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Freenet uses a decentralized P2P architecture to create an

uncensorable and secure global information storage system.

The growth of censorship and ero-
sion of privacy on the Internet
increasingly threatens freedom of

expression in the digital age. Personal
information flows are becoming subject
to pervasive monitoring and surveillance,
and various state and corporate actors are
trying to block access to controversial
information and even destroy certain
materials altogether. Recent incidents
such as the publication of Monica Lewin-
sky’s deleted personal e-mails in a U.S.
congressional report further point to an
unprecedented level of intrusion into pri-
vate life.1 These trends cause concern not
only to whistleblowers and political dis-
sidents, but to anyone disturbed by the
thought of others reading their e-mail or
following their Web activities.

Fortunately, concurrent advances in
the power of personal computers have
made it possible to develop peer-to-peer
technologies to respond to these chal-
lenges. Our project, Freenet, is a distrib-
uted information storage system
designed to address information priva-
cy and survivability concerns.2 A beta

version of the software is currently
available under open source at http://
www.freenetproject.org/. 

In simulations of up to 200,000 nodes,
Freenet has proved scalable and fault tol-
erant. It operates as a self-organizing P2P
network that pools unused disk space
across potentially hundreds of thousands
of desktop computers to create a collab-
orative virtual file system. To increase
network robustness and eliminate single
points of failure, Freenet employs a com-
pletely decentralized architecture. Given
that the P2P environment is inherently
untrustworthy and unreliable, we must
assume that participants could operate
maliciously or fail without warning at
any time. Therefore, Freenet implements
strategies to protect data integrity and
prevent privacy leaks in the former
instance, and provide for graceful degra-
dation and redundant data availability in
the latter. The system is also designed to
adapt to usage patterns, automatically
replicating and deleting files to make the
most effective use of available storage in
response to demand.
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Design Motivation
As documented by Human Rights Watch
(http://www.hrw.org/advocacy/internet/) and the
Global Internet Liberty Campaign (http://www.
gilc.org/), governments around the world have
undertaken efforts to force Internet service
providers to block access to content deemed
unsuitable or subversive, or to make them liable
for such material hosted on their servers. The Elec-
tronic Privacy Information Center (http://www.
epic.org/) has also raised privacy and civil liber-
ties questions about developments like the Feder-
al Bureau of Investigation’s Carnivore electronic
monitoring system and the European Union’s new
“Convention on Cybercrime,” which gives author-
ities broad powers to intercept and record digital
communications.

Though seemingly separate, the prevention of
censorship and the maintenance of privacy are both
fundamental to free expression in a potentially hos-
tile world. Preserving the availability of controver-
sial information is only half the problem; individu-
als can often be subject to adverse personal
consequences for writing or reading such informa-
tion and might need to conceal their activity in order
to protect themselves. Indeed, the U.S. Supreme
Court, among others, has long recognized the impor-
tant role of anonymous speech in political dissent.

A common objection to mechanisms for secure
communication is that criminals might use them
to evade law enforcement. Freenet is not particu-
larly attractive for such purposes, as it is designed
to broadcast content to the world — not so useful
for secret criminal plots. In any case, however,
anonymous electronic communication is simply a
tool, like payphones or postal mail, to be used for
good or bad. A terrorist might use it to plan an
attack, or an informant could use it to turn the ter-
rorist in to the authorities. Most importantly, the
freedom to communicate is a fundamental value
in a democratic society. There is no way to deny it
to the “bad guys” without also denying freedom to
the “good guys” — civil rights activists, minority
religious groups, or ordinary citizens who simply
wish to keep their affairs private.

In designing Freenet, we focused on

� privacy for information producers, consumers,
and holders;

� resistance to information censorship;
� high availability and reliability through decen-

tralization; and
� efficient, scalable, and adaptive storage and

routing.

Maintaining privacy for creating and retrieving
files means little without also protecting the files
themselves — in particular, keeping their holders
hidden from attack. We have thus made it hard to
discover exactly which computers store which
files. Together with redundant replication of data,
holder privacy makes it extremely difficult for
censors to block or destroy files on the network.

