
Chapter 4

Attack and stability of superpeer

networks

In the previous chapter, we have reported the impact of peer churn on superpeer

network with the help of an analytical framework. In this chapter, we propose an-

other analytical framework to understand the impact of different types of attacks on

superpeer networks. From chapter 4, we can calculate the stability of uncorrelated

large graphs in the same fashion as the previous, however this is more sophisticated

than the framework of chapter 3 in different aspects.

1. In addition to the stability of overall network, the framework of this chapter

gives more insights regarding the topology of the network. For instance, the

removal of nodes along with their adjacent edges changes the topology of the

network. The degree distribution of this deformed network after attack can be

calculated with the help of this framework.

2. There are many results that have been derived for infinite networks (similar

to previous framework), however, little is known about the stability of finite

size networks. The framework developed in this chapter sheds some light on

finite size network by proposing an alternative expression for the percolation

threshold.
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3. Most of the real world networks like Gnutella exhibit degree-degree correlation

in the topological structure. Hence understanding the stability of these networks

needs to include degree-degree correlation in the calculation (which was not

possible in the previous framework). We show that, a little modification of the

current framework makes it suitable for the analysis of correlated networks also.

The chapter is organized in the following way. In section 4.1, we develop the analyt-

ical framework for stability analysis. In section 4.2 we use the framework to analyze

the stability of superpeer networks in face of degree independent attack as well as

degree dependent attack modeled in chapter 3. We show that the degree dependent

attack can be used as an unified attack model as other node disturbances may be re-

produced by regulating some parameter [109]. We validate our theoretical framework

with the help of stochastic simulation. The validation is done in two ways depend-

ing upon the generation of superpeer networks, as illustrated in chapter 3. We start

with simple models of superpeer networks, namely bimodal network and mixed pois-

son network which are simple enough to understand and analyze while at the same

time they capture the essential features of the superpeer networks (section 4.2.2).

Our framework unfolds various issues such as (i) the available knowledge regarding

the topology that helps attackers to breakdown the network (section 4.2.3) (ii) the

effect of finiteness of network size on the network stability (section 4.2.4). After-

wards we implement the attack dynamics on the commercial peer-to-peer networks

namely Gnutella (section 4.3). Gnutella network is simulated both from the boot-

strapping protocol followed by the different Gnutella clients like limewire, mutella

etc [81] and from the topological snapshots obtained from [1]. We identify some devi-

ations between theoretical and simulation results due to the presence of degree-degree

correlation in Gnutella network. In section 4.4, we further refine our framework to

include the degree-degree correlation factor and show that the modified theoretical

model gives good agreement with simulated results.
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4.1 Development of the analytical framework

In this section, we present the detail derivation of the critical condition for measuring

the stability of peer to peer networks undergoing any kinds of attacks [107]. We start

out by repeating some definitions mentioned before. Let pk be the probability of

finding a node chosen uniformly at random with degree k. Let fk be the probability

that a node of degree k is removed after the attack. Correspondingly 1 − fk is the

probability that a node of degree k survives the attack. In our framework, degree

distribution pk models the ensemble of p2p topologies and fk models the disruptive

events that take place in the network. We are going to establish the relationship

between stability, pk and fk. This is done as a two step process; in the first step, we

calculate the degree distribution of the deformed network after attack. Subsequently

in the second step, we use this expression to derive the critical condition of stability

of p2p networks against attack.

4.1.1 Deformed topology after attack

In this subsection, we theoretically compute the degree distribution of the deformed

topology p′k after performing an attack on the p2p network of size N with initial

degree distribution pk. The attack in the network can be thought of in the following

way. The first step in the attack is to select the nodes that are going to be removed

according to the probability distribution fk. After the selection of the nodes, we

divide the network into two subsets, one subset contains the surviving nodes (S)

while the other subset comprises of the nodes that are going to be removed (R).

This is illustrated in Fig. 4.1. The degree distribution of the surviving subset S is

(1 − fk)pk while the subset of nodes to be removed R (that is the edges connecting

set S and set R) still exist. However, when these nodes are actually removed, the

degree distribution of the surviving nodes S is changed due to the removal of the E

edges that run between these two subsets.

To calculate the degree distribution after the attack, we have to estimate E. The
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E

Figure 4.1: The scheme illustrates an attack as consisting of two steps: selection of

nodes to be removed (set of removed nodes, R), and cutting of the edges E that run

from the surviving nodes (set of surviving nodes, S) to the set of removed nodes R.

As the scheme shows, the attack affects the degree of the surviving nodes.

total number of edge tips1 in the surviving subset S including E links that are going

to be removed can be expressed by the sum
∑∞

j=0 j nj (1− fj) where nj = Npj is the

total number of nodes in the network having degree j. Now knkfk gives the total

number of edge tips connected with all the k degree nodes in the removed subset R.

Therefore
∑

k knkfk becomes the total number of tips in R. Hence the probability

of a randomly chosen tip of an edge to be removed becomes
∑

k knkfk∑
k knk

. Subsequently

the probability of a randomly chosen tip of an edge to be removed (i.e. member of

set R) and another tip of that edge being connected to either set S or R becomes∑
k knkfk∑
k knk−1 (since a tip cannot be connected to itself). As the network is uncorrelated,

it is equally probable that the other end of the removed tip (member of set R) is

connected to the nodes of set S or set R. Assuming this unbiasness, the total number

of edge tips in set R connected to the nodes of the set S can be expressed as

E =

( ∑∞
i=0 i ni fi

(
∑∞

k=0 k nk)− 1

) ∞∑
j=0

j nj (1− fj) (4.1)

Knowing this, the probability φ of finding an edge in the surviving subset S, that is

1We assume that each edge consists of two end tips. Hence the total number of tips in the network

is twice the number of edges.
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connected to a node of the other subset R can be expressed as

φ =
E∑∞

i=0 i ni (1− fi)
=

E

N
∑∞

i=0 i pi (1− fi)
=

∑∞
i=0 i pi fi

(
∑∞

k=0 k pk)− 1/N
. (4.2)

In large scale networks, limN→∞ φ =
∑∞

i=0 i pi fi∑∞
k=0 k pk

The probability psq of finding a node with degree q in the surviving subset S (before

cutting the E edges) simply becomes

psq =
(1− fq)pq

1−∑∞
i=0 pifi

. (4.3)

The removal of nodes can only lead to a decrease in the degree of a survived

node. If we find a node of degree k that has survived, it can be due to the fact that

originally its degree was k + q and k of its edges survived while q (q may be zero

also) got removed. For example, the fraction of nodes having degree k after attack

i.e. p′k is given by the fraction of psk nodes, who did not lose any link, and a fraction

of psk+1 nodes who lost one link but rest k links survived, a fraction of psk+2 nodes

who lost two links but rest k links survived and so on. Hence using the concept of

binomial distribution and from the equations (4.2) and (4.3), we obtain the following

expression for p′k:

p′k =
∞∑
q=k

(
q

k

)
φq−k(1− φ)k psq . (4.4)

Eq. (4.4) can be iteratively evaluated by replacing pk with p′k into Eqs. (4.1) to (4.4).

