users is well approximated by a truncated power-law

P(Ar) = (Ar + Arg) P exp (=Ar/k), (1)



with 5 = 1.75 £ 0.15, Ar, = 1.5 km and cutoff values:|p, = 400 km, andx|p, = 80 km
(Fig. 1c, see the SM for statistical validation). Note tteg bbserved scaling exponent is not far
from 5z = 1.59 observed in Ref. [7] for bank note dispersal, suggestingtheatwo distributions
may capture the same fundamental mechanism driving humaiitppatterns.

Equation (1) suggests that human motion follows a trunclageg flight [7]. Yet, the observed
shape ofP(Ar) could be explained by three distinct hypotheses: A. Eaclvithdhl follows a
Lévy trajectory with jump size distribution given by (1).. Bhe observed distribution captures a
population based heterogeneity, corresponding to theenlteifferences between individuals. C.
A population based heterogeneity coexists with individi&aly trajectories, hence (1) represents
a convolution of hypothesid andB.

To distinguish between hypotheses A, B and C we calculatedatius of gyration for each
user (see Methods), interpreted as the typical distangelé@ by user when observed up to
timet (Fig. 1b). Next, we determined the radius of gyration disttion P(r,) by calculatingr,
for all users in sample®; and D,, finding that they also can be approximated with a truncated
power-law

P(ry) = (ry + 7“2)_5" exp (—ry/kK), (2)
with 7’2 = 5.8km, 3, = 1.65 £+ 0.15 andx = 350 km (Fig. 1d, see SM for statistical validation).
Lévy flights are characterized by a high degree of intrilgterogeneity, raising the possibility
that (2) could emerge from an ensemble of identical agemtsh éollowing a Lévy trajectory.
Therefore, we determinef(r,) for an ensemble of agents following a Random Walki(),
Lévy-Flight (LF) or Truncated Lévy-Flight{LF) (Figure 1d) [8, 12, 13]. We find that an en-
semble of Lévy agents display a significant degree of hgtreity inr,, yet is not sufficient to
explain the truncated power law distributiét{r,) exhibited by the mobile phone users. Taken
together, Figs. 1c and d suggest that the difference in tigeeraf typical mobility patterns of indi-
viduals ;) has a strong impact on the truncated Lévy behavior seel),muling out hypothesis
A.

If individual trajectories are described by/a&’ or T'LF, then the radius of gyration should
increase in time asg, (t) ~ t3/2+9 [21, 22] while for aRW r,(t) ~ t}/2. That is, the longer we
observe a user, the higher the chances that she/he will ttageeas not visited before. To check
the validity of these predictions we measured the time dégece of the radius of gyration for
users whose gyration radius would be considered small'{ < 3 km), medium 20 < r,(T") <
30 km) or large ¢,(7") > 100 km) at the end of our observation periafl & 6 months). The



results indicate that the time dependence of the averaggsratigyration of mobile phone users
is better approximated by a logarithmic increase, not ontyaaifestly slower dependence than
the one predicted by a power law, but one that may appearasitnil saturation process (Fig. 2a
and Fig. S4).

In Fig. 2b, we have chosen users with similar asymptefi@’) after I’ = 6 months, and
measured the jump size distributié®f{Ar|r,) for each group. As the inset of Fig. 2b shows, users
with smallr, travel mostly over small distances, whereas those wittelaggend to display a
combination of many small and a few larger jump sizes. Onceeseale the distributions with
r, (Fig. 2b), we find that the data collapses into a single cusuggesting that a single jump
size distribution characterizes all users, independettiaif r,. This indicates thaP(Ar|r,) ~
r,“F(Ar/r,), wherea ~ 1.2 + 0.1 and F'(z) is anr, independent function with asymptotic
behaviorF'(x < 1) ~ 2z~ and rapidly decreasing far > 1. Therefore the travel patterns
of individual users may be approximated by a Lévy flight umtdistance characterized by.
Most important, however, is the fact that the individuajeécaories are bounded beyongl thus
large displacements which are the source of the distinctaanwinalous nature of Lévy flights,
are statistically absent. To understand the relationseipéen the different exponents, we note
that the measured probability distributions are related®bfir) = [ P(Ar|ry) P(ry)dry, which
suggests (see SM) that up to the leading order we haves,. +«a— 1, consistent, within error bars,
with the measured exponents. This indicates that the obdgunp size distributio®(Ar) is in
fact the convolution between the statistics of individuajectoriesP(Ar,|r,) and the population
heterogeneity’(r,), consistent with hypothesis C.