Freenet does not, however, explicitly try to
guarantee permanent data storage. Because disk
space is finite, a tradeoff exists between publish-
ing new documents and preserving old ones. Many
systems solve this problem by requiring payment
(in disk space or money, for example), but we
would rather encourage publishing than keep out
authors who can’t run peer nodes themselves or
are too poor to pay for storage. To keep junk doc-
uments from filling all available space or overwrit
ing existing data, we
implement a proba-
bilistic storage policy.
We hope, however, that
Freenet will attract suf-
ficient resources from
participants to preserve
most files indefinitely.

Freenet
Architecture
Freenet participants each run a node that provides
the network some storage space. To add a new file,
a user sends the network an insert message con-
taining the file and its assigned location-indepen-
dent globally unique identifier (GUID), which
causes the file to be stored on some set of nodes.
During a file’s lifetime, it might migrate to or be
replicated on other nodes. To retrieve a file, a user
sends out a request message containing the GUID
key. When the request reaches one of the nodes
where the file is stored, that node passes the data
back to the request’s originator.

GUID Keys
Freenet GUID keys are calculated using SHA-1
secure hashes. The network employs two main
types of keys: content-hash keys, used for prima-
ry data storage, and signed-subspace keys, intend-
ed for higher-level human use. The two are anal-
ogous to inodes and filenames in a conventional
file system.

Content-hash keys. The content-hash key (CHK) is
the low-level data-storage key and is generated by
hashing the contents of the file to be stored. This
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process gives every file a unique absolute identi-
fier (SHA-1 collisions are considered nearly impos-
sible) that can be verified quickly. Unlike with
URLs, you can be certain that a CHK reference will
point to the exact file intended. CHKs also permit
identical copies of a file inserted by different peo-
ple to be automatically coalesced because every
user will calculate the same key for the file.

Signed-subspace keys. The signed-subspace key
(SSK) sets up a personal namespace that anyone
can read but only its owner can write to. You could
create a subspace for an archive on the Vietnam
War, for example, by first generating a random
public-private key pair to identify it. To add a file
you first choose a short text description, such as
politics/us/pentagon-papers. You would then
calculate the file’s SSK by hashing the public half
of the subspace key and the descriptive string
independently before concatenating them and
hashing again. Signing the file with the private
half of the key provides an integrity check as every
node that handles a signed-subspace file verifies
its signature before accepting it.

To retrieve a file from a subspace, you need only
the subspace’s public key (perhaps stored on your

“keyring”) and the descriptive string, from which
you can recreate the SSK. Adding or updating a
file, on the other hand, requires the private key in
order to generate a valid signature. SSKs thus
facilitate trust by guaranteeing that the same pseu-
donymous person created all files in the subspace,
even though the subspace is not tied to a real-
world identity. For example, you can use SSKs to
send out a newsletter, to publish a Web site, or
(operated in reverse) to receive e-mail. 

Typically, SSKs are used to store indirect files
containing pointers to CHKs rather than to store
data files directly. Indirect files combine the human
readability and publisher authentication of SSKs
with the fast verification of CHKs. They also allow
data to be updated while preserving referential
integrity. To perform an update, the data’s owner
first inserts a new version of the data, which will
get a new CHK because the file contents are dif-
ferent. The owner then updates the SSK to point to
the new version. The new version will be available
by the original SSK, and the old version will
remain accessible by the old CHK. Indirect files can
also be used to split large files into multiple pieces
by inserting each part under a separate CHK and
creating an indirect file that points to all the parts.
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Related Work in P2P

The best-known systems similar to Freenet
are Napster (http://www.napster.com/) and
Gnutella (http://gnutella.wego.com/),which
both implement large-scale pooling of disk
space among individual users.The major
difference is that whereas Freenet provides
a file-storage service, these systems pro-
vide a file-sharing service.That is, partici-
pants make files available to others but do
not push files to other nodes for storage.
This architecture means that data is not
persistent in the network; rather, files are
available only when their originators (or
subsequent requesters) are online.Anoth-
er difference is that neither system
attempts to provide anonymity.Gnutella is
also extremely inefficient, broadcasting
thousands of messages per request.