4.1.2 Critical condition for stability

In this section, we derive the critical condition for stability of the peer to peer networks

after attack. In order to do that, we utilize the expression of the deformed degree

distribution p′k after removal of nodes. According to [28, 115], the critical condition

for the stability of giant component can be expressed as

κ′ =
〈k2〉′
〈k〉′ > 2 , (4.5)
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where 〈k〉′ and 〈k2〉′ refer to the first and second moments of the degree distribution

after the attack. The critical condition κ′ = 2 determines the point at which the

network breaks down. To compute 〈k〉′ and 〈k2〉′ of the modified network, we utilize

the generating function G0(x) =
∑

k p′k x
k, which reads:

G0(x) =
∞∑
k=0

∞∑
q=k

(
q

k

)
φq−k(1− φ)kpsq x

k . (4.6)

After exchanging the order of the sum, the Binomial theorem can be applied, and we

obtain:

G0(x) =
∞∑
k=0

psk ((x− 1)(1− φ) + 1)k . (4.7)

From Eq. (4.7), the first two moments can be easily computed as 〈k〉′ = dG0(1)/dx

and 〈k2〉′ = d2G0(1)/dx
2 + dG0(1)/dx, and the critical condition given by Eq. (4.5)

takes the form:

(1− φ)
〈k2〉 −∑∞

q=0 fq pq q
2

〈k〉 −∑∞
q=0 fq pq q

+ φ = 2 , (4.8)

where 〈k〉 and 〈k2〉 refer to the first and second moments of the degree distribution

before the attack. Replacing φ by Eq. (4.2) and assuming N >> 1, we obtain

∞∑
k=0

kpk(k(1− fk)− (1− fk)− 1) = 0 (4.9)

which is the critical condition of stability in any large scale uncorrelated peer to peer

networks. Comparing Eqs. 4.9 and 3.15, we conclude that, this critical condition is

exactly same as that developed in chapter 3.

4.2 Effect of attacks upon the superpeer networks

In this section, we formally analyze the effect of attacks on the superpeer networks

with the help of the developed framework. Two kinds of attacks, namely deterministic

attack and degree dependent attack are discussed separately. The attack models are

already described in chapter 3. First of all, we show the effect of these attacks on

the topological deformation of the network. This phenomenon has been modeled
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Figure 4.2: Topological deformation of the superpeer networks in face of deterministic

attack. After the attack, 10% of nodes are removed. This 10% of nodes correspond to

the 50% of the superpeer nodes whose degree is 20. The initial bimodal network and

deformed network after attack are shown in the figure. The theoretically calculated

degree distribution (p′k) is verified through simulation.

using Eq. (4.4) and validated through simulations. Next we evaluate the stability of

superpeer networks against these kinds of attacks and establish a relationship between

them.

4.2.1 Analysis of deterministic attack

We consider superpeer networks with peer degree kl = 2 and superpeer degree km = 20

and assume that 80% of nodes in the network are peers. Suppose 10% of nodes

are removed through deterministic attack which signifies that 50% of superpeers get

removed. We calculate the new degree distribution after attack (p′k) by Eq. (4.4) and

compare the results with simulation. Fig. 4.2 shows the good agreement between the

theoretical and simulation results which confirms the success of our model.

Stability of the superpeer networks is challenged by attack on prominent peers or

superpeers. In this section, we analyze the effect of this kind of targeted attack upon

superpeer networks where r is the fraction of peers and rest are superpeers. In the

case of targeted attack two cases may arise:
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Case 1 Removal of a fraction of superpeers is sufficient to disintegrate the network.

Case 2 Removal of all the superpeers is not sufficient to disintegrate the network.

Therefore, we need to remove some of the peer nodes along with the super-

peers.

We analyze these two cases separately with the help of our analytical framework.

First we consider the bimodal networks as our superpeer networks model. Next we

extend the analysis for the more sophisticated mixed poisson networks.

Bimodal Networks

From Eq. (4.9) the critical condition for the stability of the superpeer networks can

be rewritten as ∑
k=kl,km

k(k − 1)pkqk = 〈k〉 (4.10)

The equation can be further expanded as below to differentiate between peers and

superpeers

kl(kl − 1)pklqkl + km(km − 1)pkmqkm = 〈k〉 (4.11)

Case 1: In this case, removal of a fraction of superpeers is sufficient to disintegrate

the network. If fsp be the critical fraction of superpeer nodes, removal of which

disintegrates the giant component, then qk = 1 for k = kl and qk = 1−fsp for k = km.

Hence according to Eq. (4.11),∑
k=kl

k(k − 1)pk +
∑
k=km

k(k − 1)pk(1− fsp) = 〈k〉

⇒ fsp = 1− 〈k〉 − kl(kl − 1)pkl
km(km − 1)pkm

As the fraction of superpeer nodes in the network is (1−r), then percolation threshold

for case 1 becomes ftar = (1− r)× fsp

⇒ ftar = (1− r)

(
1− 〈k〉 − kl(kl − 1)r

km(km − 1)(1− r)

)
(4.12)
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Figure 4.3: Stability of the superpeer networks in face of deterministic attack (Com-

parative study between theoretical and simulation results). Here X-axis represents

the peer degree (kl) and Y-axis represents the corresponding percolation threshold

(ftar). We keep the average degree 〈k〉 = 10 and mean superpeer degree 〈ksp〉 = 50

fixed. Case 1 and case 2 of the theoretical model represent Eqs. (4.12) and (4.15)

respectively.

Case 2: Here we have to remove fp fraction of peer nodes along with all the superpeers

to breakdown the network. Therefore qk = 1 − fp for k = kl and qk = 0 for k = km.

Hence according to Eq. (4.11),

kl(kl − 1)pkl(1− fp) = 〈k〉 (4.13)

⇒ fp = 1− 〈k〉
kl(kl − 1)pkl

(4.14)

Therefore the total fraction of nodes required to be removed to disintegrate the net-

work for case 2 becomes ftar = rfp + (1− r).

⇒ ftar = r

(
1− 〈k〉

kl(kl − 1)r

)
+ (1− r) (4.15)

Transition point: The transition from case 1 to case 2 can be easily marked by

observing the value of percolation threshold ftar. While calculating using Eq. (4.12)
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(case 1), if the value of ftar exceeds the fraction of superpeers in the network (1− r),

it indicates that removal of all the superpeers is not sufficient to disrupt the network.

Hence subsequently we enter into case 2 and start using Eq. (4.15) to find percolation

threshold.

We validate our theoretical model of attack on superpeer network with the help of

simulation. During simulation, initially only high degree superpeer nodes in the net-

work are removed gradually until the percolation point is reached. If the percolation

point is not reached even after removing of all the superpeers, we remove a fraction

of peers along with the superpeers to breakdown the network. We perform each ex-

periment for 500 times and take the average of the percolation threshold obtained in

each of them. Superpeer networks with average degree 〈k〉 = 10 and superpeer degree

km = 50 are considered for case study. We increase the peer degree kl gradually (the

peer fraction changes accordingly) and observe the change in the percolation thresh-

old ftar (Fig. 4.3).

Observations:

a. In the networks with peer degree kl = 1, 2 and 3, the removal of only a fraction

of superpeers causes breakdown thus making these networks vulnerable. Moreover,

increase of peer degree from 1 to 2 and 3 further reduces the fraction of superpeers in

the network which makes networks with kl = 2, 3 more vulnerable. Normal wisdom

would expect the attack vulnerability of the network to reduce with the decrease in

the fraction of superpeers. But the opposite happens here. The slope of the Eq. (4.12)

with respect to kl becomes

�ftar
�kl

=
1

M2

(M1 − klM3 +M4k
2
l )− (M5 − kl)(2M5kl −M3)

(M5 − kl)2
(4.16)

where M1,M2,M3,M4,M5 are constants dependent on superpeer degree km and aver-

age degree 〈k〉. The slope of the curve at the points kl = 1, 2 and 3 becomes negative

which signifies that the attack vulnerability of the network increases with kl. Along

with the theoretical justification, this can also be explained by looking into the mi-

cro dynamics. In this zone (at kl = 2, 3), although peers have a larger share in the

network, yet it is not large enough to form effective connections within themselves.

