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Despite their importance for urban planning [1], traffic for ecasting [2], and the spread

of biological [3, 4, 5] and mobile viruses [6], our understanding of the basic laws govern-

ing human motion remains limited thanks to the lack of tools to monitor the time resolved

location of individuals. Here we study the trajectory of100, 000 anonymized mobile phone

users whose position is tracked for a six month period. We findthat in contrast with the

random trajectories predicted by the prevailing Lévy flight and random walk models [7],

human trajectories show a high degree of temporal and spatial regularity, each individual

being characterized by a time independent characteristic length scale and a significant prob-

ability to return to a few highly frequented locations. After correcting for differences in

travel distances and the inherent anisotropy of each trajectory, the individual travel patterns

collapse into a single spatial probability distribution, indicating that despite the diversity of

their travel history, humans follow simple reproducible patterns. This inherent similarity

in travel patterns could impact all phenomena driven by human mobility, from epidemic

prevention to emergency response, urban planning and agentbased modeling.

Given the many unknown factors that influence a population’smobility patterns, ranging from

means of transportation to job and family imposed restrictions and priorities, human trajectories

are often approximated with various random walk or diffusion models [7, 8]. Indeed, early mea-

surements on albatrosses, bumblebees, deer and monkeys [9,10] and more recent ones on marine

predators [11] suggested that animal trajectory is approximated by a Lévy flight [12, 13], a random

walk whose step size∆r follows a power-law distributionP (∆r) ∼ ∆r−(1+β) with β < 2. While

the Lévy statistics for some animals require further study[14], Brockmannet al. [7] generalized

this finding to humans, documenting that the distribution ofdistances between consecutive sight-
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ings of nearly half-million bank notes is fat tailed. Given that money is carried by individuals,

bank note dispersal is a proxy for human movement, suggesting that human trajectories are best

modeled as a continuous time random walk with fat tailed displacements and waiting time dis-

tributions [7]. A particle following a Lévy flight has a significant probability to travel very long

distances in a single step [12, 13], which appears to be consistent with human travel patterns: most

of the time we travel only over short distances, between homeand work, while occasionally we

take longer trips.

Each consecutive sightings of a bank note reflects the composite motion of two or more indi-

viduals, who owned the bill between two reported sightings.Thus it is not clear if the observed

distribution reflects the motion of individual users, or some hitero unknown convolution between

population based heterogeneities and individual human trajectories. Contrary to bank notes, mo-

bile phones are carried by the same individual during his/her daily routine, offering the best proxy

to capture individual human trajectories [15, 16, 17, 18, 19].

We used two data sets to explore the mobility pattern of individuals. The first (D1) consists of

the mobility patterns recorded over a six month period for100, 000 individuals selected randomly

from a sample of over 6 million anonymized mobile phone users. Each time a user initiates or

receives a call or SMS, the location of the tower routing the communication is recorded, allowing

us to reconstruct the user’s time resolved trajectory (Figs. 1a and b). The time between consecutive

calls follows a bursty pattern [20] (see Fig. S1 in the SM), indicating that while most consecutive

calls are placed soon after a previous call, occasionally there are long periods without any call

activity. To make sure that the obtained results are not affected by the irregular call pattern, we

also study a data set (D2) that captures the location of206 mobile phone users, recorded every two

hours for an entire week. In both datasets the spatial resolution is determined by the local density

of the more than104 mobile towers, registering movement only when the user moves between

areas serviced by different towers. The average service area of each tower is approximately3 km2

and over30% of the towers cover an area of1 km2 or less.

To explore the statistical properties of the population’s mobility patterns we measured the dis-

tance between user’s positions at consecutive calls, capturing 16, 264, 308 displacements for the

D1 and10, 407 displacements for theD2 datasets. We find that the distribution of displacements

over all users is well approximated by a truncated power-law

P (∆r) = (∆r + ∆r0)
−β exp (−∆r/κ), (1)
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with β = 1.75 ± 0.15, ∆r0 = 1.5 km and cutoff valuesκ|D1
= 400 km, andκ|D2

= 80 km

(Fig. 1c, see the SM for statistical validation). Note that the observed scaling exponent is not far

from βB = 1.59 observed in Ref. [7] for bank note dispersal, suggesting that the two distributions

may capture the same fundamental mechanism driving human mobility patterns.