Freenet more closely resembles the Eter-
nity service, which was described in a pro-
posal for a highly survivable network for per-
manently and anonymously archiving
information.1 However, the proposal lacked
specifics on how to efficiently implement

such a service.Free Haven is an Eternity-like
anonymous P2P publication system that uses
trust mechanisms and file trading to enforce
server accountability and user anonymity.2

Unfortunately, it can take a very long time —
even days — to retrieve files from it.

Security Issues
Several recently developed P2P file-storage
systems focus on efficient data location
rather than privacy and security against
malicious participants. Systems such as
OceanStore,3 Cooperative File System
(CFS),4 and PAST5 are all based on routing
models in which each node is assigned a
fixed identity and maintains some knowl-
edge of nodes whose identities vary in
specified ways from its own.These systems
deterministically place data on nodes that
most closely match the data’s globally
unique identifier (GUID).A user can thus
locate data by progressively visiting nodes
whose identities match more and more
bits of the desired GUID.The main advan-

tage to these systems is that they can pro-
vide strong guarantees that data will be
located within certain time bounds (gener-
ally logarithmic) if it exists.Thus, they can
provide better handling of issues like stor-
age management.

The main disadvantage of these systems
relative to Freenet is that they are more dif-
ficult to secure against attack. It is easier for
a malicious node to manipulate its identity
to gain responsibility for a particular piece
of data and suppress it. Links and routing
are also more visible and deterministically
structured, making it easier to trace mes-
sages and harder to route around malicious
nodes that sabotage requests (for example,
by pretending data could not be found).
PAST,as currently constituted, also requires
users to trust external smart cards.

Privacy Issues
Systems focusing on privacy for informa-
tion consumers include browser proxy ser-

continued on p. 43



Finally, you can use indirect files to create hierar-
chical namespaces from directory files that point
to other files and directories.

SSKs can also be used to implement an alterna-
tive domain name system for nodes that change
address frequently. Each such node would have its
own subspace, and you could contact it by look-
ing up its public key — its address-resolution key
— to retrieve the current address.

Messaging and Privacy
Freenet was designed from the beginning under the
assumption of hostile attack from both inside and
out. Therefore, it intentionally makes it difficult for
nodes to direct data toward themselves and keeps
its routing topology dynamic and concealed.
Unfortunately, these considerations have had the
side effect of hampering changes that might
improve Freenet’s routing characteristics. To date,
we have not discovered a way to guarantee better
data locatability without compromising security.

Privacy in Freenet is maintained using a varia-
tion of Chaum’s mix-net scheme for anonymous
communication.3 Rather than move directly from
sender to recipient, messages travel through node-
to-node chains, in which each link is individually

encrypted, until the message finally reaches its
recipient.

Because each node in the chain knows only
about its immediate neighbors, the end points
could be anywhere among the network’s hundreds
of thousands of nodes, which are continually
exchanging indecipherable messages. Not even
the node immediately after the sender can tell
whether its predecessor was the message’s origi-
nator or was merely forwarding a message from
another node. Similarly, the node immediately
before the receiver can’t tell whether its successor
is the true recipient or will continue to forward it.
This arrangement is intended to protect not only
information producers and consumers (at the
beginning of chains), but also information holders
(at the end of chains). By protecting the latter, we
can prevent an adversary from destroying a file
by attacking all of its holders. Of course, ensuring
privacy is not enough; queries must be able to
locate data as well. 

Routing
Routing queries to data is the most important
element of the Freenet system. The simplest rout-
ing method, used by services like Napster, is to
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vices such as the Anonymizer (http://www.
anonymizer.com/) and SafeWeb/Triangle
Boy (http://www.safeweb.com/). Both pro-
vide anonymity by proxying requests for
Web content on the user’s behalf, although
users are vulnerable to logging by the ser-
vices themselves. Crowds6 improves an-
onymity over simple proxying through a
request-chaining technique similar to the
one we use.None of these systems direct-
ly stores information; they only provide
anonymized access to information available
on the Web.