Therefore the stability of the network is still entirely dependent on the high degree

superpeers, hence now attacking even a smaller fraction breaks down the network.
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Figure 4.4: The plot represents the impact of peer contribution PrC upon the stability

of the network against attack. fp represents the fraction of peers required to be

attacked to dissolve the network and ftar indicates the corresponding percolation

threshold.

b. However as peer degree increases beyond 4, the transition from case 1 to case 2

occurs. In this region a fraction of peers is required to be removed even after removal

of all the superpeers to dissolve the network. The slope of the Eq. (4.15) with respect

to kl becomes
�ftar
�kl

=
k

k2
l (kl − 1)

+
k

kl(kl − 1)
(4.17)

Hence the slope of the Eq. (4.15) becomes positive for any peer degree kl > 1 which

indicates that stability of the network increases with the increase of peer degree. In

practice, the high degree peers connect among themselves and they are not entirely

dependent on superpeers for connectivity. This results in the steep increase of stability

of the network with peer degree kl ≥ 5.

Impact of peer contribution

Similar to churn, we investigate the impact of (pure) peer contribution upon stability

of the network due to attack. In order to understand the influence of the degree of pure

peers, we consider the networks with kl = 1, 3, 5. Three sets of networks are generated

having kl = 1, 3 and 5 respectively for individual peer contribution PrC (0.1 ≤ PrC ≤
0.9). In order to do that, we choose fraction of peers r uniformly at random and adjust

superpeer degree km accordingly to keep the peer contribution PrC and peer degree

kl constant. This procedure is followed to generate one hundred networks for each
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set. We restrict superpeer degree km ≥ 20 in order to generate realistic superpeer

networks. We theoretically compute the percolation threshold (ftar) and fraction of

peers and superpeers required to be removed (fp and fsp respectively) for individual

network and calculate their average for individual kl. This expected fraction of peers

required to be removed fp and percolation threshold ftar is plotted with respect to

the peer contribution PrC (Fig. 4.4). The theoretical model is sufficient for analysis

as the model has been already validated through simulation.

Observations:

1. It can be observed from Fig. 4.4 that superpeer networks having peer degree

kl = 1 can be disintegrated without attacking peers at all for any peer contri-

bution PrC . This kind of attack belongs to case 1 of the attack model.

2. The peers of the superpeer networks having peer contribution PrC ≤ 0.2 does

not have any impact upon the stability of the network. This is true for low as

well as high degree peers.

3. The influence of high degree peers increases with the increase of peer contribu-

tion. At PrC = 0.3, a fraction of peers is required to be removed to disintegrate

the networks having peer degree kl = 5. The impact of high degree peers

upon the stability of the network becomes more eminent as peer contribution

PrC ≥ 0.5. In this region, a significant fraction of peers is required to be re-

moved for all the networks having peer degree kl = 3, 5. This kind of attack

belongs to case 2 of the attack model.

4. Increase in peer contribution PrC ≥ 0.4 brings the percolation threshold ftar

and fraction of peers needed to be attacked fp close to each other which implies

that stability of these networks is primarily dependent upon the stability of the

peers.

5. It is interesting to observe that peer contribution PrC has two opposite effects

upon stability of the networks depending on the peer degree kl. The perco-

lation threshold ftar increases with peer contribution PrC for kl = 3, 5, but

gradually reduces for kl = 1. The reason behind this is, stability of the net-

works with peer degree kl = 1 is entirely dependent upon superpeers. Since
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increase in peer contribution decreases superpeer contribution, it decreases sta-

bility of these networks also. On the other hand, peers having degree kl ≥ 3

have many connections among themselves, hence stability of these networks is

more dependent upon peer contribution. Therefore, percolation threshold ftar

increases with peer contribution PrC .

6. Peer degree kl = 3 exhibits some kind of trade off between the impact of peer and

superpeer contribution upon stability. Superpeer contribution becomes more

predominant for lower values of PrC (PrC < 0.5) which degrades the percolation

threshold against attack. However as peer contribution PrC increases beyond

0.5, superpeer contribution reduces hence attacking peers along with superpeers

is necessary to destroy the network. This increases the percolation threshold

ftar i.e. the stability of the network as well.

Mixed Poisson Networks

Similar to bimodal networks, in mixed poisson networks also we have two different

cases. We analyze these two cases separately with the help of our analytical frame-

work. From Eq. (4.9) the critical condition for the stability of the giant component

can be rewritten as ∞∑
k=0

k(k − 1)pkqk = 〈k〉

The equation can be further expanded as below to differentiate between peers and

superpeers
kmax−1∑
k=0

k(k − 1)pkqk +
∞∑

k=kmax

k(k − 1)pkqk = 〈k〉 (4.18)

where all the nodes having degree less than kmax are peers and rest are superpeers.

Case 1: In this case, removal of a fraction of superpeers is sufficient to disintegrate

the network. If fsp be the critical fraction of superpeer nodes, removal of which

disintegrates the giant component then qk = 1 for k < kmax and qk = 1 − fsp for

k ≥ kmax. Hence according to Eq. (4.18),

kmax−1∑
k=0

k(k − 1)pk +
∞∑

k=kmax

k(k − 1)pk(1− fsp) = 〈k〉
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⇒ fsp = 1− 〈k〉 −
∑kmax−1

k=0 k(k − 1)pk∑∞
k=kmax

k(k − 1)pk

As the fraction of superpeer nodes in the network is (1−r), then percolation threshold

for case 1 becomes ft = (1− r)× fsp

⇒ ft = (1− r)

(
1− 〈k〉 −

∑kmax−1
k=0 k(k − 1)pk∑∞

k=kmax
k(k − 1)pk

)

= (1− r)

⎛⎝1− 〈k〉 − r
∑〈kp〉+δ

k=0 k(k − 1) 〈kp〉
ke−〈kp〉

k!

(1− r)
∑∞

k=〈kp〉+δ+1 k(k − 1) 〈ksp〉
ke−〈ksp〉

k!

⎞⎠ (4.19)

where mean peer degree 〈kp〉 = 〈k〉−(1−r)〈ksp〉
r

and we choose suitable value of δ depend-

ing on the standard deviation of the Poisson distribution. δ ensures the inclusion of

all peer and superpeer degrees around their respective means 〈kp〉 and 〈ksp〉 during
the calculation of above equations.

Case 2: Here we have to remove fp fraction of peer nodes alongwith all the super-

peers to breakdown the network. Therefore qk = 1 − fp for k < kmax and qk = 0 for

k ≥ kmax. Hence according to Eq. (4.18),

kmax−1∑
k=0

k(k − 1)pk(1− fp) = 〈k〉

⇒ fp = 1− 〈k〉∑kmax−1
k=0 k(k − 1)pk

Therefore the total fraction of nodes required to be removed to disintegrate the net-

work for case 2 becomes ft = rfp + (1− r).

⇒ ft = r

(
1− 〈k〉∑kmax−1

k=0 k(k − 1)pk

)
+ (1− r)

= r

(
1− 〈k〉

r
∑〈kp〉+δ

k=0 k(k − 1) 〈kp〉
ke−〈kp〉

k!

)
+ (1− r) (4.20)

where mean peer degree 〈kp〉 = 〈k〉−(1−r)〈ksp〉
r

.

Transition point: The transition from case 1 to case 2 can be easily marked by

observing the value of percolation threshold ft. While calculating using Eq. (4.19)

(case 1), if the percolation threshold ft exceeds the fraction of superpeers in the
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Figure 4.5: The above plot represents the behavior of the mixed poisson network in

face of deterministic attack found experimentally and compares it with the proposed

theoretical model. Here X-axis represents the fraction of peer nodes (r) that exist in

the network and Y-axis represents the corresponding percolation threshold (ft). We

keep the average degree 〈k〉 = 5 and mean superpeer degree 〈ksp〉 = 30 fixed. Case 1

and case 2 of the theoretical model represent Eqs. (4.19) and (4.20) respectively.

network (1 − r), it indicates that removal of all the superpeers is not sufficient to

disrupt the network. Hence subsequently we enter into case 2 and start using Eq.

(4.20) to find percolation threshold.

