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CHAPTER 6

Games

In the opening chapter of the book, we emphasized that the "connectedness" of a
complex social, natural, or technological system really means two things: first, an
underlying structure of interconnecting links, and second, an interdependence in the
behaviors of the individuals who inhabit the system, so that the outcome for anyone
depends at least implicitly on 'the combined be~aviors of all. The first issue - network
structure - was addressed in the first part of the book using graph theory. In this second/
part of the book, we study interconnectedness at the level of behavior, developing baSIC
models for this in the language of game theory.

Game theory is designed to address situations in which the outcomes of a person's
decisions depend not just on how they choose among several options, but also on the
choices made by the people with whom they interact. Game-theoretic ideas arise in
many contexts. Some contexts are literally games; for example, choosing how to target
a soccer penalty kick and choosing how to defend against it can be modeled using
game theory. Other settings are not usually called games, but they can be analyzed
with thesame tools. Examples include the pricing of a new product when other firms
have similar new products, deciding how to bid in an auction, choosing a route on the
Internet or through a transportation network, deciding whether to adopt an aggressive
or a passive stance in international relations, or choosing whether to use perforrnance-
enhancing drugs in a professional sport. In these examples, each decision-maker's
outcome depends on the decisions made by others. This introduces a strategic element
that game theory is designed to analyze .:

As we will see later in Chapter 7, game-theoretic ideas are also relevant to settings'
where no one is overtly making decisions. Evolutionary biology provides perhaps the
most striking example. A basic principle is that mutations are more likely.to succeed
in a population when they improve the fitness of the organisms that carry the mutation.
But ofteri, this fitness cannot be assessed in isolation; rather, it depends on what all
the other (nonrnutant) organisms are doing and how the mutant's behavior interacts
with the nonmutants' behaviors. In such situations, reasoning about the success or
failure of the mutation involves game-theoretic definitions, and in fact very closely
resembles the process of reasoning about decisions made by intelligent actors, Similar
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kinds of reasoning have been applied to the success or failure of new cultural practices
and conventions - it depends on the existing patterns of behavior into which they are
introduced. These examples show that the ideas 'of game theory are broader than just
a model of how people reason about their interactions with others; game theory more
generally addresses the question of which behaviors tend to sustain themselves when·
carried out in a.larger population.

Game-theoretic-ideas appear in many places throughout the book. Chapters 8 and
.9 describe two initial and fundamental applications: to network traffic, where travel
time depends on the routing decisions of others; and to auctions, where the success of
a bidder depends on how the other bidders behave. We will see many further examples
later in the book, including the ways in which prices are ~et in markets and the ways
in which people choose to adopt new ideas in situations where the payoffs to adoption
decisions are affected by what others are doing.

As a first step, then, we begin with a discussion of the basic ideas behind game theory.
For now, this discussion will involve descriptions of situations in which people interact
with one another, initially without an accompanying graph structure. Once theseideas
are in place, we will bring graphs back into the picture in subsequent chapters and
begin to consider. how structure and behavior can be studied simultaneously.
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6.1 What Is a Game?

Game theory is concerned with situations in which decision-makers interact with one
another, and in which each participant's satisfaction with the outcome depends not just
on his or her own decisions but on the decisions made by everyone. To help make the
definitions concrete, it's useful to start with an example.

A First Example. Suppose that you're a college student, and you have two large pieces
of work due the next day: an exam and a presentation. You need to decide whether to
study for the exam or to prepare for the presentation. For simplicity, and to make the
example as clean as possible, we'll impose a few assumptions. First, we assume you
can either study.for the exam or prepare for the presentation, but not both. Second,
we assume you have an accurate estimate of the expected grade you'll get under the
outcomes of different decisions. .

The outcome of the exam is easy to predict: if you study, then your expected grade
is a 92, while if you don't study; then your expected grade is an 80.
. The presentation is a bit more complicated to think about. For the presentation,

you're doing it jointly with a partner. If both you and your partner prepare fo~ t.he
presentation, then the presentation will go extremely well, and your expected joint
grade is a 100. If just one of you prepares (and the other doesn't), you'll g.et an
expected joint grade of 92. If neither of you prepares, your expected joint grade IS 84.

The challenge in reasoning about this decision is that your partner also has the ~ame
exam the next day; and we'll assume that he has the same expected outcome for It: 92
if he studies, and 80 if he doesn't. He also has to choose between studying for the exam
and preparing for the presentation. We'll assume that neither of you is able to contact
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the other, so you can't jointly discuss what to do; each of you needs to make a decision
independently, knowing that the other wilt also be making a decision. .

Both of you are interested in maximizing the average grade you get, and we can use
the preceding discussion to work out how this average grade is determined by the way
the two of you invest your efforts:

• If both of you prepare for the presentation, you'll both get 100 on the p,esentation
and 80 on the exam, for an average of 90.

• If both of you study for the exam, you'll both get 92 on the exam and 84 on the
presentation, for an average of 88. .
If one of you studies for the exam while the other prepares for the presentation,

the result is as follows. ,
_ The one who prepares for the presentation gets a 92 on the presentation but

only an 80 on the exam, for an average of 86.
On the other hand, the one who studies for the exam still gets a 92 on th~
presentation; since it's a joint grade, this person benefits from the fact that one
of the two of you prepared for it. This person also gets a 92 on the exam,
through studying, and so gets an average of 92.

A simple table can be used to summarize all these outcomes, as follows. We represent
your two choices - to prepare for the presentation or to study for the exam - as the rows
of a 2 x 2 table. We represent your partner's two choices as the columns. So each box
in this table represents a decision by each of you. In each box, we record the average
grade you each receive: first yours, then your partner's. Writing all this down, we have
the table shown in Figure 6.1. .

This describes the set-up of the situation; now you need to figure out what to
do: prepare for the presentation or study for the exam? Clearly, your average grade
depends not just on which of these two options you choose, but also on :what your
partner decides. Therefore, as part of your decision, you have to reason about what-
your partner is likely to do. Thinking about the strategic consequenc~s of y~ur own
actions, where you need to consider the effect of decisions boyothers, IS precisely the
kind of reasoning that game theory-is designed to facilitate. So before moving-on to the
actual outcome of this exam-or-presentation scenario, it is useful to introduce some of
the basic definitions of game theory and then continue the discussion in this language.
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Basic Ingredients of a Game', The situation we've just described is an example of a
game. For our purposes, a game is any situation with the following three aspects:

_ 1. There is a set of participants, whom we call the players. In our example, you and
your partner are the two players.

go
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2. Each player has a set of options for how to behave; we will refer to these options
as the player's possible strategies. In the example, you and your partner each have
two possible strategies: to prepare for the presentation or to study for the exam.

3. For each choice of strategies, each player receives a payoff that can depend on
the strategies selected by everyone. The payoffs are generally numbers, and each
player prefers larger payoffs to smaller payoffs. In our current example, the payoff
to each player is the average grade he or she gets on the exam and the presentation ..

. We will generally. write the payoffs in a payoff matrix as in' Figure ~.l. _

Ourinterest is in reasoning about how players will behave in a given game. For now we
focus on games with only two players, b·ut the. ideas apply equally well to games with
anynumber of players. Our discussion will focus primarily on simple, one-shot games _
games in which the players simultaneously and independently choose their actions, and
they do so only once. In Section 6.10 at the end of this chapter, we discuss how to
reinterpret the theory to deal with dynamic games, in which actions can be played
sequentially over time.

6.2 Reasoning about Behavior in a Game

Once we write down the description of a game, consisting of the players, the strategies,
and the payoffs, we can ask how the players are likely to behav~ - that is, how they go
about selecting strategies.

Underlying Assumptions. In order to make this question tractable, we begin with a
few assumptions. First, we assume everything that a player cares about is summarized
in the player's payoffs. For the exam-or-presentation game described in Section 6.1, the
two players are solely concerned with maximizing their own average grade. However,
nothing in the framework of game theory requires that players care.only about personal
rewards. For example, a player who is altruistic may care about both his or her own
benefit 'and also the other player's benefit. If so, then the payoffs should reflect this;
once the payoffs have been defined, they should constitute a complete description of
each player's evaluation of each of the possible outcomes of tile game.

We also a~sume that each player knows everything about the structure of the game.
To begin with, this assumption-means that each player knows his or her own list of
possible strategies, It seems reasonable ln many settings to assume that each player

. also knows who the other player is (in a two-player game), the strategies available to
- this other player, and what his or her payoff will be for any choice of strategies. In the

exam-or-presentation game in particular, this assumption means that you realize you
.and your partner are each faced with the choice of studying for the exam or preparing
for the presentation, and you have an accurate estimate of the expected outcome under
different courses of action. There has been considerable research en hew to analyze
games in which the players have much less knowledge about the underlying structure,
and in fact John Harsanyi shared the 1994 Nobel Prize in Economics forhis work on
games with incomplete information [2Q8].
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. _ Finally, we suppose that each individual chooses a strategy to maximize her own
. payoff, given her beliefs about the strategy used by the other player. This model of
individual behavior, which is usually called rationality, actually combines two-ideas.
The first idea is that each player wants to maximize her own payoff. Since each
individual's payoff is defined to be whatever the individual cares about, this hypothesis
seems reasonable. The second idea is that each player actually succeeds in selecting
the optimal strategy. In simple settings, and for games played by experienced players,
this too seems reasonable. In complex games, or for games played by inexperienced
players; it is surely less reasonable. It is interesting to consider players who make
mistakes and learn-from the play of the game. There is an extensive literature that
analy~es problems of this sort [175], b~t we do not consider these issues here.

Reasoning ~bout Behavior in the Exam-or-Presentation Game. Let's go back to
the exam-or-presentation game and ask how we should expect you and your partner -
the two players in the game - to behave.
. We first focus on this question from your point of view. (The reasoning for your
partner is syminetric, because the game looks the same from his point of view.) It would
be easier to decide what to do if you could predict what your partner would do, but to
begin with, let's consider-what you should do fcfr each possible choice of strategy by
your partner.

First, if you knew your partner was going to study for the exam, then you would /
get a payoff of 88 by also studying, and a payoff of only 86 by preparing for the"
presentation. So in this case, you should study for the exam.

• On the other hand, if you knew that your partner was going to prepare for the
presentation, then you'd get a payoff of 90 by also preparing for the presentation,
but a payoff of 92 by studying for the exam. So in this case too, you should study
for the exam.

This approach of considering each of your partner's options separately turns out to be a
very useful way of analyzing the present situation: it reveals that, no matter what your
partner does, you should study for the exam.
. When a player has a strategy that is strictly better than all other options, regardless
of what the other player does, we will refer to it as a strictly dominant strategy.
When a player has a strictly dominant strategy, we should expect that he or she will
definitely.play it. In the exam-or-presentation game, studying for the exam is also a
strictIy dominant strategy for your partner (by the same reasoning), and so we should
expect that the outcome will be for both of you to studt' each getting an average gr~de
of88. .

So this game has a very clean analysis, and it's easy to ·see how to end up with
-- a prediction for the outcome. Despite this fact, there's something striking about the

conclusion. If you and your partner could somehow agree that you would both prepare
for the presentation, you would each get an average grade of 90; in other words, you

i would each be better off. But, despite the fact that you both understand this potential
improvement, the payoff of 90 cannot be achieved by rational play. The preceding
reasoning makes it clear why not: even lf you were to personally commit to preparing
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Figure 6.2. Prisoner's Dilemma.

~orthe presentation - hoping to achieve 'the outcome where you both get 90 - and even
If your partner knew you were doing this, your partner would still have an incentive to
study.for the exam' so as to achieve a still-higher payoff of 92 for himself. . .

ThiS result ~epends on our assumption that the payoffs truly reflect everything each
player val~es I~ the outcome - in this case, that you and your partner each only care
about maxirruzing your own respective average grades. If, for example, you also cared
a?out the grade that your partner received; then the payoffs in this game would look
different, and the outcome could be different. Similarly, if you cared about the fad that
y~ur partner would be angry at you for not preparing for the joint presentation, then
this = should be incorporated into the payoffs, again potentially affecting the results.
But With the payoffs as they are, we are left with the interesting situation in which there
is an outcome. that is better for both of you - an average grade of 90 each - and yet it
cannot be achieved by rational play of the game.