On the producer-holder side, the
Rewebber (http://www.rewebber.de/) pro-
vides some privacy for information holders
with an encrypted URL service that is the
inverse of a browser proxy, but is similarly
vulnerable to logging by the service oper-
ator. TAZ (temporary anonymous zone)
servers7 extend this idea with chains of
nested encrypted URLs that point to suc-
cessive Rewebber-like servers to be con-

tacted. Neither system protects informa-
tion producers or provides redundant
information storage. Publius8 enhances
robustness and protects producer an-
onymity by distributing files as redundant
partial shares among many holders; how-
ever, because the identity of the holders is
not anonymized, an adversary could still
destroy information by attacking a sufficient
number of shares. None of these systems
protects information consumers, although
Rewebber also operates a separate brows-
er proxy service.
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maintain a central index of files, so that users
can send requests directly to information hold-
ers. Unfortunately, centralization creates a sin-
gle point of failure that is easy to attack. For
example, if you were trying to phone Michael
Jordan, the simplest way to get his number
would ordinarily be to call directory assistance.
However, because directory assistance is central-
ized, your access can be easily blocked if Jordan
or someone else decides to remove his directory
entry, or if the service goes down.

Systems like Gnutella broadcast queries to every
connected node within some radius. Using this
method, you would ask all of your friends if any
of them knew Jordan’s number, get them to ask
their friends, and so on. Within a few steps, thou-
sands of people could be looking for his number.
Although this process would eventually find your
answer, it is clearly wasteful and unscalable.

Freenet avoids both problems by using a
steepest-ascent hill-climbing search: Each node
forwards queries to the node that it thinks is
closest to the target. You might start searching
for Jordan by asking a friend who once played
college basketball, for example, who might pass
your request on to a former coach, who could
pass it to a talent scout, who might pass it to Jor-
dan’s agent, who could put you in touch with the
man himself.

Requesting files. Every node maintains a routing
table that lists the addresses of other nodes and the
GUID keys it thinks they hold. When a node
receives a query, it first checks its own store, and if
it finds the file, returns it with a tag identifying
itself as the data holder. Otherwise, the node for-
wards the request to the node in its table with the
closest key to the one requested. That node then
checks its store, and so on. If the request is suc-

cessful, each node in the chain passes the file back
upstream and creates a new entry in its routing
table associating the data holder with the request-
ed key. Depending on its distance from the holder,
each node might also cache a copy locally. 

To conceal the identity of the data holder, nodes
will occasionally alter reply messages, setting the
holder tags to point to themselves before passing
them back up the chain. Later requests will still
locate the data because the node retains the true
data holder’s identity in its own routing table and
forwards queries to the correct holder. Routing
tables are never revealed to other nodes.

To limit resource usage, the requester gives each
query a time-to-live limit that is decremented at
each node. If the TTL expires, the query fails,
although the user can try again with a higher TTL
(up to some maximum). Because the TTL can give
clues about where in the chain the requester is,
Freenet offers the option of enhancing security by
adding an initial mix-net route before normal
routing. This effectively repositions the start of the
chain away from the requester.

If a node sends a query to a recipient that is
already in the chain, the message is bounced back
and the node tries to use the next-closest key
instead. If a node runs out of candidates to try, it
reports failure back to its predecessor in the chain,
which then tries its second choice, and so on.

Figure 1 depicts a typical request sequence. The
user initiates a request at node A and forwards the
request to B, which forwards it to C. Node C is
unable to contact any other nodes and returns a
“request failed” message to B. Node B then tries
its second choice, E, which forwards the request
to F. Node F forwards the request to B, which
detects a loop and bounces the message back.
Unable to contact any additional nodes, node F
backtracks one step to E, which forwards the
request to its second choice, D, and locates the
file. D returns the file via E and B back to A,
which sends it to the user. Along the way, E, B,
and A might also cache the file.

With this approach, the request homes in closer
with each hop until the key is found. A subsequent
query for this key will tend to approach the first
request’s path, and a locally cached copy can sat-
isfy the query after the two paths converge. Sub-
sequent queries for similar keys will also jump over
intermediate nodes to one that has previously sup-
plied similar data. Nodes that reliably answer
queries will be added to more routing tables, and
hence, will be contacted more often than nodes
that do not.
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Figure 1.Typical request sequence.The request moves through the
network from node to node, backing out of a dead-end (step 3) and
a loop (step 7) before locating the desired file.
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Inserting files. An insert message follows the
same path that a request for the same key would
take, sets the routing table entries in the same
way, and stores the file on the same nodes. Thus,
new files are placed where queries would look
for them.