We validate our theoretical model of attack on mixed poisson network with the help

of simulation. In simulation, we consider a mixed poisson network with average

degree 〈k〉 = 5 and mean superpeer degree 〈ksp〉 = 30. We increase the fraction of

peers gradually keeping average degree 〈k〉 = 5 fixed and observe the change in the

percolation threshold ft (Fig. 4.5). It is important to note that when the fraction of

superpeers in the network is high, it is possible to breakdown the network only by

removing a fraction of superpeers and modeled as case 1 (Eq. (4.19)). But when the

fraction of superpeers is below some threshold, a fraction of peers should be attacked

alongwith the superpeers to stop percolation in the network and modeled as case 2

(Eq. (4.20)).

Summarization: In this section, the impact of deterministic attack on the stability

of superpeer networks has been analyzed. We have shown that the networks having

peer degree kl ≤ 3 are very much vulnerable and removal of only a small fraction of
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superpeers causes the breakdown of the network. But as the peer degree increases, the

stability of the network increases as well. We have observed that peer contribution

plays a major role in the network stability, specially for the networks with high peer

degree (say kl ≥ 3). In this case, a fraction of peers are required to be removed along

with all the superpeers in the network. However, depending upon the peer degree kl,

peer and superpeer contributions exhibit two opposite forces in percolation threshold

due to their individual influence on the connectivity of the network. This phenomenon

becomes much more predominant for the networks with kl ≥ 3. We have observed

that both bimodal networks and mixed poisson networks qualitatively exhibit similar

kinds of behavior against deterministic attack. We henceforth use bimodal network

as the representative superpeer network for the analysis of degree dependent attack.

4.2.2 Analysis of degree dependent attack

In this kind of attack, the probability of removal of a node of degree k is directly

proportional to kγ where γ ≥ 0 is a real number and represents the information

available to the attacker about the topological structure of the network. Similar to the

deterministic attack, in this case also we compute the deformed degree distribution

p′k after attack and validate the results through simulations. Without the loss of

generality, we use bimodal network as the representative topology to model superpeer

networks. We consider a superpeer network with peer degree kl = 2 and superpeer

degree km = 10 where 80% of the nodes are peers. The probability of removal of

a node is proportional to its degree, i.e. fk = k
km+1

(so γ = 1). The theoretically

computed p′k (using Eq. (4.4)) and simulation results are shown in Fig. 4.6. Next

we analyze the effect of degree dependent attack upon the stability of the superpeer

networks. With proper normalization, probability of removal of a node having degree

k becomes fk =
kγ

C
where C is the normalization constant.

As mentioned in bimodal degree distribution, let r be the fraction of peers with degree

kl while rest are superpeers of degree km. If 〈k〉 is the average degree of the network,
then

pkl = r =
km − 〈k〉
km − kl

pkm = (1− r) =
〈k〉 − kl
km − kl
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Figure 4.6: Topological deformation of the superpeer networks in face of degree de-

pendent attack. The nodes are removed from the network with fk =
k

km+1
. The initial

bimodal network and the deformed network after attack p′k are shown in the figure.

From Eq. (4.9) the critical condition for the stability of the giant component can be

rewritten as ∑
k=kl,km

k(k − 1)pk(1− fk) = 〈k〉

⇒ 〈kγ+2〉 − 〈kγ+1〉 = C(〈k2〉 − 2〈k〉)
⇒ rkγ+1

l (kl − 1) + (1− r)kγ+1
m (km − 1) =

C(〈k〉(km + kl)− km − 2〈k〉) (4.21)

where θth moment of the bimodal degree distribution can be written as 〈kθ〉 = kθ
mpkm+

kθ
l pkl . The solution of Eq. (4.21) yields a particular value of γ, say γc (termed as

critical exponent) and the percolation threshold becomes

fγc
c = r

kγc
l

C
+ (1− r)

kγc
m

C
(4.22)

In order to evaluate the disintegration point, proper assignment of the value of nor-

malizing constant C is necessary. Since fk should be ≤ 1 ∀k, hence the minimum

value of C = kγ
m. Assuming this condition, Eq. (4.21) becomes

rkγ+1
l (kl − 1) + (1− r)kγ+1

m (km − 1) ≥
kγ
m(〈k〉(km + kl)− km − 2〈k〉) (4.23)
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The solution set of the above inequality (say Sγc) can be bounded (where 0 ≤ γc ≤ γbd
c )

or unbounded (where 0 ≤ γc ≤ +∞). Each critical exponent γc ∈ Sγc specifies the

fraction of peers and superpeers required to be removed to breakdown the network.

Assuming equality of Eq. (4.23) and hence obtaining minimum value of C, each γc

results in the corresponding normalizing constant

Cγc =
rkγc+1

l (kl − 1) + (1− r)kγc+1
m (km − 1)

〈k〉(km + kl)− km − 2〈k〉 (4.24)

Hence the fraction of peers and superpeers need to be attacked are

fγc
p =

kγc
l

Cγc

fγc
sp =

kγc
m

Cγc

(4.25)

respectively and the total fraction of removed nodes fγc
c is obtained from Eq. (4.22).

The fγc
c depends upon the critical exponent γc ∈ Sγc and normalizing constant Cγc .

The nature of the solution set Sγc has profound impact upon the behavior of fγc
p ,

fγc
sp as well as fγc

c . The breakdown of the network can be due to one of the three

situations noted below.

1. The removal of all the superpeers along with a fraction of peers.

2. The removal of only a fraction of superpeers.

3. The removal of some fraction of both superpeers and peers.

The above mentioned three cases are discussed one by one with example.

Case 1 : Removal of all superpeers along with a fraction of peers

Networks having bounded solution set Sγc where 0 ≤ γc ≤ γbd
c exhibit this kind

of behavior at the maximum value of the solution γc = γbd
c . Here the fraction of

superpeers removed become f
γbd
c

sp = 1 and fraction of peers removed f
γbd
c

p =
k
γbdc
l

C
γbdc

. We

consider superpeer networks with superpeer degrees km = 30, 40 and average degree

〈k〉 = 10 and theoretically study the stability of the networks due to the change in

the peer fraction r. The results of the case study are noted in Fig. 4.7. It can be
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Figure 4.7: Case 1 of the degree dependent attack. The superpeer degree km is

adjusted with the change of peer fraction r to keep the average degree fixed.

observed that the solution set of these networks upto a threshold peer fraction rc,

(rc = 0.78 and 0.84 for km = 30 and km = 40 respectively) remains unbounded. The

bounded solution set is observed for the networks with r ≥ rc and the behavior of

the boundary critical exponent γbd
c due to the change of peer fraction r is shown in

Fig. 4.7(a). The fraction of peers and superpeers needed to be attacked for these

networks is presented in Fig. 4.7(b). These networks exhibit the properties of case

1 of degree dependent attack, hence the removal of all the superpeers is necessary to

disintegrate the network along with a fraction of peers. Fig. 4.7(b) also represents

some instances of case 2 where only some fraction of superpeers are needed to be

removed (r < rc).

