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Abstract

In today's chaotic network, data and services are mobile and replicated widely for availability,
durability, and locality. Componentswithin thisinfrastructure interact in rich and complex ways, greatly
stressing traditional approaches to name service and routing. This paper explores an alternative to
traditional approaches called Tapestry. Tapestry is an overlay location and routing infrastructure that
provides location-independent routing of messages directly to the closest copy of an object or service
using only point-to-point links and without centralized resources. The routing and directory information
within this infrastructure is purely soft state and easily repaired. Tapestry is self-administering, fault-
tolerant, and resilient under load. This paper presents the architecture and algorithms of Tapestry and
explores their advantages through a number of experiments.

1 Introduction

The milieu of Moore’s-law growth has spawned a revolutionddy’s computing environments are signifi-
cantly more complex and chaotic than in the early days of redteonnectivity, precious CPU cycles, and
limited storage capacity. Data and services are mobile aeplicated widely for availability, performance,

durability, and locality. Components within this infrastture, even while constantly in motion, interact
in rich and complex ways with one another, attempting to eahiconsistency and utility in the face of
ever changing circumstances. The dynamic nature of the@maent stresses in many ways traditional
approaches to providing object name service, consistémzgtion and routing.

If we project current trends for growing numbers and comipilex of overlay network services, we may
be headed towards a future state of world computing infnasire thatcollapses under its own weight.
Already, many of today’s object location and routing tedog@es are extremely fragile, subject to flash
crowd loads, denial of service attacks, security breackesser failures, and network outages. Scaling
current solutions, while promoting greater interopeiigpilvill likely only invite disaster — a house-of-
cards built from many individual houses-of-cards.

In this paper, we present the Tapestry routing architectarself-organizing, scalable, robust wide-area
infrastructure that efficiently routes requests to contémtthe presence of heavy load and network and
node faults. Tapestry has an explicit notion of localityg\pding location-independent routing of messages
directly to the closest copy of an object or service using qint-to-point links and without centralized



services. Paradoxically, Tapestry employs randomnesshievge both load distributioand routing locality.

It has its roots in the Plaxton distributed search techni@d$ augmented with additional mechanisms to

provide availability, scalability, and adaptation in theegence of failures and attacks. The routing and
directory information within this infrastructure is puyesoft state and easily repaired. Tapestry is self-

administrating, fault-tolerant, and resilient under lpadd is a fundamental component of the OceanStore
system [17, 24].

In Tapestry, we propose an architecture for creating arrenwient that offersystem-wide stability through
statistics. Faulty components are transparently masked, failed soarte bypassed, nodes under attack are
removed from service, and communication topologies arglippdapted to circumstances. This alternative
is not itself novel, as there are many parallels in the biglgigworld. However, it is conspicuously absent
in the world of computing, and also extremely elusive. Infibllowing section, we argue why integrated
location and routing is a crucial component for achievinig tptimistic result. First, however, we need a
paradigm shift.

1.1 Requirements

Sability Through Satistics: Moore’s-law growth of processor performance, network heidth, and disk
storage (to name a few), has spawned an opportunity to shifiocus away from optimizing every cycle,
transmitted bit, and disk block and towards redundancg,, (ihe use of aggregate, statistical behavior of
many interacting components to achieve uniformity of béww Done properly, such a system will be
highly resilient to failures — the normal state for any suéiitly large system. However, this capability
can only be achieved through continuous monitoring andtatiap, redundancy, and the elimination of all
single points of failure. Furthermore, centralized sang are impractical since they require long distance
communications are vulnerable to availability problembug, locality of communication is critical, except
when absolutely necessary for serialization.

Redundancy may take many forms. At the lowest level, we nmeghtitwo messages alongjfferent paths
instead of just one, thereby increasing the probability thanessage will arrive at its destination, while
reducing the standard deviation of communication latén€y, we may have redundant links, but use them
only when failure is detected. Likewise, the 9 month doupfieriod of disk storage within the network
suggests the use of wide spread information redundancybedtincreases the likelihood that information
can be located even when links or nodes are down. We can als@dg traditional forms of redundancy
(e.g., by caching many copies of an object, we are far moedylito find a copy quickly, if it is close, or find

it even when communication is not possible). Alternatiyblyspreading copies or erasure-coded fragments
of information widely, we can achieve strong durabilitye(j.data becomesxtremely hard to destroy). Of
course, consistency concerns become important with wedke €aching, but these can be addressed in many
ways. In particular, consistency can be handled by appicdével techniques, decoupling the mechanism
for fault-tolerance from the policies for consistency.