A Related Story: The Prisoner's Dilemma. The outcome of the exam-or-presentation
game is closely related to one of the most famous examples in the development of game
theory, the Prisoner's Dilemma. Here is how this example works.
. Suppose ~at two suspects have been apprehended by the police and are being
interrogated m separate rooms. The police strongly suspect that these two individuals
are responsible for a robbery, but there is not enough evidence to convict either of them
of the robbery. However, they both resisted arrest and can be charged with that lesser
crime, which would carry a l-year sentence. Each of the suspects is told the foUowing
story. "If you confess, and your partner doesn't confess, then you will be released
and your partner will be charged with the crime. Your confession will be sufficient
to convict him of the robbery .and he will be sent to prison for 10 years. If you both
confess, then we don't need either of you to testify against the other, and you will both
be convicted of the robbery. (Although in this case your sentence' will be less - only
4 years - because of your guilty plea.) Finally, if neither of you confesses, then we
can't convict either of-you of the Jobbery, so we will charge each of you with resisting
arrest. Your partner is being 'offered the same deal. Do you want to confess?"

To formalize ..this story as a game we need to identify the players, the possible
strategies, and the payoffs: The two suspects are the players, and each has to choose
between two possible strategies - Confess (C) or Not-Confess (Nc). Finally, the payoffs
can be summarized from ·the preceding story as in Figure 6.2. (Note that the payoffs
are all zero or less, since there are no good outcomes for the suspects, only different
gradations-of bad outcomes.) ,/
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Athlete 2
Don't Use Drugs Use DrugsE 3,3

4,1·
_--.:..._1,:.....4--1·

2,2 _
Don't Use Drugs

Athlete 1
Use Drugs

Figure 6.3. Performance-enhancing drugs.

As in the.exam-or-presentation game, we can consider how one of the suspects-
say Suspect I - should reason about his options.

o If Suspect 2 were going to confess, then Suspect 1would receive a payoff of -4
by confessing and a payoff of -10 by not confessing. So in this case, Suspect I

should confess.
o If Suspect 2 were not going to confess, then Suspect I would receive a payoff of 0

by confessing and a payoff of,-I by not confessing. So in this case too, Suspect

1 should confess. . "

So confessing is a strictly dominant strategy - it, is the best choice regardless of what
the other player chooses. As a result, we should expect both' suspects to confess, each

getting a payoff of -4.
We therefore have the same striking phenomenon as in the exam-or-presentation

game: there is an outcome that the suspects know to be better for both of them ~,in
which they both choose not to confess - but under rational play of the game theie is
no way for them to achieve this outcome. Instead, they end up with an outcome that is
worse for both of them. And here too, it is important that the payoffs reflect everything
about the outcome of the game; if, for example, the suspects could credibly threaten
each other with retribution for confessing, thereby making confessing a less desirable
option, then this could affect the payoffs and potentially the outcome.

-I
Interpretations of the Prisoner's Dilemma. The Prisoner's Dilemma has been the
subject of a huge amount of literature since its introduction in the early 1950s [343,
346], since it serves as a highly streamlined depiction of the difficulty in establishing
cooperation in the face of individual self-interest. While no model this simple can
precisely capture complex scenarios in the real world, the Prisoner's Dilemma has
been used as an interpretive framework for many different real-world situations,

For example,. the use of performance-enhancing drugs in professional sports has
been modeled as a case of the Prisoner's Dilemma game [210, 367]. Here the athletes
are the players, and the two possible strategies are to ute performance-enhancing druas<> b

or not. If you use drugs while your opponent doesn't, you' 11'get an advantage in the
" competition, but you'll suffer long-term harm (and may get caught). If~e consider a

sport where it is difficult to detect the use of such drugs, and we assume athletes in such
a sport view the downside as a smaller factor than the benefits in competition, we can

, capture the situation with numerical payoffs that might look as follows, in Figure 6.3.
. (The numbers are arbitrary here; we are ;only interested in their relative sizes.)

145

dO(
usi
yOl

car
wh
for

tWI
eve
rol
an
rm

ari
of
res
ch
ex.
th(
on
be

tic
thi
SCI

on

In
th
ca

a
gl
01



~cts -

-4
t 1

Iro
eet

. what
, each

ltation
1 -;.-in
iere is
that is
ything
reaten
irable

en the
[343,

lishing
ile can

a has

rts has
thletes
drugs

: in the
lsider a
in such
we can
re 6.3.

146 GAMES

Your Partner
Presentation Exam

Presentation
You

98,98 94,96
96,94 92,92Exam" L-~ L- ~

Figure 6.4. Exam-or-presentation game with an easier exam.

Here, the best outcome (with a payoff of 4) is to' use drugs when your opponent
doesn't, since this maximizes your chances of winning: However, the payoff to both
using drugs (2) is worse than the payoff to both not using drugs (3), since in both cases
you're evenly matched, but in the former case you're also causing harm to yourself. We
can now see that using drugs is a strictly dominant strategy, and so we have a situation
where the players use drugs even though they understand that there's a better outcome
for both of them.

More generally, situations of this type are often referred to as arms races, in which
two competitors use an increasingly dangerous arsenal of weapons simply to remain
evenly matched. In the preceding example, the performance-enhancing drugs play the
role of the weapons, but the Prisoner's Dilemma has also been used to interpret Literal
arms races between opposing nations, where the weapons correspond to the nations'
military arsenals. •

To wrap up our discussion of the Prisoner's Dilemma, we should note that it only
arises when the payoffs are aligned in a certain way; as we will see in the remainder
of the chapter, there are many situations in which the structure of the game and the
resulting behavior look very different. Indeed, even simple changes to a game can
change it from an instance of the Prisoner's Dilemma to something more benign. For
example, returning to the exam-or-presentation game, suppose that we keep everything
the same as before, except that we make the exam much easier, so that you'll get a 100
on it if you study or a 96 if you don't. Then we can check that the payoff matrix now
becomes the table of values shown in Figure 6.4.

Furthermore, we can check that with these new payoffs, preparing for the presenta-
tion now becomes a strictly dominant strategy; we can expect that both players will play
this strategy and both will benefit from this decision. The downsides of the previous
scenario no longer appear: like other dangerous phenomena, the Prisoner's Dilemma
only manifests itself when the conditions are right.

I
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6.3 Best Responses and Dominant Strategies

In reasoning about the games in the previous section, we used two fundamental concepts
that will be central to our discussion of game theory. As such, it is useful to define them
carefully here, and then delve further into some of their implications.

,The first concept is the idea of a best response: it is the best choice of one player, given
a belief about what the other player will do. For instance, in'the exam-or-presentation •
game, we determined the best choice of one player in response to each possible choice

,of his or her partner.
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We can make this concept precise with a bit of notation, as follows. If S is a strategy
chosen by Player 1, and T is a strategy chosen by Player 2, then there is an ~ntry .in
the payoff matrix corresponding to the pair of chosen strategies (S, T). We Will wnte
P (S, T) to denote the payoff to Player 1 as a result of this pair o! strategies, and
P~(S, T) to denote the payoff to Player 2 as a result of this pair of strategies. Now,. we
say that a strategy S for Player 1 is a best response to a ~trateg~ T for Player 2 if S
produces at least as good a payoff as any other strategy paired With T:

PM, T) ~ PM', T)

.for all other strategies S' of Player l. Naturally, there is a completely symmetric
definition for Player 2, which we won't write here. (In what follows, we present the
definitions from Player l's point of view, but there are direct analogues for PI.ayer 2 in
each case.)

Notice that this definition allows for multiple different strategies of Player 1 to be
tied as the best response to strategy T, which can make it difficult to predict which of
these multiple different strategies Player 1 will use. We can emphasize that one choice
is uniquely the best against T as follows; we say that a strategy S of Player 1 is a strict
best response to a strategy T for Player 2 if S produces a strictly higher payoff than
any other strategy paired with T: I

Pl(S, T) > PIeS', T)

for all other strategies S' of Player 1. When a player has a strict best response to T, th_~s.-
strategy is clearly the one we should expect her to play when faced with T. -

The second concept, which was central to our analysis in the previous section, IS
that of a strictly dominant strategy. We can formulate its definition in terms of best
responses as follows:

• We say that a dominant strategy for Player 1 is a strategy that is a best response to
every strategy of Player 2.

,We say that a strictly dominant strategy for Player I is a strategy that is a strict
best response to every strategy of Player 2.

In the previous section, we made the observation that if a player has a strictly dominant
strategy, then we can expect him or her to use it. The notion of a dominant strategy is
slightly weaker, since it can be tied as the best option against some opposing strategies.
As a result, a player could potentially have multiple dominant strategies, in which case '
it may not be obvious which one should be played.

The analysis of the Prisoner's Dilemma was facilitated ,?y the fact that both players.
had strictly dominant strategies, and so it was easy to ~eason about what was likely to

.happen. But most settings won't be this clear-cut; we now begin to look at games that
lack strictly dominant strategies. .;-1

'~': .~ G~e 'in ~~chOnly One Player H~.a Strictly Dominant Strategy. As a first
step, let's cO~sider a setting in which one player has a strictly dominant strategy and

. ! the other one doesn't. As a concrete example, we consider the following story.'; ".
'!~\l"Suppose two firms are each planningito produce and market anew product; these
~tWoproducts will directly compete withleach other. Let's imagine that the population



148 GAMES

..,., -
.' ... ,

Firm 2
Lpw-Priced Upscale

'; ': .~.'.

Low-Priced
Firm 1

Upscale

Figure 6.5. Marketing strategy.

of consumers can be cleanly divided into two market segments: people who would only
buy a low-priced .version of the product and people ~ho would only buy an upscale
version. Let's also assume that the profit any firm makes on a sale of either a low-priced
or an upscale product is the same. So.to keep track of profits, it's good enough to keep
track of sales. Each firm wants to maximize its profit, or equivalently its sales, and to
do this it has to decide whether its new product will be low-priced or upscale.

This game has two players - Firm 1and Firm 2 - and each has two possible strategies:
to produce a low-priced product or an upscale one. To determine the payoffs, here is
how the firms expect the sales to work out:

• People who prefer a low-priced version account for 60% of the population, and
people who prefer an upscale version account for 40% of the population.

• Firm 1 is the much more popular brand, and so when the two firms directly compete
in a market segment, Firm I gets SO% of the sales and Firm 2 gets 20% of the
sales. (If a firm is the only one to produce a product for a given market segment,
it gets all the sales.)

Based on this description of the market, we can determine payoffs for different choices
of strategies as follows:

If the two firms target different market segments, they each get all the sales in that
segment. The one that targets the low-priced segment gets a payoff of .60 and the
one that targets the upscale segment gets .40.
lfboth firms target the low-priced segment, then Firm Igets SO% of it, for a payoff
of .4S, and Firm 2 gets 20% of it, for a payoff of .12.

'. Analogously, if both firms target the upscale segment, then Firm 1 gets a payoff
of (.S)(.4) = .32 and Firm 2 gets a payoff of (.2)(.4) = .OS.

This description of the game is summarized in the payoff matrix in Figure 6.5.
Notice that in this game, Firm 1 has a strictly dominant strategy: for Firm 1, Low-

Priced is a strict best response to each strategy of Firm 2. On the other hand, Finn 2
does not have a dominant strategy: Low-Priced is its best response when Firm 1 plays
Upscale, and Upscale is its best response when Firm 1 plays Low-Priced.

Still, it is not hard to make a prediction about the outcome of this game. Since Firm
1has a strictly dominant strategy in Low-Priced, we can expect Firm 1 to play "it.Now,
what should Firm 2 do? If Firm 2 knows Firm 1's payoffs, and knows that Firm I
wants to maximize profits, then Firm 2 can confidently predict that Firm 1 will.play
Low-Priced. Then, since Upscale is the strict best response by Firm 2 to Low-Priced, ..
we can predict that Firm 2 will play Upscale. So our overall prediction of play' in this

I
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marketing game is Low-Priced by Firm I and Upscale by Firm 2, resulting in payoffs
of .60 and .40, respectively.' .

Note that, although we've described the reasoning in two steps - first the smctl.y
dominant strategy of Firm 1, and then the best response of Firm 2 - the c~ntext ~s
stiU a game in which the players move simultaneously: both firms arc develo~mg their
marketing strategies concurrently and in secret. It is simply that the reasonmg about
strategies naturally follows this two=step logic, resulting in a prediction about how ~e

. simultaneous playwill occur. It's also interesting to note the intuitive message ~f .thiS
prediction. Firm 1 is.so strong that it can proceed without regard to Firm 2's decision;
given this, Firm 2's best strategy is to stay safely out of the way of Firm 1.