The main findings are listed below

a. Impact upon the fraction of peers removed

The increase in peer fraction slowly decreases γbd
c (Fig. 4.7(a)) which in turn gradually

increases the fraction of peers removed f
γbd
c

p (Fig. 4.7(b)). The amount of removal of

peers also depends upon the superpeer degree km. The increase in the superpeer

degree reduces the role of peers in determining the stability of the network. Hence

fraction of peers required to be removed f
γbd
c

p reduces with increase in km.
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b. Impact upon percolation threshold

Let the percolation threshold for the networks having peer fraction r1 and r2 (where

r1 < r2) be f
γbd
c

c1 and f
γbd
c

c2 respectively. Hence the percolation threshold for these two

networks are

fγbd
c

c1
= r1f

γbd
c

p1
+ (1− r1) (4.26)

fγbd
c

c2
= r2f

γbd
c

p2
+ (1− r2) (4.27)

Therefore the change in the percolation threshold when the peer fraction changes

from r1 to r2 is

fγbd
c

c1
− fγbd

c
c2

= �fγbd
c

c = r1f
γbd
c

p1
− r2f

γbd
c

p2
− (r1 − r2)

= �
(
rfγbd

c
p

)
−�r (4.28)

The Eq. (4.28) shows that the change of percolation threshold f
γbd
c

c is influenced by

two opposite forces; on one hand the increase of peer fraction r (from r1 to r2) in

the network makes �r < 0 that increases �f
γbd
c

c . On the other hand, this increase

in r increases the fraction of peers required to be removed (Fig. 4.7(b)) which makes

�
(
rf

γbd
c

p

)
< 0. Depending upon the weightage of influence, �f

γbd
c

c (and subsequently

f
γbd
c

c ) either decreases or increases. For r < rc, the rf
γbd
c

p remains 0, hence f
γbd
c

c

decreases with r. When peer fraction r ≥ rc, due to the finite value of f
γbd
c

p , the f
γbd
c

c

increases.

Case 2 : Removal of only a fraction of superpeers

Some networks have unbounded solution set Sγc where 0 ≤ γc ≤ +∞. As γc → ∞,

fγc
p converges to 0 and fγc

sp converges to some x where 0 < x < 1. This illustrates the

case 2 of degree dependent attack where removal of only a fraction of superpeers is

sufficient to disintegrate the network. The case study is performed with a network

having superpeer degree km = 25, average degree 〈k〉 = 5 and peer degree kl = 2. The

results are validated with the help of simulation. We plot the theoretically calculated

(Eqs. (4.24), (4.25)) fraction of peers and superpeers required to be removed to

breakdown the network for each critical exponent γc (Fig. 4.8). In simulation, we
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initially remove the fraction of superpeers fγc
sp which has been predicted theoretically

and then start removing peers gradually to breakdown the network. The minimum

peer fraction, removal of which causes the breakdown of the network corresponds to

the simulated fγc
p . We perform the simulation on graphs of 5000 nodes and repeat

each experiment for 500 times and take the average of the removed peer fraction. We

compare simulated results with theoretically calculated fγc
p (Fig. 4.8). The interesting
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Figure 4.8: The above plot illustrates the case 2 of degree dependent attack.

findings are noted below.

a. The fraction of peers removed fγc
p gradually decreases with the increase of the

critical exponent γc, which in turn decreases the value of fγc
c . As γc → ∞, the

fγc
p → 0 with fγc

sp → x (where 0 < x < 1) and fγc
sp , f

γc
c both converges to some steady

value. This signifies that the removal of only a fraction of superpeers is sufficient to

breakdown the network (Fig. 4.8).

b. In Fig. 4.7(a), the nonexistence of the boundary critical exponent γbd
c for the

networks having peer fraction r < rc signifies that the solution set of these networks

is unbounded and the percolation process belongs to case 2. It can be observed that

the fraction of peers required to be removed for these networks becomes zero (Fig.

4.7(b)) and removal of only a fraction of superpeers disintegrates the network.

c. It is important to note that removal of only a fraction of superpeers is sufficient to

disintegrate any network with peer degree kl = 1 and 2 irrespective of the superpeer

degree and its fraction. Mathematically it can be explained as follows. For kl ≤ 2,
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2kl ≥ k2
l

⇒ 2rkl ≥ rk2
l

⇒ (1− r)km + 2rkl − rk2
l ≥ 0

⇒ (1− r)km(km − 1) ≥ 〈k〉(km + kl)− km − 2〈k〉
⇒ rkγ+1

l (kl − 1) + (1− r)kγ+1
m (km − 1) ≥

kγ
m(〈k〉(km + kl)− km − 2〈k〉)

This is exactly the inequality that we get in Eq. 4.23. This inequality is essentially

the condition for breakdown of the superpeer network. Since the above inequality

holds for any values of γ, it indicates that any network with kl = 1, 2 has unbounded

solution set.

Case 3 : Removal of some fraction of both peers and superpeers

Degree dependent attack allows to disintegrate the network by removing a fraction of

both peers and superpeers. Intermediate critical exponents (γc ∈ Sγc and γc �= γbd
c )

signify the fractional removal of both peers and superpeers. We calculate the amount

of peers and superpeers needed to be removed to dissolve the network due to the

change in γc. We deduce the results for a network having superpeer degree km = 25,

average degree 〈k〉 = 5 and peer degree kl = 3. Results are also validated with the

help of simulation (Fig. 4.9). The simulation set up is same as that described for case

2 of the degree dependent attack.

Observations:

a. Our analytical results show that this network has bounded solution set Sγc of the

inequality (4.23) and all the critical exponents γc less than the boundary critical expo-

nent γbd
c = 1.171 results in this kind of breakdown. It is evident from both theoretical

and simulation results that the removal of any combination of fγc
p , fγc

sp (obtained from

the curves in Fig. 4.9) where 0 ≤ γc < γbd
c , results in the breakdown of the network.

b. Networks with unbounded solution set (Fig. 4.8) have finite values of γc (γc < 2)

where the removal of both fraction of peers and superpeers are necessary to disinte-

grate the network.
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Figure 4.9: The above plot illustrates the case 3 of the degree dependent attack.

Summarization: In this section, the impact of degree dependent attack on the

stability of the superpeer networks has been discussed in details. We have formulated

the critical condition for network stability and subsequently obtained the critical ex-

ponent γc. This critical exponent γc and the normalizing constant Cγc determine the

amount of peers and superpeers required to be removed to breakdown the network.

Interestingly, we also find that the removal of only a fraction of superpeers is suffi-

cient to disintegrate any network with peer degree kl = 1 and 2 irrespective of the

superpeer degree and its fraction [112].

One of the major contributions of this section is that, we have been able to provide

a uniform attack framework (through degree dependent attack fk ∼ kγ) which

besides providing a flexibility in deciding attack strategy (through γ) also captures the

essential features of deterministic attack. Case 1 and case 2 of the degree dependent

attack resemble exactly the case 2 and case 1 of the deterministic attack respectively.

In addition, γ = 0 and γ < 0 essentially model the degree independent and degree

dependent failures respectively which have been illustrated in chapter 3.
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Figure 4.10: The above plot illustrates the change in percolation threshold fc with

the change of attack exponent γ. Three different scale free networks (pk ∼ k−α)

with α = 2, 2.5 and 3 have been considered. Curves represent the theoretical results

whereas the symbols show the simulation results. The agreement between theoretical

and simulation results (with N = 105) shows the success of Eq. (4.31). The dashed

lines indicate the line of convergence of fc calculated using Eq. (4.31) at γ →∞.

4.2.3 Physical interpretation of the attack exponent γ

The availability of the generalized attack model fk ∼ kγ immediately points to the

importance of analyzing the attack parameter γ which signifies the information avail-

able to the attacker to breakdown the network [54]. As we know, the generalized

attack can be represented as fk =
kγ

C
where C is the normalizing constant. Clearly in

the case of γ > 0, high degree nodes are removed with higher probability. Under this

kind of generalized attack, the critical condition for stability of the large scale net-

works (N →∞) with degree distribution pk can be expressed according to Eq. (4.9)

as follows:

〈k2〉 − 2〈k〉+ [〈k1+γ〉 − 〈k2+γ〉]
C

= 0 , (4.29)

where 〈kω〉 is defined as 〈kω〉 =∑k k
ω pk. In consequence, the critical value of C that

breaks down the network (termed as ‘percolating C’) simply reads:

C =
〈k2+γ〉 − 〈k1+γ〉
〈k2〉 − 2〈k〉 . (4.30)
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The fraction of removed nodes f after an attack becomes f =
∑

k pkfk. Interestingly,

for a given value of γ, the value of C obtained from Eq. (4.30) may not be feasible if

fk =
kγ

C
> 1. This implies that an attack of the form fk =

kγ

C
is unable to destroy the

network. Given an attack characterized by an exponent γ, and using Eq. (4.30), the

critical fraction of nodes that is required to remove in order to destroy the network

is given by

fc =
〈k2〉 − 2〈k〉

〈k2+γ〉 − 〈k1+γ〉〈k
γ〉 . (4.31)

Eq. 4.31 is a generalized expression and can be applicable for any kind of network.