1.2 Combined Location and Routing

Rather than attempting to solve the world’s problems, we edract a simple lesson from above: wide-
area resilient architectures/applications require mf@tion and mechanism redundancy. For instance, con-
sider a basic primitive that combindscation and routing, specifically, the ability to address messages
with location-independent names and to request that these messages be ralditedly to the closest copy

1This interesting alternative leverages the doubling oédaternet bandwidth every 11 months



of an object or service that is addressed by that famhis primitive enables higher-level architec-
tures/applications to interact with objects (data), wiieoring knowledge of object locations (physical
servers). Likewise, the primitive allows data migratiordamplication to be optimizations (for perfor-
mance, for durability, for availability, etc) rather thassues of correctness. The OceanStore system, in
particular, leverages this mechanism to decouple objatiesdrom the process used to route messages to
object; however many other uses are possible, as we digttiss following section.

Meeting the goals of wide-scale resilience eliminates thiéty to use centralized directory services or
broadcast communication, and instead requires that totatformation be distributed within the routing
infrastructure and be used for incremental forwarding oksagies from point to point until they reach
their destination. Furthermore, this mechanism must erdak of a wide array of failures from mundane
to Byzantine, possibly by sending multiple messages aldifgreht paths to ensure a high-probability of
delivery. Thus, these requirements argue that location and routing must be provided through an integrated
mechanism, rather than composed from distinct name service and routing infrastructures.

1.3 Fault-Tolerance, Repair, and Self-Organization

In keeping with our wide-scale requirements, distributgchtion information must be repairaldeft-state,
whose consistency can be checked on the fly, and which maysbelle to failures or destroyed at any
time, and easily rebuilt or refreshed. The ability to retmuit requests suggests that the slight chaos and
inconsistency (i.e., weak consistency) of a distributedalory is tolerable, assuming that we can bound the
amount and duration of inconsistency of the directory stBigshing this concept even further, the routing
and location infrastructure can verify routes in a variefyways, including checking the cryptographic
signatures of information at the destination; maliciouvaes can be filtered by treating routes to them as
corrupted directory entries that need to be discarded.

Finally, the topology of the location and routing infragtiure must be self-organizing, as routers, nodes, and
data repositories will come and go, and network latencidissaiy as individual links fail or vary their rates.
Thus, operating in a state of continuous change, the roatitigocation infrastructure must be able to adapt
the topology of its search by incorporating or removing essi redistributing directory information, and
adapting to changes in network latency. Thinking to therijtthe large numbers of components suggests
that any adaptation must be automatic, since no reasoseaé-group of humans could continuously tune
such an infrastructure.

1.4 Outline

In the following pages, we present the Tapestry architegtits algorithms and data structures. We explore
theoretical implications of the design, and probe its ath@gas through a number of experiments. The rest
of the paper is organized as follows. Section 2 gives an oswrof the Plaxton location scheme. Then,
Section 3 highlights Tapestry improvements to the basiemehand describes location and routing under
a static Tapestry topology. Following this, Section 4 diéss algorithms used to adapt the topology of
Tapestry to changing circumstances. We present and discussation results in Section 5. Then, Section 6
discusses how the Tapestry work relates to previous rdsé@akgide-area routing and location. Finally, we
sum up current progress and discuss future directions itiddet and conclude in Section 8.

2«Closest” here can be defined by a variety of mechanismsyitiet) network latency and geographic locality.



2 Background: Plaxton / Rajamaran / Richa

In this section, we first discuss the inspiration for Tapestdesign, the location and routing mechanisms
introduced by Plaxton, Rajamaran and Richa in [21], folldugg a discussion of the benefits and limitations
of the Plaxton mechanisms. Plaxton et al. present in [21$tiblited data structure optimized to support a
network overlay for locating named objects and routing ofsages to those objects. In this paper, we refer
to the forwarding of overlay messages in Plaxton/Tapestrjoating, and the forwarding overlay nodes
asrouters. The Plaxton data structure, which we calPkaxton mesh, is novel in that it allows messages
to locate objects and route to them across an arbitrardgesnetwork, while using a small constant-sized
routing map at each hop. Additionally, by combining locataf an object with routing to its location, a
Plaxton mesh guarantees a delivery time within a small faaftthe optimal delivery time, from any point
in the network. Note that Plaxton makes the assumption teaPlaxton mesh is a static data structure,
without node or object insertions and deletions.

In Plaxton, each node or machine can take on the rolesrofrs (where objects are storedjuters (which
forward messages), amtients (origins of requests). In our discussions, we use thesestartrarchangeably
with node. Also, objects and nodes have nhames independent of thaitdacand semantic properties, in the
form of random fixed-length bit-sequences represented lmanon base (e.g., 40 Hex digits representing
160 bits). The system assumes entries are roughly everiljbdied in both node and object namespaces,
which can be achieved by using the output of hashing alguosttsuch as SHA-1 [25].