Finally, we should also note how-this marketing strategy game makes use of the
knowledze we assume players have about the game being played and about each other,
In partic~lar: we assume that each player knows the .entire payoff ma~x. And 'in
reasoning about this specific game, it is important that Firm 2 knows that Firm 1 wants
to maximize profits, and that Firm 2 knows that Firm I knows its own profits. In general,
we will assume that the players have common knowledge of the game: they know the
structure of the game, they know that each of themknows the structure of.the gam.e,
they know that each of them knows that each of them knows: and so .on. While we wI~1
not need the full technical content of common knowledge in anything we do here, It
is an underlying assumption and a topic of research in the game theory literature [28].
As mentioned earlier, it is still possible to analyze games in situations where common
knowledge does not hold, but the analysis becomes more complex [208]. It's also,
worth noting that the assumption of common knowledge is a bit stronger than we need
for reasoning about simple games such as the Prisoner's Dilemma, .in which strictly
dominant strategies for each player imply a particular course of action regardless of
what the other player is doing.

6.4 Nash Equilibrium

When neither player in a two-player game has a strictly dominant strategy, we need
some other way to predict what is likely to happen. In this section, we develop methods
for doing this; the result will be a useful framework for analyzing games in general.

An Example: A Three-Client Game. To frame the question, it 'helps to think about
a simple example of a game that lacks strictly dominant strategies. Like our previous
example, it is a marketing game played.between two firms; however, it has a slightly'
more intricate setup. Suppose two firms each hope to ~o business with one of three
large clients, A, B, and C Each firm has three possible strategies: whether t,oapproach
A, B, or C. The results of their two decisions will work out as follows:

• If the two firms approach the same .client, then the client will give half its business
to each.
Firm 1 is too small to attract business on its own, so if it approaches one client •
while Firm 2 approaches a different one, then Firm 1 gets a payoff ofO. =: •. ::;.. ::'~.
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Firm'Z'

ABC

A
Finn 1 B

C

4,4 0,2 0,2
b,o 1, 1· 0,2
0,0 0,2 1, 1

.Figure 6.6. Three-client game.

• If Firm 2 approaches client B or C on its own: it will get their full business.
However, A is a larger client, and will only do business with the firms if both
approach A.

Because A is a larger client, doing business with it is worth 8 (and, hence, 4 to
each firm if it's split), whereas doing business with B or C is worth 2 (and hence
Ito each firm if it's split).

Fromthis description, we can work out the payoff matrix in Figure 6.6.
If we study how the payoffs in this game work, we see that neither firm has a

dominant strategy. Indeed, each strategy by each firm is a strict best response to some
strategyby the other firm. For Firm 1, A is a strict best response to strategy A by Firm
2,B is a strict best response to B, and C is a strict best response to C. For Firm 2, A is
a strict best response to strategy A by Firm 1, C is a strict best response to B, and B is
a strict best response to C. So how should we reason about the outcome of play in this
game?

Defining Nash Equilibrium. In 1950, John Nash proposed a simple but powerful
principlefor reasoning about behavior in general games [313,314],and its underlying
premiseis the following: even when there are no dominant strategies, we should expect
playersto use strategies that are best responses to each other. More precisely, suppose
thatPlayer 1 chooses a strategy S and Player 2 chooses a strategy T. We say that this
pairof strategies (S, T) is a Nash equilibrium if S is a best response to T, and T is a
bestresponse to S. This concept is not one that can be derived purely from rationality

. onthe part of the players; instead, it is an equilibrium concept. The idea is that if the
playerschoose strategies that are best responses to each other, then no player has an
incentivetodeviate to an alternative strategy - the system is in a kind of equilibrium

-state,with no force pushing it toward a different outcome. Nash shared the 1994 Nobel
Prizein Economics for his development and analysis of this idea. .

To understand the idea of Nash equilibrium, we should first ask why a pair of
strategiesthat are not best responses to each other would not constitute an equilibrium.
Theanswer is that the players cannot both believe that these strategies would actually
beused in the game, since they know that at least one player would have an incentive to
deviateto another strategy. So a Nash equilibrium can be thought of as an equilibrium
inbeliefs. If each player believes that the other.player will actually playa strategy ..that .
ispart of a Nash equilibrium, then she has an incentive to play her part of-the Nash
equilibrium.' ;~. ~7'.:~;':'! '.••.••.J! ! ~~:~•.:;ft!f~~;t,',~._~ ..;~ ;~"', ,/I,'
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Yi PowerPoint
ou

Your Partner

I Po7'~oi",I ~~:.~" I
0,0 1,1Keynote

Figure 6.7. Coordination game.
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Let's consider the three-client game from the perspective of Nash- equilibrium. If.
Firm 1 chooses A and Firm 2 chooses A, then we can check that Firm 1 is playing a

. best response to Firm 2's strategy, and Firm 2 is playing a best response to Firm l 's
strategy. Hence, the pair of strategies CA, A) forms a Nash equilibrium. Moreover, we
can check that this is the only Nash equilibrium. No other pair of strategies are best
responses to each other. I

This discussion also suggests two ways to find Nashequilibria. The first is simply to
check all pairs of strategies and ask, for each pair, whether the individual strategies are
best responses to each other. The second is to compute each player's best response(s) to
each strategy of the other player and then find strategies that are mutual best responses .,.
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6.~ Multiple Equilibria: Coordination Games
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For a game with a single Nash equilibrium, such as the three-client game in the previous "
section, it seems reasonable to predict that the players will play the strategies in thl~
equilibrium: under any other play of the game, at least one player will not be using a
best response to what the other is doing. Some natural games, however, can have more
than one Nash equilibrium, and in this case it becomes difficult to predict how rational
players will actually behave in the game. We consider some fundamental examples of
this problem here.

A Coordination Game. A simple but central example is the following coordination
game, which we can motivate through the following story. Suppose you and a partner
are each preparing slides for a joint project presentation; you can't reach your partner by
phone, and you need to start working on the slides now. You have to decide whether
to prepare your half of the slides in PowerPoint or in Apple's Keynote software. Either
would be fine, but it will be much easier to merge your slides with your partner's if you
use the same software.

So we have a game in which you and your partner are the two players; choosing
PowerPoint or choosing Keynote form the two strategies, and thepayoffs are shown in'
Figure 6.7.. .

This is called a coordination game because the two players' shared goal is really
. 'to coordinate on the same strategy. Coordination games arise in many settings'. For

•...~;-

.
t, ,In this discussion, each player only has three available strategies: A, B, or C. Later in this chapter, we will
Iintroduce the possibility of more complex strategies in which players can randomize over their available options.
. Using this more complex formulation of possible strategies. we will find additional equilibria for the three-clieat
.game. !
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Yi PowerPoint
ou

Keynote

Your Partner
PowerPoint Keynote

EB~r---~:-~--
Figure 6.B. Unbalanced coordination ga~e.

example, tWQ manufact~ring co~pan~es that work. together extensively ~~st decide-
whether to configure their machinery in metric or English units 'of measurement; two
platoons in the .same army must decide whether to attack an enemy's left or right flank;
two people trying to find each other in a crowded mall must'decide whether to wait
at th~ north end or the south end of the mall. In each case, either choice can be fine,
provided that both participants make the same choice.

The underlying difficulty is that the game has two Nash equilibria - (powerPoint,
P~werPoint).and (Keynote, Keynote) in our example from Figure 6.7. If the players
fall to coordinate on one of the Nash equilibria, perhaps because one player expects
PowetPoint to be played and theother expects Keynote, then they receive low payoffs.
So what do the players do?

This remains a subject of considerable discussion and research, but some proposals
have received attention in the literature. Thomas Schelling [364] introduced the idea
of a focal point as a way to resolve this difficulty. He noted that in some games there
are natural reasons (possibly outside the payoff structure of the game) that cause the
players to focus on one of the Nash equilibria. For example, suppose two <lrivers
are approaching each other at night on an undivided country road. Each driver has
to decide whether to move over to the left or to the risht, If the drivers coordinate -
making the same choice of side - then they pass each other, but if they fail to coordinate,
then they get a severely low payoff due to the resulting collision. Fortunately, social
convention can help the drivers decide what to do in this case: if this game is being
played in the United States, convention strongly suggests that they should move to the
right, whereas if the game is being played in England, convention strongly suggests that
they should move to the left. In other words, social conventions, while often arbitrary,
can sometimes be useful in helping people coordinate among multiple equilibria.

Variants on the Basic Coordination Game. One can enrich the structure of our basic
coordination game to capture a number of related issues surrounding the problem of
multiple equilibria. To take a simple extension of our previous example, suppose that

.both you and YOUfproject partner each prefer Keynote to .PowerPoint. You still want
to coordinate, but you now view the two alternatives as unequal. This situation gives
us the payoff matrix for an unbalanced coordination game; shown in Figure 6.8.

Notice that (Powerl'oint, PowerPoint) and (Keynote, Keynote) are still both Nash
equilibria for this game, despite the fact that one of them gives higher payoffs to
both players. (The point is that if you believe your partner will choose Powerl'oint,
you still should choose PowerPoint as well.) Here, Schelling's theory of foc~ points .
suggests that we can use a feature intrinsic to the game - father than an arbitrary social
convention - to make a prediction about which equilibrium will be' chosen by the
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Figure 6.9. Battle of the sexes.
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players. That is, we can predict that when the players have to choose, they will select
strategies so as to reach-the equilibrium that gives higher payoffs to both of them. (To .
take another example, consider the two people trying to meet at a crowded mall. If the
north end of the mall has a bookstore they both like, while the south end consists of
a loading dock, the natural 'focal point would be the equilibrium in which they both
choose the north end.)

Things get more complicated if you and your partner don't agree on which software
you prefer, as shown in the payoff matrix of Figure 6.9.

In this case, the two equilibria still correspond to the two different ways of coor-
dinating, but your payoff is higher in the (Keyno~e, Keynote) equilibrium, while your
partrier's payoff is higher in the (PowerPoint, Powerl'oint) equilibrium. This game is
traditionally called the Battle of the Sexes, because of the following motivating story.
A husband and wife want to see a movie together, and they need to choose between a
romantic comedy and an action movie. They want to coordinate on their choice, but
the (Romance, Romance) equilibrium gives a higher payoff to one of them while jhc
(Action, Action) equilibrium gives a higher payoff to the other. .

In Battle of the Sexes, it can be hard to predict the equilibrium that will be played
using either the payoff structure or some purely external social convention. Rather,
it helps to know something about conventions that exist between the two players
themselves, suggesting how they resolve disagreements when they prefer different
ways of coordinating.

It's worth mentioning one final variation on the basic coordination game, which
has attracted attention in recent years. This is the Stag Hunt game [374]; the name
is motivated by the following story from the writings of Rousseau. Suppose that two
people are out hunting; if they work together, they can catch a stag (which would be .
the highest-payoff outcome), but on their own each can catch a hare. The tricky part is
that if one hunter tries to catch a stag on his own, he will get nothing, while the other

".one can still catch a hare. Thus, the hunters are the two players, their strategies are
Hunt Stag and Hunt Hare, and the payoffs are shown in Figure 6.10.

This situation is quite SImilar to the unbalanced coordination game, except that if the
two players miscoordinate, the one who was trying fonthe higher-payoff outcome gets
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figure 6.10! Stag Hunt game.
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Your Partner
Presentation Exam

Presentation
You

Exam

Figure 6.11. Exam-or-presentation game (Stag Hunt ver:ion).

penalizedmore than the.one who was trying for the lower-payoff outcome. (In fact, the
one trying for-the lower-payoff outcome doesn't get penalized at ali.) As a result, the
challengein reasoning about which equilibrium will be chosen is based on the trade-off
between the high payoff of one and the mild consequences of miscoordination from
theother.

It has been argued that the Stag Hunt game captures some of the intuitive challenges
that are also raised by the Prisoner's Dilemma. The structures are clearly different,
sincethe Prisoner's Dilemma has strictly dominant strategies; both, however, have the
property that players can benefit if they cooperate with each other, but risk suffering
if they try cooperating while their partner doesn't. Another way to see some of the
similarities between the two games is to notice that if we go back to the original
exam-or-presentation game from Section 6.1 and make one small change, then we
end up changing it from an instance of the Prisoner's Dilemma to something closely
resembling the Stag Hunt game. Specifically, suppose that we keep the grade outcomes
thesame as in Section 6.1, except that we require both you and your partner to prepare
for the presentation in order to have any chance of a better grade. That is, if you both
prepare,you both get a 100 on the presentation, but if at most one of you prepares, you
bothget the base grade of 84. With this change, the payoffs for the exam-or-presentation
game become what is shown in Figure 6.11.

We now have a structure that closely resembles the Stag Hunt game: coordinating
on(presentation, Presentation) or (Exam, Exam) are both equilibria, but if you attempt
to go for the higher-payoff equilibrium, you risk getting a low grade if your partner '
opts to study for the exam.

6,6 Multiple Equilibria: The Hawk-Dove Game

Multiple Nash equilibria also arise in a different but equally fundamental kind of game,
in which the players engage in a kind of "anticoordinatioii" activity. Probably the most
basic form of such a game is the Hawk-Dove game, which is motivated by the following
story.' .