To insert a file, a user assigns it a GUID key and
sends an insert message to the user’s own node
containing the new key with a TTL value that rep-
resents the number of copies to store. Upon receiv-
ing an insert, a node checks its data store to see if
the key already exists. If so, the insert fails — either
because the file is already in the network (for
CHKs) or the user has already inserted another file
with the same description (for SSKs). In the latter
case, the user should choose a different descrip-
tion or perform an update rather than an insert.
(Note that we have not yet implemented updates
because we are still working on a mechanism to
ensure that all old copies get replaced.)

If the key does not already exist in the node’s
data store, the node looks up the closest key and
forwards the message to the corresponding node
as it would for a query. If the TTL expires with-
out collision, the final node returns an “all clear”
message. The user then sends the data down the
path established by the initial insert message.
Each node along the path verifies the data
against its GUID, stores it, and creates a routing
table entry that lists the data holder as the final
node in this chain. As with requests, if the insert
encounters a loop or a dead end, it backtracks to
the second-nearest key, then the third-nearest,
and so on, until it succeeds.

Data Encryption
For political or legal reasons, node operators
might wish to remain ignorant of the contents of
their data stores. To this end, we encourage pub-
lishers to encrypt all data before insertion. The
network proper knows nothing about this level
of encryption because it just ships already
encrypted bits. 

Data encryption keys are not used in routing or
included in network messages. Inserters distribute
them directly to end users at the same time as the
corresponding GUIDs. Thus, node operators can-
not read their own files, but users can decrypt
them after retrieval. Node operators cannot gain
any information by looking at GUIDs, either,
because the hashes used to generate them scramble
any identifying characteristics. From a node oper-
ator’s point of view, the data store consists only of
random GUIDs attached to opaque data.

Network Evolution
The network evolves over time as new nodes join
and existing nodes create new connections after
handling queries. As more requests are handled,
local knowledge about other nodes in the network
improves, and routes adapt to become more accu-
rate without requiring global directories.

Adding Nodes
To join the network, a new node first generates a
public-private key pair for itself. This pair serves
to logically identify the node and is used to sign a
physical address reference. Note that public keys
are not certified. We don’t need to link them to
real-world identities because the node’s public key
is its identity, even if it changes physical address-
es. Certification might be useful in the future for
deciding whether to trust a new node, but for now
Freenet uses no trust
mechanism. 

Next, the node
sends an announce-
ment message includ-
ing the public key and
physical address to an
existing node, located
through some out-of-
band means such as
personal communica-
tion or lists of nodes posted on the Web, with a
user-specified TTL. The receiving node notes the
new node’s identifying information and forwards
the announcement to another node chosen ran-
domly from its routing table. The announcement
continues to propagate until its TTL runs out. At
that point, the nodes in the chain collectively
assign the new node a random GUID in the key-
space using a cryptographic protocol for shared
random number generation that prevents any par-
ticipant from biasing the result. This procedure
assigns the new node responsibility for a region of
keyspace that all participants agree on while guar-
anteeing that a malicious node cannot influence
the assignment for a specific key that it might want
to attack.

Training Routes
As more requests are processed, the network’s
routing should become better trained. Nodes’ rout-
ing tables should specialize in handling clusters of
similar keys because each node will mostly receive
requests for keys that are similar to the keys it is
associated with in other nodes’ routing tables.
When those requests succeed, the node learns
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about previously unknown nodes that can supply
such keys and creates new routing entries for
them. As the node gains more experience in han-
dling queries for those keys, it will successfully
answer them more often and, in a positive feed-
back loop, get asked about them more often.

Nodes’ data stores should also specialize in
storing clusters of files with similar keys. Because
inserts follow the same paths as requests, similar
keys tend to cluster in the nodes along those
paths. Nodes should similarly cluster files cached
after requests because most requests will be for
similar keys.