2.1 Routing

Plaxton uses local routing maps at each node, which weneighbor maps, to incrementally route over-
lay messages to the destination ID digit by digit (e*®*8 — **98 — *598 — 4598 where *’s
represent wildcards). This approach is similar to longestiy routing in the CIDR IP address allocation
architecture [23]. In our discussions, we resolve digitsrfrthe right to the left, but the decision is an arbi-
trary one. A nodeV has a neighbor map with multiple levels, where each levekbsgnts a matching suffix
up to a digit position in the ID. A given level of the neighboamcontains a number of entries equal to the
base of the ID, where thah entry in thejth level is the ID and location of the closest node which ends
in “i"+suffix(NV, 7 — 1). For example, the 9th entry of the 4th level for n@R5AE is the node closest to
325AE in network distance which ends 9bAE.

By definition, thenth node a message reaches shares a suffix of at least length the destination ID.

To find the next router, we look at its + 1th level map, and look up the entry matching the value of the
next digit in the destination ID. Assuming consistent neighmaps, this routing method guarantees that
any existing unique node in the system will be found withimaist Log, N logical hops, in a system with
an N size namespace using IDs of bdaseBecause every single neighbor map at a node assumes that the
preceding digits all match the current node’s suffix, it ongeds to keep a small constant sigegntries at

each route level, yielding a neighbor map of fixed constad:si

Neighbor MapSize = entries/map - # of maps
= b-LogyN

A way to visualize this routing mechanism is that every dedion node is theoot node of its own tree,
which is a unique spanning tree across all nodes. Any leafre@erse a number of intermediate nodes en
route to the root node. In short, the Plaxton mesh of neightieps is a large set of embedded trees in the
network, one rooted at every node. Figure 1 shows an exampligton routing.
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Figure 1:Plaxton routing example. Here we see the path taken by a message originating from 0g2te
destined for nodd598 in a Plaxton mesh using hexadecimal digits of length 4 (65&8&s in namespace).

2.2 Location

The location mechanism allows a client to locate and sendages to a named object residing on a server
in a Plaxton mesh. A serveft publishes that it has an objeCtby routing a message to the “root node” of
O. The root node is a unique node in the network used to placeotiteof the embedded tree for object
O. The publishing process consists of sending a messageddkearoot node. At each hop along the way,
the publish message stores location information in the fofi@ mapping<Object-IDQ), Server-IDS)>.
Note that these mappings are simply pointers to the seétweinereO is being stored, and not a copy of the
objectO itself. Where multiple objects exist, only the referencétie closest object is saved at each hop to
the root.

During a location query, clients send messages to objectsnessage destined fa@» is initially routed
towardsO’s root. At each step, if the message encounters a node thtios the location mapping fap,

it is immediately redirected to the server containing thggob Otherwise, the message is forward one step
closer to the root. If the message reaches the root, it issgteed to find a mapping for the location@f

The root node of an object serves the important role of piogich guaranteed @urrogate node where
the location mapping for that object can be found. There ispecial correlation between an object and
the root node assigned to it. Plaxton uses a globally camisteterministic algorithm for choosing root
nodes, with one caveat, global knowledge is used to detesticamlly pick an existing node from a large,
sparse namespace. While the intermediate hops are noutdgalecessary (they improve responsiveness
by providing routing locality as mentioned below), the rootle serves a critical purpose. And because it is
the only one of its kind, it becomes a single point of failure.

2.3 Benefits and Limitations

The Plaxton location and routing system provides seveitalde properties for both routing and location.

e Smple Fault Handling Because routing only requires nodes match a certain sufi@etis potential
to route around any single link or server failure by choosangther node with a similar suffix.

e Scalable It is inherently decentralized, and all routing is done gdically available data. Without a
point of centralization, the only possible bottleneck e« the root node.



e Exploiting Locality With a reasonably distributed namespace, resolving eaditi@ual digit of a suf-
fix reduces the number of satisfying candidates by a facttiieofD basé (the number of nodes that
satisfy a suffix with one more digit specified decreases géuraby). The path taken to the root node
by the publisher or servef# storingO and the path taken by the cliefitwill likely converge quickly,
because the number of nodes to route to drops geometricittyeach additional hop. Therefore,
queries for local objects are likely to quickly run into a teuwith a pointer to the object’s location.

e Proportional Route Distance Plaxton has proven that the total network distance travbled mes-
sage during both location and routing phases is propottimnize underlying network distance [21],
assuring us that routing on the Plaxton overlay incurs eoregde overhead.

There are, however, serious limitations to the originakRla scheme.

¢ Global Knowledge In order to achieve a unique mapping between document faratand root nodes,
the Plaxton scheme requires global knowledge at the tintehbalaxton mesh is constructed. This
global knowledge greatly complicates the process of addimyremoving nodes from the network.

¢ Root Node Vulnerability As a location mechanism, the root node for an object is a sipgint of
failure because it is the node that every client relies onrtwvide an object’s location information.
While intermediate nodes in the location process are ihtrgeable, a corrupted or unreachable root
node would make objects invisible to distant clients, whaxdbmeet any intermediate hops on their
way to the root.

e Lack of Ability to Adapt While the location mechanism exploits good locality, thex@®n scheme
lacks the ability to adapt to dynamic query patterns, suctistant hotspots. Correlated access pat-
terns to objects are not exploited, potential trouble spoésnot corrected before they cause overload
or cause congestion problems over the wide-area. Similtiy static nature of the Plaxton mesh
means that insertions could only be handled by using glabahiedge to recompute the function for
mapping objects to root nodes.