Suppose two animals are engaged in a contest to decide how a piece of food will
be divided between them. Each animal can choose to behave aggressively (the Hawk
strategy) or passively (the Dove strategy). If the two animals both behave passively,
they divide the food evenly, and each gets a payoff of 3. If one behaves aggressively.
while the other behaves passively, then the aggressor gets most of the food, obtaining
a payoff of5, while the passive one only gets a payoff of 1. But if both animals behave

i
I
I

.~
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Animal 2

D
Animal 1

H

Figure 6.12. Hawk-Dove game .

.aggressively, then they destroy the. food (and possibly injure each other), each getting
a payoff of O. Thus, we have the payoff matrix in Figure 6.12. .

This game has two Nash equilibria: (D, 'H) and (H, D): Without knowing more
about the animals we cannot predict which of these equilibria will be played. So, as
in the coordination games we looked at earlier, the concept of Nashequilibrium helps
to narrow down the set of reasonable predictions, but it does not provide a unique
prediction.

The Hawk-Dove game has been studied in many contexts. For example, suppose
we substitute two countries for the two animals, and suppose that the countries are
simultaneously choosing whether to be aggressive or passive in their foreign policy.
Each country hopes to gain through being aggressive, but if both act aggressively they
risk actually going to war, which would be disastrous for both. So in equilibrium, we
can expect that one will be aggressive and one will be passive, but we can't predict who
will follow which strategy. Again we would need to know more about the countries to
predict which equilibrium will be played. //

Hawk-Dove is another example of a game that can arise from a small change to' the
payoffs in the exam-or-presentation game from Section 6.1. Let's again recall the setup
from that section; now we vary things so that if neither you nor your partner prepares
for the presentation, you will get a very low joint grade of 60. (If one or both of you
prepare, the grades for the presentation are the same as before.) If we compute the
average grades received for different choices of strategies in this version of the game,
we have the payoffs shown in Figure 6.13 .

In this version of the game, there are two equilibria: (Presentation, Exam) and
(Exam, Presentation). Essentially, one of yO? must behave passively and prepare for
the presentation, while the other achieves the higher payoff by studying for the exam.
If you both try to avoid the role of the passive player, you end up with very low payoffs,
but we cannot predict from the structure of the game alone 'who will play this passive
role. - '

The Hawk-Dove game is also known by a number of other names in the game theory
literature. For example, it is frequently re!erred to as the game of Chicken, to evoke. the

"
Your Partner ..

Presentation Exam
. I

Yi. Presentation
ou

.Exam'

90,90 . 86,92
92,86 76, 76

Figure 6.1.3.. Exam or presentation (Hawk-Dove version)?
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Player 2
H T

. H
Player 1

T
-1, +1 +1,-1
+1,-1 -1, +1

Figure 6.14. Matching Pennies game.

image of two teenagers racing their cars toward each other, daring each other to be the
one to 'swerve out of the way. The two strategies here are Swerve' and Don 't Swerve:
the one who swerves first suffers humiliation from his friends, but if neither swerves,
then both suffer an actual collision.

6.7 Mixed Strategies

In the previous two sections, we have been discussing games whose conceptual com-
plexity comes from the existence of multiple equilibria. However, there are also games
that have no Nash equilibria at all. For such games, we will make predictions about
players' behavior by enlarging the set of strategies to include the possibility of ran-
domization; once players are allowed to behave randomly, one of John Nash's main
results establishes that equilibria always exist [313, 314].

Probably the simplest class of games to expose this phenomenon are what might
be called "attack-defense" games. In such games, one player behaves as the attacker
while the other behaves as the defender. The attacker can use one of two strategies -
let's call them A and B - while the defender's two strategies are "defend against /\.'
or "defend against B." If the defender defends against the attack the attacker is using,
then the defender gets the higher payoff; but if the defender defends against the wrong
attack, then the attacker gets the higher payoff.

Matchlng Pennies. A simple attack-defense game is called Matching Pennies. It is
based on a game in which two people each hold a penny and simultaneously choose
whether to show heads (H) or tails (T) on their penny. Player 1 loses his penny to
Player 2 if they match; Player 1 wins Player 2's penny if they don't match. This story
produces the payoff matrix shown in Figure 6.14.

Matching Pennies is a simple example of a large class of interesting games with
the property that the payoffs of the players sum to zero in ~very outcome. Such games
are called zero-sum games, and many attack-defense games :- and more generally,
games where the players' interests are in direct conflict - have this structure. Games
like Matching Pennies have in fact been used as metaphorical descriptions of decisions
made in combat; for example, the Allied landing in Europe on June 6, 1944 - one of
the pivotal moments in World War II - involved a decision by the Allies whether to
cross the English Channel at Normandy or at Calais, and a corresponding decision by
the German army whether to mass its defensive forces at Normandy 'or Calais. This

.i

5:

MIXED STRATEGIES

situation has an attack-defense structure that closely resembles the Matching Pennies
game [123].

The first thing to notice about Matching Pennies is that there is no pair of strategies
that are best responses to each other. To see this, observe that, for any pair of stra.tegies,
one of the players gets a payoff of -1, and this player would improve his or her payoff
to + I by switching strategies. So for any pair of strategies, one of the players wants to
switch what they're doing.?

Therefore, if we treat each playeras simply having the two strategies Ror T, .then
tpere is no Nash equilibrium for this game. This is not so surprising if we consider
how Matching Pennies works. A pair of strategies, one for each player, forms a Nash
equilibrium if even given knowledge of each other's strategies, neither player would
have an incentive to switch to an alternate strategy. But in Matching Pennies, if Player
1 knows that Player 2 is going to playa particular choice of H or T, then Player 1
can exploit this by choosing the opposite and receiving a payoff of +1. Analogous
reasoning holds for Player 2. .

When we think intuitively about how games of this type are played in real life, we
see that players generally try to make it difficult for their opponents to predict what
they will play. This suggests that, in our modeling of a game like Matching Pennies,
we shouldn't treat the strategies as simply H or T,.but as ways of randomizing one's
behavior between Hand T. We now explore how to introduce randomization into our
model for the play of this kind of game.

Mixed Strategies. The simplest way to introduce randomized behavior is to say that"
each player is not actually choosing H or T directly, but rather is choosing a probability
with which he or she will play H. So in this model, the possible strategies for Player I
are numbers p between 0 and 1; a given number p means that Player I is committing
to play H with probability p, and T with probability I - p. Similarly, the possible
strategies for Player 2 are numbers q between 0 and I, representing the probability that
Player 2 will play H.

Since a game consists of a set of players, strategies, and payoffs, we should notice
that, by allowing randomization, we have actually changed the game. It no longer
consists of two strategies by each player, but instead a set of strategies corresponding
to the interval of numbers between 0 and 1. We will refer to these as mixed strategies,
since they involve "mixing" between the options Hand T. Notice that the set of mixed
strategies still includes the original two options of committing to definitely play Hor T;
these two choices correspond to selecting probabilities of 1 or 0, respectively, and we
will refer to them as the two pure strategies in-the game. To make things more informal
notationally, we sometimes refer to the choice of p = 1 by Player 1 equivalently as the
"pure strategy fI," and similarly for p = 0 and q = 1 or if. .

• I

2 Incidentally, although it', not crucial for the discussion here, it's interesting to note that the three-client game
used as an example in Section 6.4 can be viewed intuitively as a kind of hybrid of the Matching Pennies game
and the Stag Hunt game. If we look just at how the two players evaluate the options of approaching clients B
and C, we have Matching Pennies: finn I wants to match, whereas firm 2 wants' to not match. However, if they
coordinate on approaching client A, then they both gel even higher payoffs - analogously to the two hunters
coordinating to hunt stag. :
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Payoffs from Mixed Strategies. With this new set of strategies, we also need to
determine the new set of payoffs. The subtlety in defining payoffs is that they are
nowrandom quantities: each player gets +1 with some probability and -1 with the'
remainingprobability. When payoffs were numbers.jt was obvious how to rank them: .
.biggerwas better. Now that payoffs are random, it is not immediately obvious how to
rank them: we want a principled way to say that one random outcome is better than
another. .' .

To think about this issue, let's start by considering the Matching Pennies game from
PlayerI's point of view; we focus' first on how she evaluates her' two pure strategies of
definitelyplaying H or definitely playing T. Suppose that Player 2 chooses' the strategy
q; that is, he commits to playing H with probability q and T. with probability I - q.
Thenif Player 1chooses pure strategy H, she receives a payoff of .-1 with probability
q (since the two pennies match with probability q, in which event she loses), and she
receivesa payoff of +1 with probability 1 - q (since the two pennies don't match with
probability 1 - q). Alternatively, if Player 1 chooses pure strategy T, she receives +I
with probability q, and -1 with probability 1- q. So' even if Player 1 uses a pure
strategy,her payoffs can still be random due to the randomization employed by Player
2. How should we decide which of H or T is more appealing to Player 1 in this case?

To rank random payoffs numerically, we attach a number to each distribution that
represents how attractive this distribution is to the player. Once numbers have been
assigned to distributions, we can then rank them according to their associated number.
The number we will use for this purpose is the expected value of the payoff. For
example, if Player 1 chooses the pure strategy H while Player 2 chooses a probability
ofq, as before, then the expected payoff to Player 1 is

(-I)(q) + (1)(1 - q) = 1 - 2q.

Similarly, if Player 1 chooses the pure strategy T while Player 2 chooses a probability
ofq, then the expected payoff to Player 1 is

(I)(q) + (-1)(1 - q) = 2q - 1.

We will assume that each player is seeking to maximize the expected payoff they get
fromthe choice of a mixed strategy. Although the expectation is a natural quantity, it is a
subtlequestion whether maximizing expectation is a reasonable modeling assumption
about the behavior of players. By now, however, there is a well-established foundation
for the assumption that players rank distributions over payoffs (where these payoffs
appropriately represent each player's satisfaction with the outcome.of the game) ac-
cording to their expected values [288, ~63, 398], and so we will follow this assumption
here.

We have now defined the mixed-strategy version of the Matching Pennies game:
strategies are probabilities of playing H, and payoffs are the expectations of the payoffs
fromthe four pure outcomes (H, H), (H, T), (T, H), and (T, T). We can now ask whether
a Nash equilibrium exists for this richer version of the game.

Equilibrium with Mixed Strategies. We define a Nash equilibrium for themixed-
strategy version just as we did for the pure-strategy version: it is a pair.of strategies
(nowprobabilities) such that each is a best response to the other.

,j
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... First, let's observe that in the Matching Pennies game, no pure strategy can be part
of a Nash equilibrium. This reasoning is equivalent to what we did at the' outset of
rhis section. Suppose, for example, that the pure strategy H (i.e., probability p = 1) by
Player 1were part of a Nash equilibrium. Then Player 2's unique best response would
be the pure strategy H as well (since Player 2 gets +1 whenever he matches). But H
by Player 1 is not a best response to H by Player 2, so in fact this couldn't be a Nash
equilibrium. Analogous reasoning applies to the other possible pure strategies followed
by the two players. So we reach the natural conclusion that, in any Nash equilibrium,
both players must be using probabilities that are strictly between 0 and 1.

Next, let's ask what Player 1's best response should be to strategy q used by Player
2. Earlier we determined that the expected payoff to Player I from the pure strategy H
in this case is

~-..
.~,
'. 1- 2q,

while the expected payoff to Player 1 from the pure strategy T is

2q - 1.

Now here's the key point: if I- 2q i= 2q - 1, then one of the pure strategies H or T is
in fact the unique best response by Player 1 to a piayiof q by Player 2. This holds simply
because one of 1 - 2q or 2q - 1 is larger in this case, and so there is no point for Player
1 to put any probability on her weaker pure strategy. But we have already established
that pure strategies cannot be part of any Nash equilibrium for Matching Pennies, and
because pure strategies are the best responses whenever 1 - 2q i= 2q - 1, probabilities"
that make these two expectations unequal cannot be part of a Nash equilibrium either.

So we've concluded that, in any Nash equilibrium for the mixed-strategy version of
the Matching Pennies game, we must have

I
1- 2q = 2q - 1,

ii'~

~'I"-,

or, in other words, q = 1/2. The situation is symmetric when we consider things from
Player 2's point of view and evaluate the payoffs from a play of probability p by Player
1. We conclude from this that in any Nash equilibrium we must also have p = 1/2.

Thus, the pair of strategies p = 1/2 and q = 1/2 is the only possibility for a Nash
equilibrium. We can check that the strategies in this pair are in fact best responses
to each other. As a result, this is the unique Nash equilibrium for the mixed-strategy
version of Matching Pennies.