To uncover the mechanism stabilizimg we measured the return probability for each indi-
vidual F.(t) [22], defined as the probability that a user returns to thetiposwhere it was
first observed aftet hours (Fig. 2c). For a two dimensional random walk(¢) should follow
~ 1/(tIn(t)?) [22]. In contrast, we find that the return probability is cheterized by several peaks
at 24 h, 48 h, and 72 h, capturing a strong tendency of humarmgum to locations they visited
before, describing the recurrence and temporal perigdigiterent to human mobility [23, 24].

To explore if individuals return to the same location oved awer, we ranked each location
based on the number of times an individual was recorded indisity, such that a location with
L = 3 represents the third most visited location for the seleated/idual. We find that the
probability of finding a user at a location with a given rahls well approximated by’ (L) ~ 1/L,

independent of the number of locations visited by the usgr @). Therefore people devote most



of their time to a few locations, while spending their reniagntime in5 to 50 places, visited with
diminished regularity. Therefore, the observed logarithsaturation of-,(¢) is rooted in the high
degree of regularity in their daily travel patterns, captliby the high return probabilities (Fig. 2b)
to a few highly frequented locations (Fig. 2d).

An important quantity for modeling human mobility patteisshe probabilityd, (z, y) to find
an individuala in a given position, y). As it is evident from Fig. 1b, individuals live and travel
in different regions, yet each user can be assigned to a wéhat area, defined by home and
workplace, where she or he can be found most of the time. Weaapare the trajectories of
different users by diagonalizing each trajectory’s ireettinsor, providing the probability of finding
a user in a given position (see Fig. 3a) in the user’s intimeference frame (see SM for the
details). A striking feature ob(z, y) is its prominent spatial anisotropy in this intrinsic refiece
frame (note the different scales in Fig 3a), and we find thetdhger an individual's, the more
pronounced is this anisotropy. To quantify this effect wérael the anisotropy rati§' = ¢, /0,
whereo, ando, represent the standard deviation of the trajectory meesaréne user’s intrinsic
reference frame (see SM). We find thitatlecreases monotonically wit) (Fig. 3c), being well
approximated witht' ~ ", for n ~ 0.12. Given the small value of the scaling exponent, other
functional forms may offer an equally good fit, thus mech@amimodels are required to identify if
this represents a true scaling law, or only a reasonableajppation to the data.

To compare the trajectories of different users we removarnttiwidual anisotropies, rescal-
ing each user trajectory with its respectivg ando,. The rescaledb(z/o,,y/c,) distribution
(Fig. 3b) is similar for groups of users with considerablffetientr,, i.e., after the anisotropy and
the r, dependence is removed all individuals appear to follow traes universa&(aé,g) prob-
ability distribution. This is particularly evident in Fi®d, where we show the cross section of
®(z/0,,0) for the three groups of users, finding that apart from theenmighe data the curves
are indistinguishable.

Taken together, our results suggest that the Lévy staistiserved in bank note measurements
capture a convolution of the population heterogeneity (2)the motion of individual users. Indi-
viduals display significant regularity, as they return tew highly frequented locations, like home
or work. This regularity does not apply to the bank notes:lleabways follows the trajectory of
its current owneri.e. dollar bills diffuse, but humans do not.

The fact that individual trajectories are characterizedhgysame-,-independent two dimen-

sional probability distributionb(z /0, y/o,) suggests that key statistical characteristics of indi-



vidual trajectories are largely indistinguishable afesaaling. Therefore, our results establish the
basic ingredients of realistic agent based models, rewuins to place users in number propor-
tional with the population density of a given region and @sstach user an, taken from the
observedP(r,) distribution. Using the predicted anisotropic rescalicgnbined with the density
function ®(z, y), whose shape is provided as Table 1 in the SM, we can obtailikélgnood

of finding a user in any location. Given the known correlagidnetween spatial proximity and
social links, our results could help quantify the role of & network development and evolu-

tion [25, 26, 27, 28, 29] and improve our understanding diudibn processes [8, 30].

We thank D. Brockmann, T. Geisel, J. Park, S. Redner, Z. Tkaiand P. Wang for discus-
sions and comments on the manuscript. This work was sugpbitehe James S. McDonnell
Foundation 21st Century Initiative in Studying Complex t8yss, the National Science Founda-
tion within the DDDAS (CNS-0540348), ITR (DMR-0426737) ah8-0513650 programs, and
the U.S. Office of Naval Research Award NO0014-07-C. Datéyarsawas performed on the Notre
Dame Biocomplexity Cluster supported in part by NSF MRI Gidn. DBI-0420980. C.A. Hi-
dalgo acknowledges support from the Kellogg Institute aré&l®Dame.