In the rest of this paper, we present Tapestry mechanismdiaimtbuted algorithms. While they are modeled
after the Plaxton scheme, they provide adaptability, fanlérance against multiple faults, and introspective
optimizations, all while maintaining the desirable prdjser associated with the Plaxton scheme.

3 A Snapshot View of Operations

Tapestry is an overlay infrastructure designed to easdicreaf scalable, fault-tolerant applications in a
dynamic wide-area network. While an overlay network impl@erhead relative to IP, the key Tapestry
goals are adaptivity, self-management and fault-resibeim the presence of failures. In this section, we
examine a snapshot of the Tapestry routing infrastructlines infrastructure has certain properties, which
are achieved using the dynamic algorithms in Section 4.

3.1 Basic Location and Routing

The core location and routing mechanisms of Tapestry ardagito those of Plaxton. Every node in the
Tapestry network is capable of forwarding messages usiagattorithm described in Section 2. Each
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neighbor map is organized into routing levels, and eachl lemetains entries that point to a set of nodes
closest in network distance that matches the suffix for tatll Each node also maintains a backpointer
list that points to nodes where it is referred to as a neighidar use them in the node integration algorithm,
discussed in Section 4, to generate the appropriate neighdyos for a node, and to integrate it into Tapestry.
Figure 2 shows an example of a complete Tapestry node.

The Tapestry location mechanism is similar to the Plaxt@ation scheme. Where multiple copies of data
exist in Plaxton, each node en route to the root node onlesttirte location of the closest replica to it.
Tapestry, however, stores locations of all such replicasdmease semantic flexibility. Where the Plaxton
mechanism always returns the first object within some digtaapestry location provides more semantic
flexibility, by allowing the application to define the seliect operator. Each object may include an optional
application-specific metric in addition to a distance nwetrApplications can then choose an operator to
define how objects are chosen. For example, in the Oceandltdral storage architecture (see Section 7),
gueries can be issued to only find the closest cached docueygita satisfying some freshness metric.
Additionally, archival pieces in OceanStore issue quet@esollect distinct data fragments to reconstruct
lost data. These queries deviate from the simple “find firsthantics, and ask Tapestry to route a message
to the closesiV distinct objects.

3.2 Fault Handling

The ability to detect, circumvent and recover from failuiea key Tapestry goal. Here we discuss Tapestry
approaches to operating efficiently while accounting fondtitude of failures. We make a key design choice
that Tapestry components address the issue of fault adggiwvusing soft state to maintain cached content
for graceful fault recovery, rather than provide reliayilguarantees for hard state. This is Hoft-state or
announce/listen approach first presented in IGMP [9] and clarified in the MB&=ssion Announcement
Protocol [19]. Caches are updated by periodic refreshmessages, or purged based on the lack of them.
This allows Tapestry to handle faults as a normal part of pisrations, rather than as a set of special case
fault handlers. Similar use of soft-state for fault hanglappears in the context of the A@ttive Services
framework [2] and the Berkeley Service Discovery Servicé][1Faults are an expected part of normal
operation in the wide-area. Furthermore, faults are deteand circumvented by the previous hop router,
minimizing the effect a fault has on the overall system. Tda@stion explains how Tapestry mechanisms
detect, operate under, and recover from faults affectimgimg and location functionality.



3.2.1 Fault-tolerant Routing

Types of expected faults impacting routing include servgages (those due to high load and hardware/software
failures), link failures (router hardware and softwarelfg)l) and neighbor table corruption at the server. We
quickly detect failures, operate under them, and recowglercstate when failures are repaired.

To detect link and server failures during normal operatidagpestry can rely on TCP timeouts. Additionally,
each Tapestry node uses backpointers to send periodidbataton UDP packets to nodes for which it is
a neighbor. This is a simple “hello” message that assertsnngsage source is still a viable neighbor for
routing. By checking the ID of each node a message arriveseatan quickly detect faulty or corrupted

neighbor tables.

For operation under faults, each entry in the neighbor maimtaias two backup neighbors in addition to
the closest/primary neighbor. Plaxton refers to these esrsary neighbors. When the primary neighbor
fails, we turn to the alternate neighbors in order. In theeabs of correlated failures, this provides fast
switching with an overhead of a TCP timeout period.