Taken together, the twin effects of clustering
in routing tables and data stores should improve
the effectiveness of future queries in a self-rein-
forcing cycle. While we do not yet have a good
mathematical model to analyze the training and

convergence of the
Freenet algorithm,
the simulations
described later show
that the network
can, in practice,
locate files quickly
— with a median
path length of just 8
hops in a 10,000-
node network.

Key Clustering
Because GUID keys are derived from hashes, the
closeness of keys in a data store is unrelated to
the corresponding files’ contents. This lack of
semantic closeness is unimportant, however,
because the routing algorithm is based on the
locations of particular keys, rather than particu-
lar topics. 

Suppose, for example, a descriptive string such
as politics/us/pentagon-papers yields the key
AF5EC2. Requests for this file could be satisfied by
creating clusters containing the keys AF5EC1,
AF5EC2, and AF5EC3, rather than clusters con-
taining works about U.S. politics. In fact, hashes
are useful because they ensure that similar works
will be scattered throughout the network, lessen-
ing the chances that a single node’s failure will
make an entire category of files unavailable. Sim-
ilarly, the contents of any given subspace will be
scattered across different nodes, which increases
robustness.

Searching
One open issue is how users can search the net-

work for relevant keys. This is similar to the prob-
lem of searching the Web, and similar solutions are
possible: Freenet can be spidered, or individuals
can publish lists of bookmarks. However, these
approaches are not entirely satisfactory in terms
of Freenet’s design goals.

One simple approach for a true Freenet search
would be to create a special public subspace for
indirect keyword files. When authors insert files,
they could also insert several indirect files corre-
sponding to search keywords for the original file.
The “Pentagon Papers” file might have indirect files
named keyword:politics and keyword:united-
states pointing to it, for example. 

The system would allow multiple keyword files
with the same key to coexist (unlike with normal
files), and requests for such keys could return mul-
tiple matches. Thus, a search for “politics” might
return a pointer to the Tiananmen Papers as well
as one to the Pentagon Papers. Managing a large
number of indirect files for common keywords
would be difficult, however, because all the files
with the same name would be attracted to the
same nodes. A more sophisticated approach might
use some type of distributed search over detailed
metadata descriptors inserted along with the orig-
inal files, but we have not yet devised a way to
route such a search efficiently.

Managing Storage
To encourage participation, Freenet does not
require payment for inserts or impose restrictions
on the amount of data that publishers can insert.
Given finite disk space, however, the system must
sometimes decide which files to keep. It currently
prioritizes space allocation by popularity, as mea-
sured by the frequency of requests per file. Each
node orders the files in its data store by time of last
request, and when a new file arrives that cannot
fit in the space available, the node deletes the least
recently requested files until there is room.

Because routing table entries are smaller, they
can be kept around longer than files. Evicted files
don’t necessarily disappear right away because the
node can respond to a later request for the file
using its routing table to contact the original data
holder, which might be able to supply another
copy. Why would the original holder be more like-
ly to have the file? Freenet’s data holder pointers
have a treelike structure. Nodes at the leaves
might see only a few local requests for a file, but
those higher up the tree receive requests from a
larger part of the network, which makes their
copies more popular.
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File distribution is therefore determined by
two competing forces: tree growth and pruning.
The query-routing mechanism automatically cre-
ates more copies in an area of the network where
a file is requested, and the tree grows in that
direction. This improves response time and pre-
vents overloading when the popularity of a file
increases suddenly. Files that go unrequested in
another part of the network are subject to dele-
tion. As that part of the tree shrinks, space is
freed up for other files. The net effect is that the
number and location of copies adjust to the
demand for each file.

Performance Analysis
We have tested Freenet’s performance using sim-
ulations. We have described more extended results
elsewhere,4 but we will summarize the most impor-
tant results here. Freenet demonstrates good scal-
ability and fault-tolerance characteristics that can
be explained in terms of a small-world network
model.5 Small-world networks are characterized by
a power-law distribution of graph degree (here, the
number of routing table entries) of the general
form p(x) ∼ x-t, where t is a constant, x is the graph
degree, and p(x) is the probability that a node has
degree x. In such a distribution, the majority of
nodes has relatively few local connections to other
nodes, but a significant small number of nodes
have large wide-ranging sets of connections. Even
in very large networks, the small-world topology
enables efficient short paths because these well-
connected nodes provide shortcuts.