However, the concept of topology information γ becomes more relevant for the net-

work with continuous degree distribution, rather than the network consisting only

two distinct degrees. Hence, next we perform a case study for the scale free networks

where degree distribution follows pk ∼ k−α with a maximum degree kM . Fig 4.10 il-

lustrates the behavior of the percolation threshold fc of the scale free networks due to

the change in the attack exponent γ. It also shows a comparison between Eq. (4.31)

and stochastic simulations performed on the networks of size 105 with 500 realizations.

In order to find the simulated value of percolating C as well as percolation threshold

fc, we have followed the method described in chapter 3. As expected, random failure

(γ = 0) requires high attack intensity that increases percolation threshold. However

as γ →∞,

fc → (〈k2〉 − 2〈k〉) lim
γ→∞

〈kγ〉
〈k2+γ〉 − 〈k1+γ〉 (4.32)

⇒ fc → h(α)
1

kM(kM − 1)

where h(α)(= 〈k2〉 − 2〈k〉) is a constant function of power law exponent α and maxi-

mum degree of the network kM . Hence as information about the network (γ) increases,

fc decreases and converges to some constant value. The analysis of this attack has

revealed that in scale free networks an increase of γ leads to a decrease of the critical

fraction of nodes that must be removed to disintegrate the network; i.e. a decrease in

the percolation threshold fc. However, after a threshold γ, the percolation threshold

fc reaches to some constant value and does not decrease further.
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4.2.4 Impact of network size on the percolation threshold

Till now, our work has focused on analyzing the stability of large scale networks;

this is in line with the general trend. Hence, the percolation threshold fc remains

independent of the network size N . However, the framework developed in this chapter

provides us the flexibility to understand the stability of small scale networks also. In

this section, we illustrate the effect of network size N upon the percolation threshold

fc(N). In section 4.1.1, we compute the probability φ of finding an edge in the

surviving subset S that is connected to a node of other subset R (Fig. 4.1) as

φ =
E∑∞

i=0 i ni (1− fi)
=

∑∞
i=0 i pi fi

(
∑∞

k=0 k pk)− 1/N
. (4.33)

Following section 4.1.2, we find that the critical condition for the disintegration of

the finite size networks can be expressed as(∑
k

kpk(1− fk)

)(∑
k

pkk
2(1− fk) +

∑
k

kpk(fk − 2)

)
+

1

N

(∑
k

kpk(1− fk)(2− k)

)
= 0 (4.34)

Next we customize Eq. 4.34 for random failure by substituting fk = f . Subsequently

the percolation threshold for finite size network becomes

fc(N) =

(
1− 1

〈k2〉
〈k〉 −1

)
+

1

N

(
2− 〈k2〉/〈k〉
〈k2〉 − 〈k〉

)
(4.35)

As network size N → ∞, the expression of percolation threshold for random failure

reduces to

f∞c = 1− 1
〈k2〉
〈k〉 −1

(4.36)

which converges to Eq. (3.17) of chapter 3.

Although Eq. (4.35) is a generalized expression, we show the results for Erdos-Renyi

graph where the distinction between the finite and infinite size networks becomes

nicely evident. We perform analysis on the E-R graph of finite size N with aver-

age degree 〈k〉 = 3. Fig. 4.11 shows a comparative study between the percolation

thresholds calculated from Eq. 4.35 (where we consider the network size N) and from



4.3 Effect of attacks upon the commercial Gnutella Networks 105

50 100 150 200
0.54

0.55

0.56

0.57

0.58

0.59

N

f c(N
)

Figure 4.11: The figure illustrates the impact of network size N upon the percolation

threshold fc. The symbols represent the fc obtained from stochastic simulation with

a large number of realizations. The dashed line shows the percolation threshold

calculated by Eq. (3.17) first proposed in [28] where fc remains invariant with network

size. The solid line shows the fc calculated according to Eq. (4.35). The nature of the

curve of Eq. (4.35) matches with the simulation however the results are not exact.

Eq. 4.36 (where fc is invariant of network size) and results obtained from stochastic

simulation. As Eq. 4.36 does not take the network size under consideration, f∞c takes

a constant value for a specific network configuration. However, fc(N) calculated from

Eq. 4.35 takes a lower value for small sized networks and gradually increases with

increase in N . The observed deviation between fc(N) and simulation results can

be arguably attributed to clustering effects, which have been ignored in the current

approach.

4.3 Effect of attacks upon the commercial Gnutella

Networks

In the previous sections, we have modeled the superpeer networks as various theoret-

ical random graphs and validated our theoretically derived results through stochastic

simulation. In this section, we choose the commercially popular peer-to-peer network,
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Gnutella as a case study and examine its stability in face of attacks. In section 4.1.2,

we have shown that the measurement of network stability primarily depends upon

the deformed degree distribution p′k after attack. Hence, in this section we focus

on the accurate calculation of p′k for Gnutella networks. We perform a comparative

study of the p′k obtained from the experiments on Gnutella networks with the results

calculated from the analytical framework.

4.3.1 Attacks on Gnutella networks

In chapter 3, we have described the generation of Gnutella networks following (a)

bootstrapping protocol (b) topological snapshot. In this section, we refer the Gnutella

network generated from bootstrapping protocol as ‘Gnutella A’ and Gnutella network

generated from the topological snapshot as ‘Gnutella B’ and simulate deterministic
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Figure 4.12: The above plots show the topological impact of deterministic attack and

random failure upon the simulated Gnutella A network of 5000 nodes. A comparative

study of the simulation results with our theoretical model is performed.

attack and random failure on these two networks. We simulate the ‘Gnutella A’ net-
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work of N = 5000 nodes and all nodes in the network having degree more than 10

are removed in deterministic attack scenario. In random failure, 20% nodes in the

network are removed randomly. The experiment is performed for 500 realizations

and the average of the deformed degree distribution (p′ksim) and percolation threshold

(fsim) are calculated. We plot the degree distribution of the initial (pk) and deformed

network (p′ksim) in Fig. 4.12 and compare the simulation results with the theoretically

calculated p′ktheory according to Eq. (4.4). Similarly, we mount a deterministic attack

on ‘Gnutella B’ network where all the nodes in the network having degree more than

40 are removed. In random failure, 20% nodes in the network are removed randomly.

The comparative study of the deformed degree distribution p′ksim obtained from sim-

ulation with the theoretical model (Eq. (4.4)) has been done for these two kinds of

node disturbances (Fig. 4.13). We observe that in both topologies (Gnutella A and B),

the proposed theoretical model provides a reasonable approximation of the topological

changes in the network under random failure (Fig. 4.12(b), Fig. 4.13(b)) however there

is a deviation in case of deterministic attack (Fig. 4.12(a), Fig. 4.13(a)). We quantify

the deviation of the theoretically predicted result from simulation in two different

perspectives. First, we calculate the deviation in the individual pk∀k (micro level de-

viation), second, the deviation in the average degree (macro level deviation). In order

to quantify the deviation of individual pk, ∀k for Gnutella A network, we calculate the

deviation parameter devA in the following manner. We compute p′ksim and p′ktheory for

individual degree k and subsequently derive their difference diffk = |p′ksim − p′ktheory |.
The overall deviation (devA) is calculated from

∑
k diffk

max(k)
. Similarly we calculate the

deviation parameter devB for the Gnutella B network. We find that the deviation

parameter devA = 0.0284 in the Gnutella A network is higher than the Gnutella B

network, devB = 0.0219. Next we show the deviation in the theoretically and ex-

perimentally calculated average degree of the Gnutella network after deterministic

attack. In Gnutella A and B networks, the average degree of the initial network is

5.6191 and 2.4359 respectively. After attack, the new average degree obtained from

simulation becomes Avg degAsim = 0.4858 and Avg degBsim = 0.1608 respectively for

Gnutella A and B network. However the theoretically calculated average degree for

these two networks show higher values than simulation (Avg degAtheory = 1.5917 and

Avg degBtheory = 0.6617). We believe that the observed deviation between theoretical

and simulation results are due to the presence of degree-degree correlation in the
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Figure 4.13: The above plots show the effect of attack and failure upon the Gnutella

B network simulated from the topological snapshot taken during September 2004.