Supplementary Information is linked to the online version of the paper at

www.nature.com/nature.

Author Information Correspondence and requests for materials should be addrés A.-
L.B. (e-mail: alb@nd.edu)



[1] Horner, M.W. & O’Kelly, M.E.S Embedding economies of scatacepts for hub networks design.
Journal of Transportation Geography 9, 255-265 (2001).

[2] Kitamura, R., Chen, C., Pendyala, R.M. & Narayaran, R. M&iroulation of daily activity-travel
patterns for travel demand forecastiigansportation 27, 25-51 (2000).

[3] Colizza, V., Barrat, A., Barthélemy, M., Valleron, A.-4.Vespignani, A. Modeling the Worldwide
Spread of Pandemic Influenza: Baseline Case and Contaidmententions PLoS Medicine 4, 095-
0110 (2007).

[4] Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srasan, A., Toroczkai, Z. & Wang, N.
Controlling Epidemics in Realistic Urban Social Networkisture 429 180 (2004).

[5] Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and cdrifeepidemics in a globalized world.
Proceedings of the National Academy of Sciences of the United Sates of America 101, 15124-15129
(2004).

[6] Kleinberg, J. The wireless epidemidature 449, 287-288 (2007).

[7] D.Brockmann, D., Hufnagel, L. & Geisel, T. The scaling lavwhoman travelNature 439, 462-465
(2006).

[8] Havlin, S. & ben-Avraham, D. Diffusion in Disordered Mediadvances in Physics 51, 187-292
(2002).

[9] Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murpky,)., Prince, P.A. & Stanley, H.E. Lévy
Flight Search Patterns of Wandering Albatros$dsure 381, 413-415 (1996).

[10] Ramos-Fernandez, G., Mateos, J.L., Miramontes, O., Cdahd.,arralde, H. & Ayala-Orozco, B.,
Lévy walk patterns in the foraging movements of spider neysk(Ateles geoffroyi)Behavioral ecol-
ogy and Sociobiology 55, 223-230 (2004).

[11] Sims D.W.et al. Scaling laws of marine predator search behavibiature 451, 1098-1102 (2008).

[12] Klafter, J., Shlesinger, M.F. & Zumofen, G. Beyond Brownisiotion. Physics Today 49, 33-39
(1996).

[13] Mantegna, R.N. & Stanley, H.E. Stochastic Process withadlow Convergence to a Gaussian: The
Truncated Lévy FlightPhysical Review Letters 73, 2946-2949 (1994).

[14] Edwards, A.M., Phillips, R.A., Watkins,N.W., Freeman, MNurphy, E.J., Afanasyeyv, V., Buldyrev,
S.V, da Luz, M.G.E., Raposo, E. P., Stanley, H. E. & Viswhaat G. M. Revisiting Lévy flight



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

search patterns of wandering albatrosses, bumblebeesantlaure 449 1044-1049 (2007).
Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choughdr, Smith, I., Consolvo, S., High-
tower, J., Griswold, W.G. & de Lara, Eecture Notesin Computer Sciences: Proc. 8th International
Conference UbiComp 2006. (Springer, Berlin, 2006).

Onnela, J.-P., Saramaki, J., Hyvonen, J., Szab6, GerlLBz, Kaski, K., Kertész, K. & Barabasi A.L.
Structure and tie strengths in mobile communication neitsid?roceedings of the National Academy
of Sciences of the United States of America 104, 7332-7336 (2007).

Gonzalez, M.C. & Barabasi, A.-L. Complex networks: Froatadto modelsNature Physics 3, 224-
225 (2007).

Palla,G., Barabasi, A.-L. & Vicsek, T. Quantifying socigtoup evolution.Nature 446, 664-667
(2007).

Hidalgo C.A. & Rodriguez-Sickert C. The dynamics of a molpleone networkPhysica A 387,
3017-30224.

Barabasi, A.-L. The origin of bursts and heavy tails in hardgnamicsNature 435, 207-211 (2005).
Hughes, B.DRandom Walks and Random Environments. (Oxford University Press, USA, 1995).
Redner, SA Guide to First-Passage Processes. (Cambridge University Press, UK, 2001).

Schlich, R. & Axhausen, K. W. Habitual travel behaviour: d@smce from a six-week travel diary.
Transportation 30, 13-36 (2003).

Eagle, N. & Pentland, A. Eigenbehaviours: Identifying $tue in Routinesubmitted to Behavioral
Ecology and Sociobiology (2007).

Yook, S.-H., Jeong, H. & Barabasi A.L. Modeling the Interadarge-scale topologyProceedings of
the Nat’| Academy of Sciences 99, 13382-13386 (2002).