.~

.t
'"s,~I' Interpreting the Mixed-Strategy Equilibrium for Matching Pennies. Having de-
; rived the Nash equilibrium for this game, it's useful to think about what it means and

how we can apply this reasoning to' games in general. ~
First, let's picture a concrete setting in which two people actually sit down to play

Matching Pennies, and each of them actually commitsto behaving randomlyaccordingi~.. to probabilities p and q, respectively. If Player 1 believes that Player 2 will play H
. strictly more than half the time, then she should definitely play T - in which case

Player 2 should not be playing H more than half the time. The symmetric reasoning
applies if Player 1 believes that Player.Z will play T strictly more than half the time.
In neither case would we have a Nash equilibrium. So the point is that the choice of
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q = 1/2 ~y Play~r 2 m::kes Play~r 1 indifferent between playing H o~ T: the strategy
q ~.1/2. IS ~~ectJvel.y nonexploitable" by Player 1. This reasoning was in fact our
ongIna~ intuition for rntroducing randomization: each player wants their behavior to be
unpredictable to the other, so that their behavior can't be taken advantage of. We should
note that. the fact thatfbOth p~obabiliti~s turned o~t·to ~ 1/2 is a res~t of the highly
symmea:c structure or Matching Pennies: as we will see In subsequent examples in the
next section, when the payoffs are less symmetric, the Nash equilibrium'carr consist' of.
unequal probabilities. .' . .'. . .'

This notion of indifference is a general principle behind the computation of mixed-
~trateg.y equilibria in. two-player, two-strategy games when there are no equilibria
~nv?lvIng pure strategies: each player should randomize so as to make the other player
Indifferent between their two alternatives. This way, neither player's behavior can be
exploited by a pure strategy, and the two choices of probabilities are best responses
to each other. And although we won't pursue the details of it here, a generalization
of this principle applies to games with any finite number of players and any finite
number of strategies: Nash's main mathematical result accompanying his definition
of equilibrium was to prove that every such game has at least one mixed-strategy
equilibrium [313, 314]. .

It's also worth thinking about how to interpret mixed-strategy equilibria in real-world
situations. In fact there are several possible interpretations, which are, appropriate in
different situations:

• Sometimes, particularly when the participants are genuinely playing a sport or
game, the players may be actively randomizing their actions [107, 337, 405]: a
tennis player may be randomly deciding whether to serve the ball up the center or
out ro the side of the court; a card player may be randomly deciding whether to
bluff or not; two children may be randomizing among rock, paper, and scissors in
the perennial elementary-school contest of the same name. We will look at some
examples of this type of behavior in the next section.
Sometimes the mixed strategies are better viewed as proportions within a popula-
tion. Suppose, for example, that two species of animals, in the process of foraging
for food, regularly engage in one-on-one attack-defense games with the structure
of Matching Pennies. Here, a single member of the first species always plays the
role of attacker, and a single member cf the second species always plays the role
of defender.

Let's suppose that each individual animal is genetically hard-wired to always
play H or always play T; and suppose further that the population of each species
consists half of animals hard-wired to play H and half of animals hard-wired to play
T. Then with this population mixture, H-animals in each species do exactly as well
on average, over many random interactions, as T-animals. Hence, the population as
a whole is in a kind of mixed equilibrium, even though eacli individual is playing
a ,Pure strategy. This story suggests an important link with evolutionary biology,
which has in fact been developed through a long line of research [375, 376]; this
topic is the focus of Chapter 7. ~ . . .

• Maybe.the most subtle interpretation is based on recalling, from Section 6.4, that a
Nash equilibri~m is often best thought of as an equilibrium in beliefs. If each player
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Defend Pass Defend Run

Offense Pass I 0,0
Run. 5,-5

Figure 6.15. Run-pass game.

161

eacl
10, -10

0,0

believes that her partner will play according to a particular Nash equilibrium, then
she too will want to play according to it. In the case of Matching Pennies,.with its
unique mixed equilibrium, this means that it is enough for you to expect that when
you meet an arbitrary person, they will play their side of Matching Pennies with a
probability of 1/2. In this case, playing a probability of 1/2 makes sense for you
too; hence, this choice of probabilities is self-reinforcing - it is in equilibrium -
across the entire population.

6.8 Mixed Strategies: Examples and Empirical Analysis

Because mixed-strategy equilibrium is a subtle concept, it's useful to think about it
through further examples. We will focus on two main examples, both drawn from
the realm of sports, and buth with attack-defense structures. The first is stylized and
partly metaphorical, while the second represents a striking empirical test of whether
people in high-stakes situations actually follow the predictions of mixed-strategy equi-
librium. We conclude the section with a general discussion of how to identify all the
equilibria of a two-player, two-strategy game.

The Run-Pass Game. First, let's consider a streamlined version of the problem faced
by two American football teams as they plan their next play in a football game. The
offense can choose either to run or to pass, and the defense can choose either to defend
against the run or to defend against the pass. Here is how the payoffs work:

• If the defense correctly matches the offense's play, then the offense gains 0 yards.
• If the offense runs while the defense defends against the pass, the offense gains 5

yards.
If the offense passes while the defense defends against the run, the offense gains
10yards.

Hence, we have the payoff matrix shown in Figure 6.J5. . .
[If you don't know the rules of American football, you can follow the discussion

simply by taking the payoff matrix as self-contained. Intuitively, the point 'is simply
that we have an attack-defense game with two players named "offense" and "defense,"
respectively, and where the attacker has a stronger option (pass) and a weaker option
(run).] •

Just as in Matching Pennies, it's easy to check that there is no Nash equilibrium in
which either player uses a pure strategy: both have to make their behavior unpredictable
by randomizing. So let's work out a mixed-strategy equilibrium for this game: let p
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be the probability that the offense passes, and let q be the probability that the defense
defends against the pass. (We know from Nash's result that at 'least one mixed-strategy
equilibrium must exist, but not what the actual values of p and q should be.)

We use the principle that a mixed equilibrium arises when the probabilities used by
each player make his opponent indifferent between his two options.

• First, suppose the defense chooses a probability of q for defending against the
pass, Then the expected payoff to the offense from passing is

(O)(q)+ (10)(1- q) =10 - lOq,

while the expected payoff to the offense from running is

(5)(q) + (0)(1 - q) = 5q.

To make the offense indifferent between its two strategies, we need to set 10-.--
lOq = 5q; hence, q = 2/3.

• Second, suppose the offense chooses a probability of p for passing. Then the
expected payoff to the defense from defending against the pass is

(O)(p) + (-5)(1 - p) = 5p - 5,

and the expected payoff to the defense from defending against the run is

(-lO)(p) + (0)(1 - p) = -lOp.

To make the defense indifferent between its two strategies, we need 5p - 5 =
-lOp; hence, p = 1/3.

Thus, the only possible probability values that can appear in a mixed-strategy equi-
librium are p = 1/3 for the offense and q = 2/3 for the defense, 'which in fact forms
anequilibrium. Notice also that the expected payoff to the offense with these probabil-
ities is 10/3, and the corresponding expected payoff to the defense is -10/3. Also, in
contrast to the Matching Pennies game, notice that because (If the asymmetric structure
of the payoffs here, the probabilities that appear in the mixed-strategy equilibrium are
unbalanced as well.

Strategic Interpretation of the Run-Pass Game. There are several things to notice
. about this equilibrium. First, the strategic implications of the equilibrium probabilities

are intriguing and a bit subtle. Specifically, although passing is the offense's more
powerful weapon, it is used less than half the time: the offense places only probability
p = 1/3 on passing. This initially seems counterintuitive: why not spend more time
using your more powerful option? But the calculation thatgave us the equilibrium
probabilities also supplies the answer to this question. If the offense placed any. higher
probability on passing, then the defense's best response would be to always defend
against the pass, and the offense would actually. do worse in expectation.

I
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We can see how this works by trying a larger value for p, like p = 1/2. In this case,
the defense will always defend against the pass, and so the offense's expected payoff
will be 5/2, since it gains 5 half the time and 0 the other half the time:

(1/2~(0) + 0/2)(5) = 5/2.

Above, we saw that, with the equilibrium probabilities, the offense has an expected
payoff of 10/3 > 5/2. Moreover, because p =' 1/3 makes the defense indifferent be-
tween its two strategies, an offense. that uses p .= 1/3 is guaranteed to get 10/3 > 5/2
no matter what the defense does.

One way to think about the real power of passing as a strategy is to notice that, in
equilibrium. the defense is defending against the pass 2/3 of the time, even though the
offense is using it only 1/3 of the time. So somehow the threat of passing is helping
the offense, even though it uses it relatively rarely.

This example clearly oversimplifies the strategic issues at work in American football:
there are many more than just two strategies, and teams are concerned with more than
just their yardage on the very next play. Nevertheless, this type of analysis has been
applied to statistics from American football, verifying some of the main qualitative
conclusions at a broad level - that teams generally run more' than they pass, and that
the expected yardage gained per play from running is close to the expected yardage
gained per play from passing for most teams [82; 84, 355].

The Penalty-Kick Game. The complexity of American football makes it hard to cast
it truly accurately as a two-person, two-strategy game. We now focus on a different
setting, also from professional sports, in which such a formalization can be done much
more exactly: the modeling of penalty kicks in soccer as a two-player game.

In 2002, Ignacio Palacios-Huerta undertook a large study of penalty kicks from the
perspective of game theory [337], and we focus on his analysis here. As he observed,
penalty kicks capture the ingredients of two-player, two-strategy games remarkably
faithfully. The kicker can aim the ball to the left or the right of the goal, and the goalie
can dive to either the left or right as w~II.3 The ball moves to the goal fast enough that
the decisions of the kicker and goalie are effectively being made simultaneously; based
on these decisions, the kicker is likely to score or not. Indeed, the structure of the game
is very much like Matching Pennies: if the goalie dives in the direction where the ball
is aimed, he has a good chance of blocking it; if the goalie dives in the wrong direction,
it is very likely to go in the goal.

Based on an analysis of roughly 1,400penalty kicks in professional soccer, Palacios-
Huerta determined the' empirical probability of scoring for each of the four basic .

.outcomes: whether the kicker aims left or right, and whether the goalie dives left or
right. This led to a payoff matrix as shown in Figure 6.16.
.. There are a few contrasts to note in relation to the basic Matching Peimies game.
First, a kicker has a reasonably good chance of scoring even when the goalie dives in

.' the correct direction (although a correct-choice by the goalie still greatly reduces this

~; Kicks up the center. and decisions by the goalie to remain in the center. are very rare and can be ignored in a
- simple version of the analysis. .. I
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Goalie
L R

Kicker L
R

0.58, -0.58 0.95, -0.95
0.93, -0.93 0.70, -0.70

Figure 6.16. Penalty-kick games (from empirical data' Pal . Hr aCIO~o uerta, [337]).

prObability). Second, kickers 'are generally right-footed and so thei h f .. . . ,if C ance 0 scoring
IS not c~mpletely symmetnc between aiming left and aiming right."

D~splte the.s~ c~vea.ts, the basic premise of Matching Pennies is still present here:
there IS ~o eqUl.hbnum ~np~re str~tegies: and so we need to consider how players should
~ando~lZe their behavior m playing this game. Using the principle of indifference as
in previous examples, we see that if q is the probability that a goalie chooses L we
must set q so as to make the kicker indifferent between his two options: '

(.58)(q) + (.95)(1 - q) = (.93)(q) + (.70)(1 - q).

Solving for q, we get q = .42. We can perform the analogous calculation to obtain the
value of p that makes the goalie indifferent, obtaining p = .39.

The s:nki~g punchline to this study is that, in the data drawn from real penalty kicks,
the goalies dive left a .42 fraction of the time (matching the predictiun to two decimal
plac~s): and t~e kickers aim left a .40 fraction of the time (coming within .01 of the

. prediction). It I~ particularly nice to find the theory's predictions borne out in a setting
such as professional soccer, since the two-player game under study is being played by
e~p~rts, and the outcome is important enough to the participants that they are investing
significant attention to their choice of strategies. .

Finding.AII Nash Equilibria. To conclude our discussion of mixed-strategy equilibria,
we consider the general question of how to find all Nash equilibria of a two-player,
two-strategy game.