The network is of the size of 1, 31, 869 nodes. A comparative study of the simulation

results with our theoretical model is performed.

network which was not present in the random graphs. We first formally define the

degree-degree correlation and then examine its precise role.

Defining degree-degree correlation

Degree-degree correlation is defined as the probability of attachment of a source node

to the target node given the present degree of the source/target node. Many networks

show “assortative mixing” on their degrees, i.e., a preference for high-degree nodes

to attach to other high-degree nodes in the network. Others show “dis-assortative

mixing” where high degree nodes attach to low degree ones. In [123], this property

has been conveniently measured by means of a single normalized index, the assor-
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tativity coefficient2. In our simulation, the Gnutella networks generated through

the bootstrapping protocol (Gnutella A) as well as topological snapshot (Gnutella

B) exhibit dis-assortativity (negative assortativity). The average assortativity of the

Gnutella A for 500 realizations becomes α = −0.6749 whereas the Gnutella B has

α = −0.6318. The deviation of the theoretical results from simulation for Gnutella

A (devA = 0.0284) is more than the Gnutella B network (devB = 0.0219) as well

as Gnutella A has lower assortativity than Gnutella B. This indicates some sort of

relationship between the deviation and assortativity. The precise role of assortativity

is investigated next.

Role of assortativity

In this section, we intuitively explain the deviation between the theoretical and sim-

ulation results in assortative network. First we explain the impact of assortativity on

the average degree of the network.

Impact of assortativity on the average degree

A given attack on some assortative network changes the average degree (density) of

the network, and the amount of change depends upon the assortative nature of the

network. In Fig. 4.1, we find that two types of edges originate from the nodes of the

removed set R; (a) one set of edges whose other end is also connected to the nodes

of set R (say ER) (b) another set of edges whose other end is connected to the nodes

of set S (say E). For any given attack fatk
k , the number of nodes in set R will be

same for all networks. Let us assume that due to attack fatk
k on a given network,

the number of tips removed only from the nodes of removed set R is R̂tips and E is

the number of tips removed from the set S. The number of edge tips removed will

be the summation of R̂tips and E. Hence, the total number of edges removed from

the network after attack becomes
E+R̂tips

2
. R̂tips will be a constant across all networks

2Degree-degree correlation of a network is formally defined through assortativity coefficient α [123]

such that

α =
M−1

∑
i jiki − [M−1

∑
1
2 (ji + ki)]

2

M−1
∑

i
1
2 (j

2
i + k2i )− [M−1

∑
1
2 (ji + ki)]2

where ji, ki are the degrees of the vertices at the ends of the ith edge, with i = 1...M (M is the

total number of edges in the network).
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(it is directly dependent on the number of nodes removed); therefore the number of

edges removed will be directly dependent upon the value of E. Subsequently, the

number of edges survived in the network after the attack fatk
k may be expressed as

Enew = Etot − E + R̂tips

2
(4.37)

The value of E (number of edges running between the set S and R) depends on

the assortativity of the network. In case of deterministic attack in assortative net-

work, most of the high degree nodes (in R) are connected among themselves (mak-

ing ER quite high), hence a very small number of edges E are connected to the

set S. Using Eq. 4.37, we find that the removal of few E edges keeps the net-

work quite dense with high average degree. However, in disassortative network,

most of the edges E run between S (low degree nodes) and R (high degree nodes)

and there exits few links ER connecting the high degree nodes of set R. Subse-

quently, the removal of large number of E edges reduces the average degree. Hence

Enew(assort) > Enew(uncorr) > Enew(disassort).

Intuitive justification behind Avg degtheory > Avg degsim against attack

We simulate an attack on Gnutella networks (a disassortative network) such that most

of the high degree nodes are removed. As explained, removal of high degree nodes re-

moves the large number of edges running between set S and R , say Esim (E obtained

from simulation). On the other hand, in theoretically calculated E (according to the

Eq. (4.1)), say Etheory, we assume that the network is uncorrelated in nature, hence

there is an equal/uniform probability that the other end of the removed tip (in set

R) is connected to the nodes in the set S and set R. Hence the total number of edges

running between the set S and set R, calculated theoretically (Etheory) is less than

Esim. This difference in the estimation of E (Etheory and Esim) affects the number

of survived edges Enew (Eq. 4.37) in the survived network. More specifically, in the

theoretical calculation, the amount of reduction of the average degree of the survived

network after attack is underestimated than that of the simulation. Hence after the

given attack, the simulated network (p′ksim) becomes more sparse than the theoreti-

cally calculated network (p′ktheory). Subsequently, Avg degtheory > Avg degsim. This

directly answers the question why for Gnutella network, Avg degtheory > Avg degsim

where theory signifies the uncorrelated network and sim signifies disassortative net-
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work.

Assortativity does not have any impact on random failure

However it is interesting to observe in Fig. 4.12(b) and Fig. 4.13(b) that although

assortativity takes a major role in attack, it does not have any influence in random

failure. In random failure, the nodes in the set S and R are placed independent of

their degree, hence high and low degree nodes are uniformly distributed in those sets.

Subsequently, there is an equal/uniform probability that the other end of the edge

connected to a node of the removed set R is linked with either a node of set S or

of set R. In this way, the effect of assortativity becomes nullified in face of random

failure.

In the next section, we utilize this intuitive understanding to refine and rectify our

analytical framework so that it becomes applicable to the correlated networks also.

4.4 Stability analysis for degree correlated networks

In the previous section, we find that our theoretical framework is not able to explain

the exact behavior of Gnutella network in face of deterministic attack. However, we

have presented an intuitive explanation for the deviation of the theoretically computed

results from the simulation. In this section we refine our framework, developed in

section 4.1 to include correlated networks and examine its applicability on Gnutella

network.

4.4.1 Deformed topology after attack

In this section, we modify the expression (derived in section 4.1.1) of deformed degree

distribution p′k to make it suitable for degree correlated networks. The degree-degree

correlation information of a network with maximum degree kM is represented by the
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correlation matrix M as follows

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m11 m12 m13 ... m1kM

m21 m22 m23 ... m2kM

. . . . .

. . . . .

. . . . .

mkM1 mkM2 mkM3 ... mkMkM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In this correlation matrix M , each element mjk represents the fraction of total edges

that exist between nodes of degree j and nodes of degree k (Fig. 4.14(a)). We frame

the attack on the network in the same manner as explained in the section 4.1.1. The

attack on the network divides the graph into two sets of nodes: one set containing the

surviving nodes S and another set containing the nodes to be removed R as shown

in the Fig. (4.14(b)).