Caldarelli, G.Scale-Free Networks: Complex Webs in Nature and Technology. (Oxford University
Press, USA, 2007).

Dorogovtsev, S.N. & Mendes, J.FEvolution of Networks. From Biological Netsto the Internet and
WWW. (Oxford University Press, USA, 2003).

Song C.M., Havlin S. & Makse H.A. Self-similarity of complexetworks.Nature 433 392-395
(2005).

Gonzalez, M.C., Lind, P.G. & Herrmann, H.J. A system of n®ligents to model social networks.
Physical Review Letters 96, 088702 (2006).

Cecconi, F., Marsili, M., Banavar, J.R. & Maritan, A. Difios, peer pressure, and tailed distributions.



Physical Review Letters 89, 088102 (2002).



10

T
i
C:ICI

& AT R S TR T 74

= IIIII|T|'| 'l:I}II:;IIII IIIIII|T| TTTINH

3
T T T

b
P/

fFm/
3

ety

Nmbar o Evanis

e —
Gl

Aay SR S8 SN o ARCOER SRt

HMM!WM P B R

Z

10" 1! 1g 10° 1ot
o m)

FIG. 1: Basic human mobility patterns. a, Week-long trajectory o0 mobile phone users indicate that
most individuals travel only over short distances, but a fegularly move over hundreds of kilometers.
Panelb, displays the detailed trajectory of a single user. The wfie phone towers are shown as green
dots, and the Voronoi lattice in grey marks the approximateption area of each tower. The dataset
studied by us records only the identity of the closest towea tmobile user, thus we can not identify the
position of a user within a Voronoi cell. The trajectory okthser shown i is constructed from 86

two hourly reports, during which the user visited a total didifferent locations (tower vicinities). Among
these, the user is four@b and 67 occasions in the two most preferred locations, the frequenwisits

for each location being shown as a vertical bar. The cirgheesents the radius of gyration centered in
the trajectory’s center of mass, Probability density functior?(Ar) of travel distances obtained for the
two studied dataset®; and D,. The solid line indicates a truncated power law whose patermheare
provided in the text (see Eq. 19, The distributionP(r,) of the radius of gyration measured for the users,
wherer,(T') was measured aftéf = 6 months of observation. The solid line represent a similardated
power law fit (see Eq. 2). The dotted, dashed and dot-dashedscshow? (1) obtained from the standard
null models RW, LF andT LF), where for thel' LF' we used the same step size distribution as the one
measured for the mobile phone users.
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FIG. 2: The bounded nature of human trajectories. a,Radius of gyrationr,(t)) vs time for mobile
phone users separated in three groups according to their§i¥a), wherel' = 6 months. The black curves
correspond to the analytical predictions for the randonkwaddels, increasing intime &8, (t))|LrrLF ~

t3/2+5 (solid), and(ry(t))|rw ~ t*° (dotted). The dashed curves corresponding to a logaritfitwé the
form A+ Bn(t), whereA andB depend om,. b, Probability density function of individual travel distas
P(Ar|ry) for users withr, = 4, 10, 40, 100 and200 km. As the inset shows, each group displays a quite
different P(Ar|r,) distribution. After rescaling the distance and the disttitm with , (main panel), the
different curves collapse. The solid line (power law) iswhas a guide to the eye, Return probability
distribution, F},; (). The prominent peaks capture the tendency of humans taardgreturn to the locations
they visited before, in contrast with the smooth asymptogicavior~ 1/(¢In(t)?) (solid line) predicted for
random walksd, A Zipf plot showing the frequency of visiting different latans. The symbols correspond
to users that have been observed to vigit= 5, 10, 30, and50 different locations. Denoting with/() the
rank of the location listed in the order of the visit frequgrtbe data is well approximated B§(L) ~ L.
The inset is the same plot in linear scale, illustrating #t&% of the time individuals are found at their first
two preferred locations.
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FIG. 3: The shape of human trajectories. ajThe probability density functio®(x, y) of finding a mobile
phone user in a locatiofx, y) in the user’s intrinsic reference frame (see SM for detail$je three plots,
from left to right, were generated fdo, 000 users with:r, < 3,20 < r, < 30 andry > 100 km. The
trajectories become more anisotropicrgsincreases.b, After scaling each position with, and o, the
resulting®(x/o,,y/o,) has approximately the same shape for each grouphe change in the shape of
®(x,y) can be quantified calculating the isotropy ratie= ¢, /0, as a function of-,, which decreases as
S~ rg‘0~12 (solid line). Error bars represent the standard edp®(z /0., 0) representing the x-axis cross

section of the rescaled distributidn(z /0., y/o,,) shown in b.