Figure 2 shows the graph degree distribution in
a simulation of a 10,000-node trained network. The
distribution closely approximates a power law with
t = 1.5, except for an outlier resulting from the max-
imum routing table size (250 in this simulation).
This is not surprising, as power-law distributions
tend to arise naturally when networks grow by pref-
erential attachment (that is, new nodes prefer to
connect to nodes that already have many links).6 The
new-node announcement protocol initially creates
a preferential attachment effect because following
random links gives a higher probability of arriving
at nodes that have more links. During normal oper-
ation, the effect continues because well-known
nodes tend to see more requests and become even
better connected (“the rich get richer”).

Scalability
To test Freenet’s scalability, we created a simulat-
ed network of 20 nodes initially connected in a
ring topology. We sent inserts of randomly gener-

ated files to random nodes in the network, inter-
spersed with random requests for files that had
already been inserted (all with TTL = 20). After
every five inserts and requests, we created a new
node, which announced itself to a random exist-
ing node with TTL = 10. We measured the net-
work’s performance after every hundred inserts
and requests by issuing a set of test requests for
previously inserted files and recording the result-
ing path length distribution (the number of hops
actually required to find the data). This continued
until the network reached 200,000 nodes.

Figure 3 shows the evolution of the first, sec-
ond, and third quartiles of the request path length
versus network size, averaged over 10 trials. We
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Figure 3. Request path length versus network size.The median path
length in the network scales as N 0.28.



can see that the median path length scales sub-
linearly with network size as N 0.28, which agrees
with recent results in mathematical modeling of
peer-to-peer networks.7 By extrapolation, it
appears that Freenet should be capable of scaling
to one million nodes with a median path length
of just 30.

Fault Tolerance
After repeating the previous training procedure to
10,000 nodes, we progressively removed random
nodes from the network to simulate node failures.

Figure 4 shows the resulting evolution of the
request path length, averaged over 10 trials, which
shows that the network is surprisingly robust
against quite large failures. The median path
length remained below 20 even when up to 30 per-
cent of nodes failed. (Note that requests were
capped at 500 hops before giving up.)

The power-law distribution gives small-world
networks a high degree of fault tolerance6 because
random failures are most likely to eliminate nodes
from the poorly connected majority. Routing per-
formance is noticeably affected only after there are
enough failures to knock out a significant number
of well-connected nodes. A small-world network
falls apart much more quickly, however, if the
well-connected nodes are targeted first. This is evi-
dent in Figure 5, which shows the size of the
largest connected component in a 10,000-node
network as nodes were removed, both randomly
and in order from most connected to least con-
nected. Under random failure, the vast majority of
the network remained connected until almost the
very end. Under targeted attack, the network
underwent a “percolation transition” near 60 per-
cent removal, at which point it abruptly broke into
disconnected fragments.

Future Work
Initial beta deployment of Freenet is under way,
and users have downloaded hundreds of thousands
of copies of the software so far. The system’s
anonymous nature makes it impossible to tell
exactly how many users there are or how well
inserts and requests are working, but anecdotal
evidence is positive. We are working on a simula-
tion and visualization suite to enable more rigor-
ous tests of the protocol and routing algorithm.
More realistic simulation and formal modeling are
needed to explore the effects of nodes joining and
leaving, variations in node capacity and band-
width, and larger network sizes. 

We still need to develop search mechanisms and
provide more protection against denial-of-service
attacks that flood the system with junk data.
Although the eviction mechanism works to elimi-
nate files that are never requested, important files
could be pushed out if it did not act quickly
enough under attack. On the other hand, reducing
the priority of new data could result in files being
deleted before they have had a chance to be
requested. We are exploring various modifications
to the caching policy, such as caching less aggres-
sively farther down the data holder pointer tree, to
balance these considerations.
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Figure 4. Request path length under random failure. Performance
remained reasonable even up to a 30 percent failure rate in our
simulation.
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