First, it is important to note that a game may have both pure-strategy and mixed-
str~tegy equilibria. As a result, one should first check all four pure outcomes (given by
p~rs of pure strategies) to see which, if any, form equilibria. Then, to check for any
mixed-strategy equilibria, we need to look for mixing probabilities p and q that are
best responses to each other. If there is a mixed-strategy equilibrium, we can determine
Player 2's strategy (q) from the requirement that Player 1 randomizes. Player 1 will
only randomize if his pure strategies have equal expected payoff. This equality of
expected payoffs for Player 1 gives us one equation that we can solve to determine .
q. The same process gives an equation to solve for determining Player 2's strategy
p. If both of the obtained values, p andq, are strictly between 0 and 1, and arethus
legitimate mixed strategies, then we have a mixed-strategy equilibrium.

Thus far, our examples of mixed-strategy equilibria have been restricted to games
with an attack-defense structure, and so we have not seen an example exhibiting both

4 For purposes of the analysis, we lake all the left-footed kickers in the data and apply a left-right reflection to all
their actions, so that R always denotes the "natural side" for each kicker.

-! .
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pure imd mixed equilibria. However, it is not hard to find 'su~h examples: in particular,
coordination and Hawk-Dove games with two' pure equilibria will each also 'have a
third mixed equilibrium in which each player randomizes, As an example, let's consider
the unbalanced coordination game from Section 6.5 (shown in Figure 6.17).

Suppose that you place a probability of p strictly between 0 and .1 on PowerPoint,
and your partner places a probability of q strictly between 0 and 1 on PowerPoint.
Then you'll be indifferent between PowerPoint and Keynote if

bi:
ch

(l)(q) + (0)(1 - q) = (O)(q) + (2)(1 - q),
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sc
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or. in other words, if q = 2/3. Since the situation is symmetric from your partner's
point of view, we also get p = 2/3. Thus, in addition to the two pure equilibria, we
also get an equilibrium in which each of you chooses PowerPoint with probability 2/3.
Note that, unlike the two pure equilibria, this mixed equilibrium comes with a positive
probability that the two of you will rniscoordinate, but this is still an equilibrium, since
if you truly believe that your partner is choosing Powerf'oint with probability 2/3 and
Keynote with probability 1/3, then you'll be indifferent between the two options and
will get the same expected payoff however you choose.

g:
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6.9 Pareto Optimality and Social Optimality

In a Nash equilibrium, each player's strategy is a best response to the other player's
strategy. In other words, the players are optimizing individually. But this doesn't mean
that, as a group, the players will necessanly reach an outcome that is in any sense good.
The exam-or-presentation game from the opening section, and related games like the
Prisoner's Dilemma, serve as examples of this possibility. (We redraw the payoff matrix
for the basicexam-or-presentation game in Figure 6.18.) . .

It is interesting to classify outcomes in a game not just by their strategic or equi- .
librium properties, but also by whether they are "good for society." To reason about
this latter issue, we first need a way 'of making it precise. We now discuss two useful
candidates for such a definition'. ~

s
o

I
l!

c
t

Your Partner

Presentation Exam
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Figure 6.18. E~am or presentation?
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Pareto Optimality •. The first, definition is Pareto-optimality, name.d after the Italian
economist Vilfredo Pareto who worked in the late 1800s and early 1900s.

,', . ~,'

A choice of strategies -: one by each 'player - is Pareto-optimal if there is no
other choice of strategies in which all players receive payoffs at least as high,
and at least one player receives a strictly higher payoff.

To see the intuitive appeal of Pareto-optimality, let's consider a choice of strategies that
is not Pareto-optimal. In thiscase, there's an alternate choice of strategies that makes
at least one player better off without harming any player. In basically any reasonable
sense. this alternate choice is superior to what's currently being played. If the players
could jointly agree on what to de, and make this agreement binding, then surely they
would preferto move to this superior. choice of strategies.

The motivation here relies crucially on the idea that the players can construct a
binding agreement to actually play the superior pair of strategies: if this alternate
choice is not a Nash equilibrium, then, absent a binding agreement, at least one player
would want to switch to a different strategy. As an illustration of why this is a ~rucial
point, consider the outcomes in the exam-or-presentation game. The outcome in which
you and your partner both study for the exam is not Pareto-optimal, because the
outcome in which you both prepare for the presentation is strictly better for both of
you. This is the central difficulty at the heart of this example. now.phrased in terms of
Pareto-optimality, It shows that, even though you and your partner realize a superior
solution is possible, there isno way to maintain it without a binding agreement between
the two of you.

In this example, the two outcomes in which exactly one of you prepares for the
presentation are also Pareto-optimal. In this case, although one of you is doing badly,

, there is no alternate choice of strategies in which everyone is doing at least as well. So
in fact, the exam-or-presentation game, and the Prisoner's Dilemma, are examples of
games in which the only outcome that is not Pareto-optimal is the one corresponding
to the unique Nash equilibrium.

Social Optimality. A stronger condition that is even simpler to state is social
optimality.

A choi~ of strategies - one by each player - is a social. welfare maximizer
(or socially optimal) if it maximizes the sum of the players' payoffs.

In the exam-or-presentation game, the social optimum is achieved by the outcome
in which both you and your partner prepare for the presentation, which produces a
combined payoff of 90 + 90 = 180. Of course, this definition is only appropriate to
th~ extent that it makes sense to add the payoffs of different players together - it's not
always clear that we can meaningfully combine my satisfaction with an outcome and
your satisfaction by simply adding them up.

Outcomes that are socially optimal must also be Pareto-optimal: if such an outcome
weren't Pareto-optimal, there would be a different outcome in which all payoffs were
at least as large, and one was larger - and this would be an outcome with a larger'
sum of payoffs. However, aPareto-optimaloutcome need not be;~cially optimal.
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For example, the exam-or-presentation game .has three outcomes that are Pareto-
optimal, but only one of these is the social optimum. . .
~--Finally, of course, it's not the case that Nash equilibria are at odds with the goal .of
social optimality in every game. For example, in the version of the exam-or-presentation
game with an easier exam. yielding the payoff matrix that ~e saw earlier in Figure 6.4,
the unique Nash equilibrium is also the unique social optimum.

6.10 Advanced Material: Dominated Strategies
and Dynamic Games

In this final section, we consider two further issues that arise in the analysis of games.
First, we study the role of dominated strategies in reasoning about behavior in a game;
we find that the analysis of this type of strategy can provide a way to make predictions
about play based on rationality. even when no player has a dominant strategy, Second,
we discuss how to reinterpret the strategies and payoffs in a game to deal with situations
in which play actually occurs sequentially through time.

Before doing this. however, we begin with a formal definition for games that have
more than two players.

··1'
-,.~
~

A. Multiplayer Games

A multiplayer game consists. as in the two-player case, of a set of players, a se'(~f
strategies for each player. and a payoff to each player for each possible outcome.

Specifically, suppose that a game has n players named 1. 2.... , n. Each player has
a set of possible strategies. An outcome (or joint strategy) of the game is a choice of
a strategy for each player. Finally, each player i has a payoff junction Pi that maps
outcomes of the game to a numerical payoff for i: for each outcome consisting of
strategies (S,. S2•...• Sn). there is a payoff Pi(S,. S2•...• Sn) to player i.

Now we can say that a strategy S, is a best response by Player i to a choice of
strategies (S,. S2•...• Si-', Si+' •... , SII)by all the other players if

Pi(S,. S2.···. Si-', s.. Si+l •...• Sn) 2: Pi(S,. S2.···. s.:«, S;. Si+' •...• Sn)

,for all other possible strategies S; available to player i,
Finally. an outcome consisting of strategies (S" S2•... , Sn) is a Nash equilibrium

if each strategy it contains is a best response to all the others.

.B. Dominated Strategies and Their Role in Strategic Reasoning

_ e- • .In Sections 6.2 and 6.3. we discussed (strictly) dominant strategies ~strategies that are a
'"'-"==.:: -e- (strict) best response to every possible choice of strategies by the other players. Clearly

..;, if it player has a strictly dominant strategy then this is the strategy ~he should employ.
- But we also saw that, even for two-player, two-strategy games; it is common to have

}j'DO dominant strategies. This fact holds even more strongly for larger games: although
ldominam and strictly' dominant strategies can exist in games with many players and
~ any strategies, they are rare. ' , .-' ,
:!
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figure 6.19. In the Facility Location game on this six-node path each player has strictly
dominated strategies but no dominant strategy. .'. .

However, even if a player does not have a dominant-straregj, she may still have
strategies that are dominated by other strategies. In this section, we ·c.onsider the role
that such dominated strategies play in reasoning about behavior in games. .

We beginwith a formal definition: a strategy is strictly dominated if there is'some
other strategy available to the same player that produces a strictly higher payoff in
response' to every choice of strategies by the other players. In the notation we've just
developed, strategy S, for player i IS strictly dominated if there is another strategy 5;
for player i such that

Pj(SI, 52,.", Si:«, S;, Sj+I, ... , Sn) > Pj(SI, S2,"" Sj_l, Si, Si+I, ... , Sn)
. .',

for all choices of strategies (SI, S2, ... , Sj_l, Sj+l, ... , Sn) by the other players.
Now, in the two-player, two-strategy games we've been considering thus far, a

strategy is strictly dominated precisely when the other strategy available to the same
player is strictly dominant. In this context, it wouldn't make sense to study strictly
dominated strategies as a separate concept. However, if a player has many strategies,
then it's possible for a strategy to be strictly dominated without any strategy being
dominant. In such cases, strictly dominated strategies can playa very useful role in
reasoning about play in a gaine. In particular, we will see that there are games in
which there are no dominant strategies, but where the outcome of the game can still
be uniquely predicted using the structure of the dominated strategies. In this way,
reasoning based on dominated strategies forms an intriguing intermediate approach
between dominant strategies and Nash equilibrium: on the one hand, it can be more
powerful than reasoning based solely on dominant strategies; but on the other hand,
it still relies only on the premise that players seek to maximize payoffs and doesn't
require the introduction of an equilibrium notion.

To see how this approach works, it's useful to introduce it in the context of a basic
example.

Example: The Facility Location Game. Our example is a game in which two firms
compete through their choice of locations. Suppose that two firms are each planning to
open a store in one of six 'towns located along six consecutive exits on a highway" We

. can repre-sent the arrangement ofthesc towns using a six-node graph as in Figure 6.19.
Now, based on leasing agreements, Firm 1 has the option .of opening its store in

any of towns A, Cior E, while Firm 2 has the option of opening its store in any of
towns B, D, or F. These decisions will be executed simultaneously. Once the two stores
are opened, customers from the towns will go to"the store that is closer to them. For
example, if Firm 1 opens its store in town C and Firm 2 opens its store in town B, .
then the store in town B'will attract customers from A and B, while the store in town
C will attract customers from C, D, E, and F. If we assume that the towns contain an
equal number of customers; and that payoffs are directly proportional to the number of
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Finn 2
D F

A

Firm 1 C

E

1,5 2,4 t 3,3 I
4,2 3,3 4,2
3,3 2,4 5, 1

Figure 6.20. Facility location game.

. customers, this would result in a payoff of 4 for Firm 1 arid 2 for Firm 2, since Firm 1
claims customers from four towns while Firm 2 claims customers from the remaining
two towns. Reasoning in this way about the number of towns claimed by each store,
based on proximity to their locations, we get the payoff matrix shown in Figure 6.20.

We refer to this as the Facility Location game. The competitive location of facilities
is a topic that has been the subject of considerable study in operations research and
other areas [135]. Moreover, closely related models have been used when the entities
being "located", are not stores along a one-dimensional highway but the positions of
political candidates along a one-dimensional ideological spectrum - here too, choosing
a certain position relative to one's electoral opponent can attract certain voters while
alienating others [350]. We will return to issues relined to political competition, though
in-a slightly different form, in Chapter 23. .

We can verify that neither player has a dominant strategy in this game. For example; /
if Firm 1 locates at node A, then the strict best response of Firm 2 is B, while if
Firm 1 locates at node E, then the strict best response of Firm 2 is D. The situation is
symmetric if we interchange the roles of the two firms (and read the graph from the
other direction).

Dominated Strategies in the Facility Location Game. We can make progress in
reasoning about the behavior of the two players in the Facility Location game by
thinking about their dominated strategies. First, notice that A is a strictly dominated
strategy for Firm 1: in any situation where Firm 1 has the option of choosing A, it
would receive a strictly higher payoff by choosing C. Similarly, F is a strictly dominated
strategy for Firm 2: in any situation where Firm 1 has the option of choosing F, it would
receive a strictly higher payoff by choosing D.

It is never in a player's interest to use a strictly dominated strategy; some strategy
dominates it. Therefore, Firm 1 isn't going to use strategy A. Moreover, since Firm 2
knows the structure of the game, including Firm 1's payoffs, Firm 2 knows that Firm
1 won't use strategy A. It can be effectively eliminated from the game. The same.
reasoning shows that F can be eliminated from the game, _ -

We now have a smaller instance of the Facility Location game, involving only the
four nodes B, C, D, and E and the payoff matrix shown in Figure 6.21.