Equation (1) suggests that human motion follows a truncatedLévy flight [7]. Yet, the observed

shape ofP (∆r) could be explained by three distinct hypotheses: A. Each individual follows a

Lévy trajectory with jump size distribution given by (1). B. The observed distribution captures a

population based heterogeneity, corresponding to the inherent differences between individuals. C.

A population based heterogeneity coexists with individualLévy trajectories, hence (1) represents

a convolution of hypothesisA andB.

To distinguish between hypotheses A, B and C we calculated the radius of gyration for each

user (see Methods), interpreted as the typical distance traveled by usera when observed up to

time t (Fig. 1b). Next, we determined the radius of gyration distributionP (rg) by calculatingrg

for all users in samplesD1 andD2, finding that they also can be approximated with a truncated

power-law

P (rg) = (rg + r0
g)

−βr exp (−rg/κ), (2)

with r0
g = 5.8 km, βr = 1.65 ± 0.15 andκ = 350 km (Fig. 1d, see SM for statistical validation).

Lévy flights are characterized by a high degree of intrinsicheterogeneity, raising the possibility

that (2) could emerge from an ensemble of identical agents, each following a Lévy trajectory.

Therefore, we determinedP (rg) for an ensemble of agents following a Random Walk (RW ),

Lévy-Flight (LF ) or Truncated Lévy-Flight (TLF ) (Figure 1d) [8, 12, 13]. We find that an en-

semble of Lévy agents display a significant degree of heterogeneity inrg, yet is not sufficient to

explain the truncated power law distributionP (rg) exhibited by the mobile phone users. Taken

together, Figs. 1c and d suggest that the difference in the range of typical mobility patterns of indi-

viduals (rg) has a strong impact on the truncated Lévy behavior seen in (1), ruling out hypothesis

A.

If individual trajectories are described by aLF or TLF , then the radius of gyration should

increase in time asrg(t) ∼ t3/(2+β) [21, 22] while for aRW rg(t) ∼ t1/2. That is, the longer we

observe a user, the higher the chances that she/he will travel to areas not visited before. To check

the validity of these predictions we measured the time dependence of the radius of gyration for

users whose gyration radius would be considered small (rg(T ) ≤ 3 km), medium (20 < rg(T ) ≤

30 km) or large (rg(T ) > 100 km) at the end of our observation period (T = 6 months). The
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results indicate that the time dependence of the average radius of gyration of mobile phone users

is better approximated by a logarithmic increase, not only amanifestly slower dependence than

the one predicted by a power law, but one that may appear similar to a saturation process (Fig. 2a

and Fig. S4).

In Fig. 2b, we have chosen users with similar asymptoticrg(T ) after T = 6 months, and

measured the jump size distributionP (∆r|rg) for each group. As the inset of Fig. 2b shows, users

with small rg travel mostly over small distances, whereas those with large rg tend to display a

combination of many small and a few larger jump sizes. Once werescale the distributions with

rg (Fig. 2b), we find that the data collapses into a single curve,suggesting that a single jump

size distribution characterizes all users, independent oftheir rg. This indicates thatP (∆r|rg) ∼

r−α
g F (∆r/rg), whereα ≈ 1.2 ± 0.1 andF (x) is an rg independent function with asymptotic

behaviorF (x < 1) ∼ x−α and rapidly decreasing forx ≫ 1. Therefore the travel patterns

of individual users may be approximated by a Lévy flight up toa distance characterized byrg.

Most important, however, is the fact that the individual trajectories are bounded beyondrg, thus

large displacements which are the source of the distinct andanomalous nature of Lévy flights,

are statistically absent. To understand the relationship between the different exponents, we note

that the measured probability distributions are related byP (∆r) =
∫
∞

0
P (∆r|rg)P (rg)drg, which

suggests (see SM) that up to the leading order we haveβ = βr+α−1, consistent, within error bars,

with the measured exponents. This indicates that the observed jump size distributionP (∆r) is in

fact the convolution between the statistics of individual trajectoriesP (∆rg|rg) and the population

heterogeneityP (rg), consistent with hypothesis C.