Finally, we want to avoid costly reinsertions of recovereies after a failure has been repaired. When a
node detects a neighbor to be unreachable, instead of ragnasi pointer, the node marks it invalid, and
routes through an alternate. Since most node and link &slare discovered and repaired in a relatively short
time period, we maintain second chance period of reasonable length (e.g. a day) during which a strefa
messages route to the failed server, serving as probe nesssBgiled messages from that stream are then
rerouted to the alternate path after a timeout. A successfisisage indicates the failure has been repaired,
and the original route pointer is again marked valid. To oarthe probe traffic volume, we use a simple
probability function to determine whether each packetesub the original router, where the probability is
a ratio of desired probe traffic rate to incoming traffic rate this route. If the failure is not repaired in the
second chance period, the neighbor is removed from the ntemates promoted, and an additional sibling
is found as the final alternate.

3.2.2 Fault-tolerant Location

As discussed in Section 2, an object’s root node is a singte pbfailure in the Plaxton location mechanism.
We correct this in Tapestry by assigning multiple roots toheabject. To accomplish this, we concatenate
a small, globally constant sequence of “salt” values (e,@, B) to each object ID, then hash the result to
identify the appropriate roots. These roots are used (wi@gate routing) during the publishing process to
insert location information into the Tapestry. When loggtan object, Tapestry performs the same hashing
process with the target object ID, generating a set of ransearch.

One way to view the hashing technique is that each of the ahles defines an independeatiting plane

for Plaxton-style location and routing. These routing pleenable a tradeoff between reliability and redun-
dancy since queries may be sent along several of the plamedtaneously. In a network with roots, it is
likely (P ~ 1 — (1/2)®) that the data is available via one of the roots, even in tleegnce of a complete
network partition.

To remove the need to maintain hard state, we associate jaitdD to location mappings with soft state
leases. Storage servers republish location informatioroligects it stores at regular intervals. When an
object becomes inaccessible (either by deletion or by sdail@re), location information for that object
cached on routers between the server and the root node timedlew objects and newly recover objects
are published using the same periodic mechanism, makiregbljlvertisement and removal transparent.



With these mechanisms, our fault-tolerance is limited diylyphysical resources and extreme circumstances,
such as a failure on the only outgoing link, or wide-spreaditi@ning of the wide-area backbone.

3.3 Surrogate Routing

In the original Plaxton scheme, an object’s rootsarrogate node is chosen as the node which matches
the object’s ID () in the greatest number of trailing bit positions. Since there may be many nodes which
match this criteria, the Plaxton scheme chooses a uniquebyoimvoking a total ordering on all nodes in
the network; the candidate node with the greatest positichis ordering is choosen as a root. Given this
scheme, Plaxton location proceeds by resolving an objéat'sne digit at a time until it encounters an
empty neighbor entry. At that point, it makes a final hop torbat by following an appropriate “shortcut”
link. If the set of nodes in the network were static, the cdstamstructing a global order and generating
all of the appropriate shortcut links would be incurred oatythe time of network construction. The total
number of such links would be no more than half the routingelf®&2) for each routing level.

Of course, the set of nodes in the network is not static. Irabdistributed system, finding and maintaining
a total global ordering is not possible. However, if we remdive global knowledge, we must choose our
root node in some other globally consistent fashion. Tapestes a distributed algorithm, calledrrogate
routing, to incrementally compute a unique root node. The algorithm for selecting ramtes must be
deterministic, scalable, and arrive at consistent re$uta any point in the network.

Surrogate routing tentatively chooses an object’s rooerntochave the same name as its ID,Given the
sparse nature of the node name space, it is unlikely thahtde will actually exist. Nonetheless, Tapestry
operates as if nodé exists by attempting to route to it. A route to a non-existelentifier will encouter
empty neighbor entries at various positions along the waythése cases, the goal is to select an existing
link which acts as an alternative to the desired link (i.e dhe associated with a digit 6f. This selection is
done with a deterministic selection among existing neigigminters. Routing terminates when a neighbor
map is reached where the only non-empty entry belongs toutrertt node. That node is then designated
as the surrogate root for the object.

Note that a Tapestry neighbor link can only be empty if theeereo qualifying nodes in the entire network.
Therefore, neighbor nodes across the network will have graptries in a neighbor map if and only if all
nodes with that suffix have exactly the same empty entrigelltiws that a deterministic algorithm would
arrive at the same unique surrogate node from any locaticghdénTapestry network. Surrogate routing
provides a technique by which any identifier can be uniquedpped to an existing node in the network.

While surrogate routing may take additional hops to reacbhad compared to the Plaxton algorithm, we
show here the additional number of hops is small. Examinedh@e, calculating the number of additional
hops can be reduced to a version of the coupon collector gmabWe know that aften « In(n) + cn tries
for any constant, probability of finding all coupons is— e~ ¢ [6]. So with a total ob possible entries in the
hop’s neighbor map, and= b — In(b), b*> random entries will fill every entry in the map with probatyili
P >=1-b/e’. Therefore, when an empty entry appears in a map, the piigaifithere being more than
b? unigue nodes left with the current suffix is less thiga®, or 1.8 * 10~% for a hexadecimal-based digit
representation. Since we expect each hop to reduce themamaiotential routers by an approximate factor
of b, the expected number of hops between the first occurrence efrgpty entry and when only a single
node is left, isLog, (b?), or 2. Therefore, the adaptable version of surrogate rgutimapestry has minimal
routing overhead relative to the static global Plaxton atgm.