Now someth!ng interesting happens. Strategies Band E weren't previously strictly
.<dominated: they were useful in case the other player used A or F, respectively. But

with A and F eliminated, strategies Band E now are strictly dominated - by the same
reasoning, both players know they won't b~ used, and so we can eliminate them from
the game. This gives us the even smaller game shown in Figure 6.22.
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Firm 2

C
Firm 1

E

Figure 6.21. Smaller Facility Location game.

At this point, there is a .very clear prediction for the play of the game: Firm I will
playC. and Firm 2 will play D. And the reasoning that led to this outcome is clear:
afterrepeatedly removing strategies that were (or became) strictly dominated, we were
leftwith only a single plausible option for each player.

The process that led us to this reduced game is called the iterated deletion of strictly
dominated strategies, and we will next describe it in its full generality. Before doing
this,however, it's worth making some observations about the example of the Facility
Locationgame.

First, the pair of strategies (C,D) is indeed the unique Nash equilibrium in the
game,and when we later discuss the iterated deletion of strictly dominated strategies
ingeneral, we will see that the process is an effective way to search for Nash equilibria.
Butbeyond this, it is also an effective way to justify the Nash equilibri~ that one finds.
Whenwe first introduced the concept of Nash equilibrium, we observed that it couldn't
be derived purely from an assumption of rationality on the part of the players; rather,
wehad to assume further that play of the game would be found at an equilibrium from
which neither player had an incentive to deviate. On the other hand, when a unique
Nashequilibrium emerges from the iterated deletion of strictly dominated strategies, it
is in fact a prediction based purely on the assumptions of the players' rationality and
theirknowledge of the game, since all the steps that led to it were based simply on
removing strategies that were strictly inferior to others from the perspective of payoff.. . .
maxmuzation.

A final observation is that iterated deletion can in principle be carried out for a very
largenumber of steps, a fact that can be illustrated by a simple -~odification of the
FacilityLocation game. Suppose that instead of a path of length 6, we had a path of
length 1,000, with the options for the two firms still strictly alternating along this path
(constituting 500 possible strategies for each player). Then it would still be the case
thatonly the outer two nodes would be strictly dominated; after their removal, we'd
haveapath of length 998 in which the two new outer nodes had now become strictly
dominated. We can continue removing nodes in this way and, after 499 steps of such
reasoning, wehave a game in which only the SOOthand 501st nodes have survived as
strategies'.This is the unique Nash equilibrium-for tlie game, and this. unique prediction
canbe justified by a very long sequence of deletions of dominated strategies.

Firm 2

D

. Firm 1 C [IIJ
Figure 6.22. Even smaller Facility location game.
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It's also interesting how; this prediction is intuitively natural, and one that is often
borne out in r~al life: two competing stores staking out positions next to each· other
near the center of the population, or two political candidates. gravitating toward the
ideological middle ground as they compete for voters in a general election. In each
case, this move toward the center is the unique way to maximize the territory that you
can claim at the expense of your 'competitor, _

Iterated Deletion of Dominated Strategie~: The General Principle. In general, for
a game with 'an arbitrary number of players, the process of iterated deletion of strictly
40minated strategies proceeds as follows:

We start with any n-player game, find all the strictly dominated strategies, and
delete them.
We th~n consider the reduced game in which these strategies have been removed. In
this reduced game there may be strategies that are now strictly dominated, despite
not having been strictly dominated in the full game. We find these strategies and
delete them.

• We continue this process, repeatedly finding and removing strictly dominated
strategies until none can be found. ,

An important general fact is that the set of ~iash equilibria of the original game
coincides with the set of Nash equilibria for the final reduced game, consisting only of -
strategies that survive iterated deletion. To prove this fact, it is enough to show that th;_/
set of Nash equilibria does not change when we perform one round of dele-ting strictly
dominatec' strategies; if this is true, then we have established that the Nash equilibria
continue to remain unchanged through an arbitrary finite sequence of deletions.

To prove that the set of Nash equilibria remains the same through one round of
deletion,we need to show two things. First, any Nash equilibrium of the original game
is a Nash equilibrium of the reduced game. To see this; note that otherwise there would
be a Nash equilibrium of the original game involving a strategy S that was deleted. But
in this case, S is strictly dominated by some other strategy S'. Hence, S cannot be part
of a Nash equilibrium of the original game: it is not a best response to the strategies
of the other players, since the strategy S' that dominates it is a better response. This
argument establishes that no Nash equilibrium of the original game can be removed
by the deletion process. Second, we need to show that any Nash equilibrium of the
reduced game is also a Nash equilibrium of the original game. For this not to be the
case, there would have to be a Nash equilibrium E = (S 1, S~, ... , Sn) of the reduced
game: and a strategy S; that was deleted from the original game, such that player i
has' an incentive to deviate from its strategy S, in E to tpe strategy S;. But strategy S;
was deleted because it was strictly dominated by at least one other strategy; we can
therefore find a strategy S!, that strictly dominated it and was not deleted ..Then player

'~ =i' also has an ir.centive to deviate from S, to Sr, and S;' is still present in the reduced
" .game, contradicting our assumption that E is a Nash equilibrium of the reduced game.
.' j •• Therefore, ~e have established that the game we end up with, after iterated deletion
-pt"strictly dominated strategies, still has all the Nash equilibria of the original game.
. Hence this process can be a powerful way to restrict the search for Nash equilibria.

.. oreover, although we described the process as operating in rounds, with all currently
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Hunter 2
Hunt Stag Hunt Hare

Hunter 1 Hunt Stag I 3,3 0, 3 J
Hunt Hare. 3,0 3,3 J

Figure 6.23. Stag Hunt: a version wi~h a_weakly domina!ed strategy.

strictly dominated strategies being removed in each round, this approach is nofessentiaL .
One can show that eliminating strictly dominated strategies in any order results in the
same set of surviving strategies.

'Weakly Dominated Strategies. It is also natural to ask about notions that are slightly
weaker than our definition of strictly dominated strategies. One fundamental definition
in this spirit is that of a weakly dominated strategy. We say that a strategy is weakly
dominated if there is another strategy that does at least as well no matter what the other
players do, and does strictly better against some joint strategy of the other players: In
our notation from earlier, we say that a strategy S, for player i is weakly dominated if
there is another strategy S; for player i such that

Pj(SI, 5~.... , Si:«, Sf, Sj+l, , Sn) ~ Pj(SI, S2, ... , Sj_l, Sj, Sj-J>I,... , SI!)

for all choices of strategies (SI, S2, , Sj_l, Sj+l, ... , S,J by the other players, and

for at least one choice of strategies (SI, S2, .. , Si :«, Si+I, ... , Sn) by the other players.
For strictly dominated strategies, the argument for deleting them was compelling:

they are never best responses. For weakly dominated strategies, the issue is more subtle.
Such strategies could be best responses to some joint strategy by the other players. So
a rational player could playa weakly dominated strategy, and in fact Nash equilibria
can involve weakly dominated strategies.

There are simple examples that make this .clear even in two-player, two-strategy
games. Consider, for example, a version of the Stag Hunt game in which the payoff
from successfully catching a stag is the same as the payoff from catching a hare, as
shown in Figure 6.23.

In this case, Hunt Stag is a weakly dominated strategy, since each player always
does at least as well, and sometimes strictly better, by playing Hunt Hare. Nevertheless,
the outcome in which both players choose Hunt Stag is a Nash equilibrium, since each
is .playing a best response to the other's strategy. Thus, deleting weakly dominated
strategies is not generally a safe thing' t~ do if one wants to preserve the essential. ..
structure of the game: such deletion operations Can destroy Nash equilibria.

Of course, it might seem reasonable to suppose that a player should not play ac-
cording to equilibrium involving a wealdy dominated strategy' - such as (Hunt Stag,
Hunt Stag) - if he had any uncertainty about what the other players would do; after
all, why not use an alternate strategy that is at least as good in every eventualityjBut
Nash equilibrium does not take into account this idea of uncertainty about the behav-

. ior of others, and hence has no way to rule out such outcomes. In the next chapter,

ADVANCED MATER~A-L: DOMINATED STR~TEGIES AND DYNAMIC GAMES 173

we discuss an alternative equilibrium concept known as evolutionary stability; that ~n
fact does eliminate weakly dominated strategies in a principled way. The relationship
between Nash equilibrium, evolutionary stability, and weakly dominated strategies is
considered in the exercises at the end of the next chapter.

C. Dynamic Games

Our focus in this chapter has been 011 games in which all players choose 'their strategies
simultaneously and then receive payoffs based on this joint decision. Of course, actual .
simultaneity is not crucial for the model, but it has been central to our discussions so
far that each player is choosing a strategy without knowledge of the actual choices

made by the other players. .
Many games, however, are played over time: some player or set of players moves

first, other players observe the choice(s) made, and then they respond, perhaps accord-
ing to a predetermined order of governing who moves when. Such games are called
dynamic games, and there are many basic examples: board games and card games in
which players alternate turns; negotiations, which usually involve a sequence of offers
and counteroffers; and bidding in an auction or pricing competing goods. where partic-
ipants must make decisions over time. Here we discuss an adaptation of the theory of
games that incorporates this dynamic aspect. .

Normal and Extensive Forms of a Game. To begin with, specifying a dynamic gam~ /
is going to require a new kind of notation. Thus far, we've worked with something
called the normal-form representation ora game, which specifies the list of players,
their possible strategies, and the payoffs arising from every possible (simultaneous)
choice of strategies by the players. (For two-player games, the payoff matrices we've
seen in this chapter encode the normal-form representation of a game in a compact
way.)

To describe a dynamic game, we require a richer representation; we need to specify
who moves when, what each player knows at any opportunity they have to move, what
they can do when it is their turn to move, and what the payoffs are at the end of the
game. We refer to this specification as the extensive-form representation of the game.

Let's starr with a very simple example of a dynamic game so that we can discuss
what its extensive-form representation looks like. This game is simple enough that it
avoids some of the subtleties that arise in the analysis of dynamic games, but it is useful
as a first illustration; we'll proceed to a more complex second example afterward.

In our first example, we imagine two firms - Firm 1 and Firm 2 - each of whom is
trying to decide whether to focus its advertising and marketing on two possible regions,
named A and B. Firm 1 gets to choose first. If Firm 2 follows Firm 1 into the same
.region, then Firm l's "first-mover advantage" gives it 2/3 of the profit obtainable from
the market in that region, while Firm 2 will only get 1/3: If Firm 2 moves into the other
region, then each firm gets all the profit obtainable in their respective region. Finally,
Region A has twice as large a market as Region B: the total profit obtainable in region
A is equal to 12, while in Region B·it's 6.

We write the extensive-form representation as a "game tree," depicted in Figure 6.24.
This tree is designed to be read downward from the top. The top node represents Firm
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Figure 6.24. A simple game in extensive form.

1's in'itial move, and the two edges descending from this node represent its two options,
A or B. Once a branch is taken, this leads to a node representing Firm 2's subsequent
move.Firm 2 can then also choose option A or B, again represented by edges descending
fromthe node. This choice leads to a terminal node representing the end of play in the
game;each terminal node is labeled with the payoffs to the two players.

Thus, a specific play - determined by a sequence of choices by Firm 1and Firm 2 -
corresponds to a path from the top node in the tree down to some terminal node. First
Firm 1 chooses A or B, then Firm 2 chooses A or B, and then the two players receive
theirpayoffs. In a more general model of dynamic games, each node could contain an
annotation saying what information about the previous moves is known to the player
currently making a move; however, for our purposes here, we will focus on the case in
whicheach player knows the complete history of past moves when he or she goes to
makethe current move.

Reasoning about Behavior in a Dynamic Game. As with simultaneous-move games, ,
we'd like to make predictions about what players will do in dynamic games. One way is
toreason from the game tree. In our current example, we can start by considering how
Firm2 will behave after each of the two possible opening moves by Firm L If Firm
Ichooses A, then Firm 2 maximizes its payoff by choosing B; on the other hand, if
Firm1chooses B, then Firm 2 maximizes its payoff by choosing ·A. Now let's consider
Finn l's openingmove, given what we've just concluded about Firm 2's subsequent
behavior. If Firm 1 chooses A, then it expects Firm 2 to-choose B, yielding. a payoff
of 12 for Firm L If Firm 1 chooses B, then it expects Firm 2 to choose A, yielding a

I payoffof 6 for Firm 1. Since we expect the firms to try to maximize their payoffs, we
predict that Firm 1should choose A, after which Firm 2 should choose B.