To uncover the mechanism stabilizingrg we measured the return probability for each indi-

vidual Fpt(t) [22], defined as the probability that a user returns to the position where it was

first observed aftert hours (Fig. 2c). For a two dimensional random walkFpt(t) should follow

∼ 1/(t ln(t)2) [22]. In contrast, we find that the return probability is characterized by several peaks

at 24 h, 48 h, and 72 h, capturing a strong tendency of humans toreturn to locations they visited

before, describing the recurrence and temporal periodicity inherent to human mobility [23, 24].

To explore if individuals return to the same location over and over, we ranked each location

based on the number of times an individual was recorded in itsvicinity, such that a location with

L = 3 represents the third most visited location for the selectedindividual. We find that the

probability of finding a user at a location with a given rankL is well approximated byP (L) ∼ 1/L,

independent of the number of locations visited by the user (Fig. 2d). Therefore people devote most
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of their time to a few locations, while spending their remaining time in5 to 50 places, visited with

diminished regularity. Therefore, the observed logarithmic saturation ofrg(t) is rooted in the high

degree of regularity in their daily travel patterns, captured by the high return probabilities (Fig. 2b)

to a few highly frequented locations (Fig. 2d).

An important quantity for modeling human mobility patternsis the probabilityΦa(x, y) to find

an individuala in a given position (x, y). As it is evident from Fig. 1b, individuals live and travel

in different regions, yet each user can be assigned to a well defined area, defined by home and

workplace, where she or he can be found most of the time. We cancompare the trajectories of

different users by diagonalizing each trajectory’s inertia tensor, providing the probability of finding

a user in a given position (see Fig. 3a) in the user’s intrinsic reference frame (see SM for the

details). A striking feature ofΦ(x, y) is its prominent spatial anisotropy in this intrinsic reference

frame (note the different scales in Fig 3a), and we find that the larger an individual’srg the more

pronounced is this anisotropy. To quantify this effect we defined the anisotropy ratioS ≡ σy/σx,

whereσx andσy represent the standard deviation of the trajectory measured in the user’s intrinsic

reference frame (see SM). We find thatS decreases monotonically withrg (Fig. 3c), being well

approximated withS ∼ r−η
g , for η ≈ 0.12. Given the small value of the scaling exponent, other

functional forms may offer an equally good fit, thus mechanistic models are required to identify if

this represents a true scaling law, or only a reasonable approximation to the data.

To compare the trajectories of different users we remove theindividual anisotropies, rescal-

ing each user trajectory with its respectiveσx andσy. The rescaled̃Φ(x/σx, y/σy) distribution

(Fig. 3b) is similar for groups of users with considerably differentrg, i.e., after the anisotropy and

the rg dependence is removed all individuals appear to follow the same universal̃Φ(x̃, ỹ) prob-

ability distribution. This is particularly evident in Fig.3d, where we show the cross section of

Φ̃(x/σx, 0) for the three groups of users, finding that apart from the noise in the data the curves

are indistinguishable.

Taken together, our results suggest that the Lévy statistics observed in bank note measurements

capture a convolution of the population heterogeneity (2) and the motion of individual users. Indi-

viduals display significant regularity, as they return to a few highly frequented locations, like home

or work. This regularity does not apply to the bank notes: a bill always follows the trajectory of

its current owner,i.e. dollar bills diffuse, but humans do not.