H=G;
For (i=0; H !'= NULL; i++) {
Grab ith level NeighborMap_i from H;
For (j=0; j<baseofID; j++) {
/IFill in jth level of neighbor map
While (Dist(N, NM_i(j, neigh)) >
min(eachDist(N, NM_i(j, sec.neigh)))) {
neigh=sec.neighbor;
sec.neighbors=neigh—>sec.neighbors(i,j);
}
}
H = LookupNextHopinNM(i+1, new_id);
} Iterminate when null entry found
Route to current surrogate via new_id;
Move relevant pointers off current surrogate;
Use surrogate(new_id) backptrs to notify nodes
by flooding back levels to where
surrogate routing first became necessary.

Figure 3:Node Insertion Pseudocode. Pseudocode for the entire dynamic node insertion algorithm

4 Dynamic Algorithms

The main limitation to the Plaxton proposal is the staticurabf its algorithms. Here, we present Tapestry
algorithms which focus on supporting dynamic operatiors decentralized manner. With these algorithms,
the Tapestry infrastructure achieves many of the desimatgperties introduced in Section 1.

4.1 Dynamic Node Insertion

We present here an incremental algorithm that allows nodédstégrate into the Tapestry dynamically.
While our algorithm does not guarantee an ideal topologyassert it is a reasonable approximation that
can converge on the ideal topology with runtime optimizatio

The intuition of the incremental algorithm is as followsrdg¥j we populate the new node’s neighbor maps
at each level by routing to the new node ID, and copying andriging neighbor maps along each hop
from the router. Then we inform the relevant nodes of its\emito the Tapestry, so that they may update
their neighbor maps with it. In our example, we assume a nafe N\dis integrating into a network which
satisfies the constraints of a Tapestry network. Nddeequests a new IRew _id, and contacts &ateway
node GG, a Tapestry node known @ that acts as a bridge to the network. The pseudocode for thanaig
insertion algorithm is shown in Figure 3.

4.1.1 Populating the Neighbor Map

We assume that nod¥ knows of a gateway nod@ that is a Tapestry node close to it in network distance
(latency). This can be achieved by a bootstrap mechanismasiexpanding ring search [4] or out of band
communication. Starting with nod&, nodeN attempts to route to IRew_id, and copies an approximate
neighbor map from théth hop H;, G = H,. Figure 4 shows the step§ takes in order to gather a single
level in its neighbor map. By routing to its own node II¥,knows that it shares witlif; a suffix of length

1. IN copies that level neighbor map, then attempts to optimizd emtry for itself. Optimizing means
comparing distances betwe@dhand each neighbor entry and its secondary neighbors. Fagiaes entry,

if a secondary neighbor is closer than the primary neighthemn it becomes the primary neighbd¥;looks

up nodes in its neighbors’ neighbor maps, and comparesstardie to each of them to determine if they
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For (i=0;i<digits&&

K H() 1=NULL;) {
5 1. Send Hello(i) to H(j)
3 2. Send NeighborMap'(i)
4 o 3. NM(i) = Optimize N.M.'(i
4. H+1 = LookupNM(N, i+1
5.H =H#1

}

Figure 4: Node Insertion Part 1. The steps a new node with II¥ takes to generate a locally optimal
neighbor map for itself.

are better potential neighbors. This optimization repeats no significant improvemeritcan be made by
looking for further neighbors. After repeating this prosdsr each entry, we have a near optimal neighbor
map. The neighbor map population phase requires each rozighdp to be optimized in this manner until
there are no nodes to put in the map, due to network sparsity.

The new node stops copying neighbor maps when a neighboronkpd shows an empty entry in the next
hop. It then routes to the current surrogate-fetv id, and moves data meant foew_id to N.

4.1.2 Neighbor Notification

The next step is to inform the relevant nodes/dk integration. To notify nodes who have an empty
entries whereN should be filled in, we traverse the surrogate’'s backpasnberck level by level to the
level where surrogate routing first became necessary. Weethin Section 3.3 that with high probability
surrogate routing will not take more than two hops. Threeshimpck should reach all relevant nodes with
higher probability. To notify other local nodes that mighdniefit from N as a closer router, we send a
“hello” message to all neighbors and secondary neighboesa level. Notified nodes have the option of
measuring distance Wy, and if appropriate, replacing an existing neighbor entithv.