Ej instead of E

In section 4.1.1, we have calculated E which represents the number of edges running

between set S and R. It is also the number of tips that is going to be removed from

the nodes of the set S. The expression of E in Eq.( 4.1) gives correct approximation

for an uncorrelated network as the edge connectivity between a node of set R and

any node of set S is equally probable. But in case of a degree correlated network, the

probability of an edge between a node of degree i and a node of degree j is given by

mij element of the correlation matrix M . Hence instead of calculating E we calculate

Ej which indicates the number of edges connected between nodes of degree j in the

set S and the nodes of any degree in the set R (Fig. 4.14(b)). Hence the total number

of edges connected between the set S and R, that are going to be removed is given

by E =
∑kM

j=0 Ej. The expression for Ej can be formulated in the following way.

The total number of edge tips connected to the k degree nodes in set R can be

expressed as knkfk. Therefore, the number of edge tips connected to the j degree

nodes of the network whose other end is connected to the k degree node of set R

becomes m′
jkknkfk. The fraction m′

jk represents the fraction of edges connecting j

degree nodes and k degree nodes over all the edges in the network with at least one

end connected to the k degree nodes. The value of m′
jk can be computed from the
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(a) The degree correlation in the network

represented by the elements of the assor-

tativity matrix M

(b) The dissection of a correlated network into two

sets S and R due to the attack on the network.

Figure 4.14: Degree correlation present in the network and its implication on attack.

edge correlation matrix M as

m′
jk =

mjk∑∞
j=0 mjk

=
mjk

kpk

∑
i

ipi (4.38)

where
∑∞

j=0 mjk denotes the fraction of edge tips connected to k degree nodes in the

network and may be expressed as

∞∑
j=0

mjk =
kpk∑
i ipi

(4.39)

Similar to section 4.2, we can say that the number of edge tips connected to the j

degree nodes of set S whose other end is connected to the k degree node of set R

becomes m′
jkknkfk (1− fj). This helps us to derive the total number of edges whose

one end is connected to a j degree node in set S and the other end is connected to

any node in the set R, which can be expressed as

Ej =
∞∑
k=0

m′
jk k nk fk (1− fj) (4.40)

Due to the presence of degree correlation, the probability that a surviving node of

set S loses one link due to the removal of E(=
∑kM

i=0 Ei) edges is not constant (as φ
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in Eq. 4.33). Moreover, the probability that a survived node loses one link depends

upon the degree (j) of the survived node. Hence, the probability φj of finding an edge

running between a j degree node in the surviving set S and any node of the other set

R can be expressed as

φj =
Ej

jnj(1− fj)
(4.41)

Here φj signifies the probability that a j degree node loses one link due the removal

of E edges.

Finally, using the concept of Eq. (4.4) and from the Eqs. (4.41) and (4.3), the

expression of the deformed degree distribution p′k can be expressed in binomial dis-

tribution form

p′k =
∞∑
q=k

(
q

k

)
φq−k
q (1− φq)

k psq . (4.42)

where the probability psq of finding a node with degree q in the surviving subset S

(before removal of the E edges) is given by Eq. (4.3) of section 4.1.1.

Random failure as a special case

In case of random failure attack the probability of attack on every node is same i.e.

fj = fk = f (constant). Therefore we can express Ej, which is the total number of

edges whose one end is connected to a j degree node in set S and the other end is

connected to any node in the set R, as the following:

Ej = f(1− f)
∞∑
k=0

m′
jk k nk (4.43)

Using Eq. (4.38), Eq. (4.43) and (4.39) the expression for Ej reduces to

Ej = f(1− f)N
∞∑
i=0

ipi

∞∑
k=0

mjk = f(1− f)Njpj (4.44)

We substitute the expression for Ej obtained from Eq. (4.44) in Eq. (4.41) and find

φj =
f(1− f)Njpj
jnj(1− f)

= f (4.45)
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Hence in case of random failure

φ = φj = f(constant) independent of any degree j. (4.46)

Substituting the value of φ = f in Eq. (4.4) and the value φq = f in Eq. (4.42) we

find that

p′k(Uncorrelated) = p′k(Correlated) (4.47)

=
∞∑
q=k

(
q

k

)
f q−k(1− f)k psq (4.48)

The above expression is independent of any correlation parameter. This shows that
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(a) Gnutella A network, correlation co-

efficient α = −0.6749

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

Degree k

D
eg

re
e 

di
st

rib
ut

io
n 

p k

Initial network
Deformed network (simulation)
Deformed network (Theory section 4.4.1)
Deformed network (Theory section 4.1.1)

(b) Gnutella B network, correlation

coefficient α = −0.6318

Figure 4.15: The impact of deterministic attack upon the degree distribution pk of

the Gnutella network. The figures show that Eq. 4.42 gives far better approximation

of the deformed degree distribution than Eq. 4.4

degree-degree correlation has no role to play in case of random failure. This con-

clusion confirms the results shown in Figs. 4.12(b) and 4.13(b) where we observe a

good agreement of p′k obtained from the theory and simulation for Gnutella network.

However, this does not hold for attacks in correlated networks. Next, we show that

our refinement gives better agreement with the simulation results for the attacks on

correlated Gnutella networks.
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Simulation results on Gnutella Network

We validate the theory developed for correlated network by simulating deterministic

attack on ‘Gnutella A’ and ‘Gnutella B’ networks. Similar to section 4.3.1, we simulate

the deterministic attack on the Gnutella networks. In ‘Gnutella A’ and ‘Gnutella B’

network, we simulate deterministic attacks by removing all the nodes with degree

greater than 10 and 40 respectively. Fig. (4.15) shows the impact of the deterministic

attack on the degree distribution of Gnutella network. It can be observed that the

deformed degree distribution obtained from Eq. 4.42 for the Gnutella network is in

good agreement with simulation results. We find that the average degree of the

‘Gnutella A’ and ‘Gnutella B’ networks obtained from simulation (Avg degAsim =

0.4858 and Avg degBsim = 0.1608) are quite close to the theoretically calculated values

using Eq. 4.42 (Avg degAtheory = 0.4739 and Avg degBtheory = 0.1514).

4.5 Conclusion

In this chapter, we have developed a more sophisticated framework for stability analy-

sis of superpeer networks against attacks. We have shown that this framework enables

us to calculate the degree distribution of the deformed network p′k after removal of

nodes. In addition, the framework enables us to measure stability of small scale net-

work as well as networks exhibiting strong degree-degree correlated mixing. As an

application of the framework, we have analyzed the effects of two kinds of attacks

namely deterministic attack and degree dependent attack and validated the results

through simulation. We have shown that in deterministic attack, the increase in peer

degree may be detrimental in some cases. Our framework has also revealed that the

degree dependent attack provides us a more generalized attack strategy where various

situations can be generated only by changing the attack parameter γ. This attack

parameter γ also signifies the amount of topological information available to the at-

tacker to breakdown the network. We have observed that increase in γ makes the

attack efficient by reducing the percolation threshold. However, beyond a threshold

limit, this information does not help the attackers in a significant manner. We have
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presented a comparative study of our theoretical analysis with real world Gnutella

network. The results have shown that degree degree correlation present in Gnutella

exhibits a disparity in p′k in case of attack however the disparity is not seen in case

of random failure. We have suitably modified our framework to include the degree-

degree correlation factor in consideration. It is important to note that, the stability

condition stated in Eq. (4.5) [128] is not applicable for degree-degree correlated net-

work [128]. Hence, in this work we do not derive the percolation threshold of degree

correlated network; rather we focus on the accurate calculation of p′k through a gener-

alized framework. Since degree distribution p′k is the main ingredient for the stability

condition of correlated networks [66], we claim that our work makes a significant

contribution towards the understanding stability of generalized network.

In chapters 3 and 4, we have analyzed the stability of some ‘existing’ superpeer

networks against peer churn and attacks. However, superpeer networks are generally

growing networks that continuously evolve with the addition of new peers as well as

realignment of peers. Hence, the formation or emergence of superpeer network due to

various node and link dynamics is another interesting research problem. The next two

chapters focus on the various issues related to the emergence of superpeer networks

due to joining and leaving of nodes, rewiring of links etc.