This approach is a useful way to analyze dynamic games. We start one step above the
terminal nodes, where the last player to move has complete control over the outcome
of the payoffs. This.lets us predict what the last player will do in all cases. Having
established this prediction, we then move one more level up the game tree, using·these
predictions to reason about what the player at that level will do. We continue in this
way up the tree, eventually making predictions for play all the way up to the top node.'

I
!
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Firm 2

A
Firm 1

B

Fig!Jre.6.25. Conversion to normal form.

A different style of analysis exploits an interesting connection between normal and
extensive forms, allowing us to write a normal-form representation for a dynamic game
as follows. Suppose that, before the game is played, each player makes up a plan for
how to play the entire game, covering every possible eventuality. This plan will serve
as the player's strategy. One way to think about such strategies, and a useful way to
be sure that they include a complete description of every possibility, is to imagine that
each player has to provide all of the information necessary to write a computer program
that will actually play the game in their place.

For the game in Figure 6.24, Firm 1 only has two possible strategies: A or B. Since
Firm 2 moves after observing what Firm 1 did, and Firm 2 has two possible choices for
each of the two options by Firm 1, Firm 2 has four.possible plans for playing the game.
They can be written as contingencies, specifying what Firm 2 will do in response to
each possible move by Firm 1:

(A if A, A if B), (A if A, B if B), (B if A, A if B), and (B if A, B if B),

or in abbreviated form as

(AA, AB), (AA, si». (BA, AB), and (BA, BB).

If each player chooses a complete plan for playing the game as' its strategy, then we
can determine the payoffs directly from this pair of chosen strategies via the payoff
matrix in Figure 6.25.

Because the plans describe everything about how a player will behave, we have
managed to describe this dynamic game in normal forin: each player chooses a strategy
(consisting of a complete plan) in advance, and from this joint choice of strategies we
can determine payoffs. Later we will see that some important subtleties are involved in
using this interpretation of the underlying dynamic game; in particular the translation
from extensive to normal form sometimes does not preserve the full structure implicit
in the game. But the translation is a useful tool for analysis, and the subtle lack of
fidelity that can arise in the translation is in itself a rev.ealing notion to develop and
explore.. ~ _

With this in mind: we first finish our simple example - where the translation works
perfectly - and then move on to a second. example where the complications begin to
arise. For the normal-form payoff matrix corresponding to our first example, the payoff
matrix has eight cells, while the extensive-form representation only hasfour terminal
nodes with payoffs. This occurs because each terminal node can be reached with two
different pairs of strategies, with each pair forming a cell of the payoff matrix. Both
pairs of strategies dictate the same actions in the path of the game tree that actually
occurs; but they describe different hypothetical actions in other unrealized paths. For
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example, the payoffs in the entri~sf~{ (A, (AA, AB» and for (A, (AA, BB» are the
same because both strategy combinations lead to the same terminal node I b th s. .no case,
Finn 2 chooses A in response to what Finn 1actually does; Finn 2's'plan for what' to
do ~ the event Finn 1 chose B is not realized by the actual play. .

Now, using the normal-form representation, we can quickly see that, for Finn I,
strategy A is strictly domina~t. Finn-2 doesnot have a strictly dominant strategy, but it

.sho~1d playa best response toFirm I, which would be either (BA, AB) or (BA, BB).
Notice that this prediction of play by Firin I arid Finn 2 based on the normal-form
representation is the same as our prediction based on direct analysis of the game tree,

. where we reasoned upward from the terminal nodes: Finn 1will play A, and in response
Finn 2 will play B.

A More Complex Example: The Market Entry Game. In our first dynamic game,
reasoning based on the extensive- and normal-form representations led to essentially
identical conclusions. As games get larger, extensive forms are representation ally more
streamlined than normal forms for dynamic games, but if this were the only distinction,
it would be hard to argue that dynamic games truly 'add much to the overall theory
of games. In fact, however, the 'dynamic aspect leads to new subtleties, which can be
exposed by considering a case in which the translation from extensive to normal form
ends up obscuring some of the structure that is implicit in the dynamic game. _

To illustrate these subtleties we consider a second example of a dynamic game, also
played between two competing firms. We call this the Market Entry game, and it's
motivated by the following scenario. Consider a region where Finn 2 is currently the
only serious participant in a given line of business, and Finn 1 is considering whether
to enter the market.

• The first move in this game is made by Firm I,which must decide whether to stay
out of the market or to enter it.

• If Finn 1 chooses to stay out, then the game ends, with Finn 1 getting a payoff of
o and Finn 2 keeping the payoff from the entire market.

• If Firm 1 chooses to enter, then the game continues to a second move by Firm 2,
who must choose whether to cooperate and divide the market evenly with Firm 1
or retaliate and engage in a price war. ..

- If Firm 2 cooperates, then each firm gets a payoff corresponding to half the
market.

- If Finn 2 retaliates, then each firm gets a negative payoff,

Choosing numerical 'payoffs to fill ill this story, we can write the extensive-form
representation of the Market Entry game as in Figure 6.26.

Subtle Distinctions Between Extensive- and Normal-Form Representations. Let's
take the two ways we developed to analyze our previous dynamic game and apply them
here. First, we can work our way up the game tree starting at the terminal nodes, as

. follows. If Finn 1 chooses to enter the market, then Finn 2 achieves a higher payoff by
cooperating than by retaliating, so we should predict cooperation in the event the game
reaches this point. Given this, when Firm 1 goes to make its first move, it can expect a
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Player 1

Stay Out

Player 2
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Figure 6.26. Extensive-form representation of the Market Entry game.

payoff of 0 by staying out, and a payoff of 1 by entering, so it should choose to enter
the market. We can therefore predict that Firm 1 will enter the market, and then Finn
2 will cooperate.

Now let's consider the normal-form representation. Finn !'s possible plans for
playing the game are just to choose Stay Out (S) or Enter (E). Firm 2's possible plans

.are to choose retaliation in the event of entry, or cooperation in the event of entry. We'll
denote these two plans by Rand C, respectively. This gives us the payoff matrix }n /
Figure 6.27.

Here's the surprise: when we look at this game in normal form, we discover two
distinct (pure-strategy) Nash equilibria: (E, C) and (S, R). The first corresponds to the
prediction for play that we obtained by analyzing the extensive-form representation.
What does the second one correspond to?

To answer this question, it helps to recall our view of the normal-form representation
as capturing the idea that each player commits in advance to a computer program that
will play the game in its place. Viewed this way, the equilibrium (S, R) corresponds
to an outcome in which Finn 2 commits in advance to a computer program that will
automatically retaliate in the event that Firm 1 enters the market. Firm 1, meanwhile,
cornmits to a program that stays out of the market. Given this pair of choices, neither
firm has an incentive to change the computer program they're using: for example, if
Finn 1 were to switch to a program that entered the market, it would trigger retaliation
by the program that Firm 2 is using.

This contrast between the prediction from the extensive and normal forms highlights
some important points. First, it shows that the premise behind our translation from

Finn 2

F. S
IITI11

E

Figure 6.27. Normal form of the Market Entry game.
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extensive.to normal form - that each player commits ahead of time to a complete plan
forplayingthe game - is not really equivalent to our initial premise in defining dynamic
games- namely that each player makes an optimal decision at each intermediate point
inthe game, based on what has already happened up to that point._Firm 2's decision
toretaliateon entry highlights this point clearly. If Firm 2 can truly precommit to this-

_plan,then the equilibrium (S, R) makes sense, since Firm 1 will not want to provoke
theretaliation that is encoded in Firm 2's plan. But if we take the dynamic game
as originally defined in extensive form, then precommitment to a plan is not part of
themodel: rather, Fi'rm 2 only gets to evaluate its decision to cooperate or retaliate

. oncefirm 1 has already entered the market, and at that. point its payoff is betterif it
cooperates.Given this, Firm 1 can predict that it is safe to enter.

Ingame theory, the standard model for dynamic games in extensive form assumes
thatplayers seek to maximize their payoff at any intermediate stage of play that can be
reachedin the game. In this interpretation, there is a unique prediction for play in the
MarketEntry game, corresponding to the equilibrium (E, C) in normal form. However,
theissues surrounding the other equilibrium, (S, R), are not simply notational 'or
representational;they are deeper. For any given scenario, it is really a question of what
webelieveis being modeled by the underlying dynamic game in extensive form. It is a
questionof whether we are in a setting in which a player can irrevocably precommit to
acertainplan, to the extent that other players will believe the commitmenl as a credible
threat- or not.

Further, the Market Entry game shows how the ability to commit to a particular
courseof action - when possible - can in fact be a valuable thing for an individual
player,even if that course of action would be bad for everyone if it were actually carried
out.In particular, if Firm 2 could make Firm I believe that it really would retaliate in
theeventof entry, then Firm 1 would choose to stay out, resulting in a higher payoff
forFirm 2. In practice, this suggests particular courses of action that Firm 2 could
takebefore the game even starts. For example, suppose that before Firm 1 had decided
whetherto enter the market, Firm 2 were to publically advertise an offer to beat any
competitor'sprice by 10%. This would be a safe thing to do as long as Firm 2 is the
onlyserious participant in the market, but it becomes dangerous to both firms if Firm 1
actuallyenters. The fact that the plan has been publicly announced-means that it would
be verycostly (reputationally, and possibly legally) for Firm 2 to back away from it.
Inthisway; the announcement can serve as a way of switching the underlying model
fromone in which Firm Z'sjhreat to ret.a1iate is not credible to one in which Firm 2
canactually precommit to a plan for retaliation.

'Ihlationship-to Wealdy Dominated Strategies. In discussihg these distinctions, it
- isalsointeresting to note the role played here by weakly dominated strategies, Notice
thatinthe normal-form representation in Figure 6.27, the strategy R for Firm 2 is

. weaklydominated, and for a simple reason: it yields the same payoff if Firm 1chooses
S(sincethen Firm 2 doesn't actually get to move), and it yields a lower payoff if Firm 1
choosesE. So our translation from extensive form to normal form. for dynamic games
providesanother reason to be careful about predictions of play in a normal-form game
thatrelyon weakly dominated strategies: if the Structure actually arises from a dynamic
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game in extensive form, then information about the dynamic game that is lost in the
transla.tion to 'normal form could potentially be sufficient to eliminate such equilibria.

However, we can't simply fix up the translation by eliminating weakly dominated
strategies. We saw earlier that iterated deletion of strictly dominated strategies can
be done in any order: all orders yield the same final result. But this is not true for

, the iterated. deletion of weakly dominated strategies. To see this, suppose we vary the
Market Entry game slightly so that the payoff from the joint strategy (E, C) is (0, 0).
(In this version-both firms know they will fail to gain a positive payoff even if Firm 2
cooperates on entry, although they still don't do as badly as when Firm 2 retaliates.)
Strategy R is a weakly dominated strategy as before, but now so is E. (E and S produce
the same payoff for Firm 1 when Firm 2 chooses C, and S produces a strictly higher
payoff when Firm i chooses R.) ,

In this version of the game, there are now three (pure-strategy) Nash equilibria:
(S, C), (E, C), and (S, R). If we first eliminate the weakly dominated strategy R, then
we are left with (S, C) and (E, C) as equilibria. Alternately, if we first eliminate the
weakly dominated strategy E, then we are left with (S, C) and (S, R) as equilibria. In
both cases, no further elimination of weakly dominated strategies is possible, so the
order of deletion affects the final set of equilibria. Vfe can ask which of these equilibria
actually make sense as predictions of play in this' garne. If this normal form actually
arose from the dynamic version of the Market Entry game, then C is still the only
reasonable strategy for Firm 2, while Firm I could now play either S or E.

Final Comments. The style of analysis we developed for most of this chapter is based
on games in normal form. One approach to analyzing dynamic games in extensive
form is to first find all Nash equilibria of the translation to normal form, treating each
as a candidate prediction of play in the dynamic game, and then to go back to the
extensive-form version to see which make sense as actual predictions.

There is an alternate theory that works directly with the extensive-form representa-
tion. The simplest technique used in this theory is the style of analysis we employed
to analyze an extensive-form representation from the terminal nodes upward. But the
theory involves more complex components as well, allowing for richer structure such
as the possibility that players at any given point have only partial information about
the history of play up to that point. Although we will not go further into this theory
here, it is developed in a number of books on game theory and microeconomic theory
[263, 288, 336, 398].

6.11 Exercises ..
1. Say whether the following claim is true or false, and provide a brief (one- to three-

sentence) explanation for your answer,

Claim: If player A in a two-person game has a dominant strategy
SA, then there is a pure-strategy Nash equilibrium in which player A
plays SA and player B plays a best response to SA.