In the process of notifying relevant nodes to fill in theirrézg for N, we may inadvertently change the
next step surrogate routing node for those nodes. For ex@amphodeV, a previous route t8000 into

a neighbor map wanting entry #3 saw an empty entry. It tried#f also empty, and so routed using
the non-empty entry at #5. Later, if a new node causes #4 tolled i, future routes t8000 would
route through #4 as the next surrogate route. We solve thisigmm by noting that as a router in the location
mechanism, nod#& stores a copy of object to location mappings. When we protzéiliin an empty entry
at N, we know from our algorithm the range of objects whose swategoute were moved from entry #5.
We can then explicitly delete those entries, and republisisé objects, establishing new surrogate routes
which account for the new inserted node. Alternatively, \@e simply rely on the soft-state mechanism
to solve this problem. After one timeout period, the objesi have been republished according to the
new neighbor map with #4 filled in, and previously stored peris will time out and disappear. While there
is a small window of vulnerability equal to one timeout peidy querying for one object using multiple
roots, the probability of all such roots encountering thisartion effect is very small, and at least one of the
multiple roots will find an up-to-date route, and return tloerect results.

Note that the dynamic node insertion algorithm is non-divand each insertion will take a non-negligible
amount of time. This is part of the rationale for quick regrion of repaired nodes. Deleting nodes,
however, is trivial. A node can actively inform the relevaatrties of its departure using its backpointers, or

3This is based on some threshold, e.g., 15% improvementtiedin network distance.
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Figure 5:Updating location pointers for exiting nodes. NodeB is about to leave the Tapestry network, and
informs object serve$. S republishes the affected object with new epoch, and in deingsesast location
hop address to delete old location pointers.

rely on soft-state to remove it over time. While we expectuhde-area network to be dynamic, we expect
only a small portion of the network to be entering/exitinge thverlay simultaneously. For this reason,
Tapestry is currently unsuitable for networks that are tamy changing, such as sensor networks.

4.2 Soft-state vs. Explicit Republishing

While the soft-state approach of republishing at reguléerirals is an excellent simplifying solution to
keeping location pointers up-to-date, it implicitly higifits the tradeoff between bandwidth overhead of
republish operations and level of consistency of locatioiniers. A similar tradeoff exists for the use of soft-
state to maintain up-to-date node information. This sactiiscusses these tradeoffs and our mechanisms
for supporting mobile objects using explicit republishiaigd delete operations.

For example, consider a large network of one million nod&sjrgy one trillion objects of roughly 4KB in
size (one million objects per node). Assuming 160 bit naraesp for objects, 120 bits for nodes, both orga-
nized as hexadecimal digits, an object republish opera#eults in one message {2ObjectID, NodelD>
tuple) for each logical hop en route to the root node, for altot 40 messages of 35 Bytes (160bits+120bits)
each. This works out per machine toli®)0000 Obj x40Mesg/Obj x40B/Mesg = 1000000x1.4KB =
1400M B. If we set the republish interval to one day, this amount afdvéidth, when amortized, is equal
to 129kb/s. On modern high-speed ethernet networks, wexgaatea resulting location timeout period of
at least two days.

Clearly, the bandwidth overhead significantly limits thefudness of our soft-state approach to state main-
tenance. As a result, we modify our approach to one inclugnogctive explicit updates in addition to soft-
state republishing. We take this approach to state maintenaf both nodes and objects. To support our al-
gorithms, we modify object location mappings to a 3-tupte<oDbjectID, ServerID, LastHopIB. For each
hop on a location path to some root node, each server keegsdbeding nodelD as the LastHopID. Ad-
ditionally, we introduce notion ofpoch numbers as a primitive versioning mechanism for location pointer
updates. In the rest of this section, we describe how alguostleveraging these mechanisms can explicitly
manage node and object state.

4.2.1 Explicitly Handling Node State

In a dynamic network, we expect nodes to disappear from theskey due to both failures and intentional
disconnections. In either case, the routing infrastriecttan quickly detect and promote secondary routes,
while location pointers cannot automatically recover.

12
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Figure 6: Supporting mobile objects with explicit republishing: An object is moving from served to server
B. A establishes a forwarding pointer 19 while B republishes, and in doing so usest location hop
addresses to delete old location pointers.

We explain our algorithm with the example shown in Figure % proactively modify object location
pointers in anticipation of exit from the Tapestry, a nadenotifies all servers whose stored objedis
maintains location mappings for. Each such se/é&ssues a republish message with a new epoch number
andB’s nodelD. Nodes such a&, which are not affected b#’s exit, forward on such messages and update
local epoch numbers. The preceding hop bef@motesB’s nodelD in the message, and routes the republish
message to its secondary route. Each successive hop s$teresation mapping with the new epoch, until

a hop with an older epoch is detected at a node sudh. ahis marks the junction where the alternate path
caused byB’s exit merges with the original path. Now; forwards on the new epoch up to the root, while
E also uses itdast HopI D to send a message backwards hop by hop, removing locatiopinggfor the
object stored a$.