The fact that individual trajectories are characterized bythe samerg-independent two dimen-

sional probability distributioñΦ(x/σx, y/σy) suggests that key statistical characteristics of indi-
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vidual trajectories are largely indistinguishable after rescaling. Therefore, our results establish the

basic ingredients of realistic agent based models, requiring us to place users in number propor-

tional with the population density of a given region and assign each user anrg taken from the

observedP (rg) distribution. Using the predicted anisotropic rescaling,combined with the density

function Φ̃(x, y), whose shape is provided as Table 1 in the SM, we can obtain thelikelihood

of finding a user in any location. Given the known correlations between spatial proximity and

social links, our results could help quantify the role of space in network development and evolu-

tion [25, 26, 27, 28, 29] and improve our understanding of diffusion processes [8, 30].
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FIG. 1: Basic human mobility patterns. a, Week-long trajectory of40 mobile phone users indicate that
most individuals travel only over short distances, but a fewregularly move over hundreds of kilometers.
Panelb, displays the detailed trajectory of a single user. The different phone towers are shown as green
dots, and the Voronoi lattice in grey marks the approximate reception area of each tower. The dataset
studied by us records only the identity of the closest tower to a mobile user, thus we can not identify the
position of a user within a Voronoi cell. The trajectory of the user shown inb is constructed from186
two hourly reports, during which the user visited a total of12 different locations (tower vicinities). Among
these, the user is found96 and67 occasions in the two most preferred locations, the frequency of visits
for each location being shown as a vertical bar. The circle represents the radius of gyration centered in
the trajectory’s center of mass.c, Probability density functionP (∆r) of travel distances obtained for the
two studied datasetsD1 andD2. The solid line indicates a truncated power law whose parameters are
provided in the text (see Eq. 1).d, The distributionP (rg) of the radius of gyration measured for the users,
whererg(T ) was measured afterT = 6 months of observation. The solid line represent a similar truncated
power law fit (see Eq. 2). The dotted, dashed and dot-dashed curves showP (rg) obtained from the standard
null models (RW , LF andTLF ), where for theTLF we used the same step size distribution as the one
measured for the mobile phone users.
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FIG. 2: The bounded nature of human trajectories. a,Radius of gyration,〈rg(t)〉 vs time for mobile
phone users separated in three groups according to their final rg(T ), whereT = 6 months. The black curves
correspond to the analytical predictions for the random walk models, increasing in time as〈rg(t)〉|LF,TLF ∼

t3/2+β (solid), and〈rg(t)〉|RW ∼ t0.5 (dotted). The dashed curves corresponding to a logarithmicfit of the
form A+B ln(t), whereA andB depend onrg. b, Probability density function of individual travel distances
P (∆r|rg) for users withrg = 4, 10, 40, 100 and200 km. As the inset shows, each group displays a quite
differentP (∆r|rg) distribution. After rescaling the distance and the distribution with rg (main panel), the
different curves collapse. The solid line (power law) is shown as a guide to the eye.c, Return probability
distribution,Fpt(t). The prominent peaks capture the tendency of humans to regularly return to the locations
they visited before, in contrast with the smooth asymptoticbehavior∼ 1/(t ln(t)2) (solid line) predicted for
random walks.d, A Zipf plot showing the frequency of visiting different locations. The symbols correspond
to users that have been observed to visitnL = 5, 10, 30, and50 different locations. Denoting with (L) the
rank of the location listed in the order of the visit frequency, the data is well approximated byR(L) ∼ L−1.
The inset is the same plot in linear scale, illustrating that40% of the time individuals are found at their first
two preferred locations.
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FIG. 3: The shape of human trajectories. a,The probability density functionΦ(x, y) of finding a mobile
phone user in a location(x, y) in the user’s intrinsic reference frame (see SM for details). The three plots,
from left to right, were generated for10, 000 users with:rg ≤ 3, 20 < rg ≤ 30 andrg > 100 km. The
trajectories become more anisotropic asrg increases.b, After scaling each position withσx andσy the
resultingΦ̃(x/σx, y/σy) has approximately the same shape for each group.c, The change in the shape of
Φ(x, y) can be quantified calculating the isotropy ratioS ≡ σy/σx as a function ofrg, which decreases as
S ∼ r−0.12

g (solid line). Error bars represent the standard error.d, Φ̃(x/σx, 0) representing the x-axis cross

section of the rescaled distributioñΦ(x/σx, y/σy) shown in b.