This proactive procedure updates the path of location pmsnt an efficient way. The exiting node cannot
initiate a full republish, since only a republish originditisom the server can establish authenticity of au-
thority. Additionally, while the reverse delete message loa obstructed by a node failure (such as nbde
in Figure 5), the remaining “orphaned” object pointers il removed after a timeout period. If a client
encounters them and is forwarded to the wrong server, it mémm the node, and such pointers removed
upon confirmation. The client can continue routing to the ramle in search for the correct location, having
experienced a round-trip overhead to the mistaken server.

4.2.2 Supporting Mobile Objects

We use a more generalized form of the previous algorithm taglively maintain consistency of object
location pointers, as demonstrated in Figure 6. In this eptapa mobile object) moves from servei

to serverB. Our algorithm establishes location pointers pointingBtavhile guaranteeing that the correct
location of the object is available through the durationha transition.

When the object migrates servers, serdetirst establishes a forwarding pointer idfor O, and forwards
requests for the duration of the algorithm. Senissues a republish message to the root node with a new
epoch number. The republish proceeds normally, until ieckst (by an older epoch number) the junction
where it intersects the old publish path frofnto the root (node” in our example). While” forwards the
original republish message up to the root, updating loogpiointers toB, it also sends a delete message
back towardsA via LastHoplIDs, deleting location pointers along the way.

13
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detects frequent location requests dfrom 1598 , s04598 notifies1598 , which traces back th@ traffic
back t06208, and reports back t4598 . A replica ofO is placed a6208.

Because the root node is the only node guaranteeing a c@oéter to the object (all other pointers are
viewed as location "caches”), it sends a notification messtgctly toA when it receives the new republish
message. Servet removes the forwarding pointer and all referenceg)tapon receiving the notification
message. At this point, the backtracking delete messagebmayopagating its way td, or it may have
terminated due to a node failure along the way (n@é our example). Pointers at node could be

in an inconsistent state until the next timeout period ordkkte message reaches Again, the brief
inconsistency can be tolerated, since any client retrgettie wrong server location can continue routing to
the root node after an overhead of a round-tripAtowhile an inconsistent pointer can be confirmed and
removed after the first such failure.

This algorithm supports rapidly moving objects withoutdimig clients to traverse a large number of for-
warding pointers. Out of date location pointers are remoaedoon as possible, and each inconsistent
pointer can incur at most one round-trip overhead to the efdes for one single client, after which the bad
pointer can be tested and removed.

These two algorithms demonstrate a complementary “exg@litil proactive” approach to the soft-state ap-
proach to state management. We note that on large distiilmgisvorks such as those supported by Tapestry,
overhead costs imply longer data refresh intervals, argktatwindows of vulnerability.” We solve this
problem by using proactive algorithms where possible, ang falling back on soft-state as a last resort.

4.3 Introspective Optimizations

Another Tapestry goal is to provide an architecture thatkjyidetects environmental changes and mod-
ifies node organization to adapt. Here we describe two ip&cisve Tapestry mechanisms that improve
performance by adapting to environmental changes.

First, changes in network distance and connectivity betwssde pairs drastically affect overall system
performance. Tapestry nodes tune their neighbor pointerarnming a refresher thread which uses network
Pings to update network latency to each neighbor. The thissadheduled as a low priority mechanism
that runs periodically when network traffic and server loagl lbelow moderate levels. For any neighbor
where latency has increased by some significant rate (e%),4Be node requests the neighbor’'s secondary
neighbors, and traverses them until a local minima in netwdistance is found. Finally, neighbor pointers
in higher levels are compared to and substituted for lowaghtmrs if they are found to be closer.

14
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Figure 8:Location Pointers Effect on RDP: TIERS5000: Ratio of network hops traveled via Tapestry (with
and without intermediate location pointers) over netwooksvia IP.

Second, we present an algorithm that detects query hofspotsoffers suggestions on locations where
additional copies can significantly improve query respaimse. As described previously, caches of object
locations are stored at hops between each location and het’'slioot node. While this mechanism exploits
locality, query hotspots far away from the object can owllservers and links en route to the root node.

In Tapestry, we allow nodes which store the object’s locatm actively track sources of high query load
(hotspot). A nodeV that detects request traffic above a preset threshaidtifies the source nodg( V) of
the traffic. S(V) then begins monitoring its incoming query traffic, and nesifany of its source nodes. A
notified node that is the source (i.e. ho incoming trafficastie above") replies to its notifier with its node
ID. The node ID is forwarded upstream to the root node.

If the object in question is a cache-able object, then wefyntitie application layer of the hotspot, and
recommend that a copy be placed at the source of the quefig.trifthe object is a static resource (e.g.
machine server), we can then place a copy of the objectiwtatapping at the source of the hotspot, and
refresh it using update messages while the traffic strea¥ramains abov€' «T', whereC is a proportional
constant less than 1. We call this a “hotspot cache.” Reezogpithat logical hops become longer closer
to the root, hotspot caches reduces these last hop trasieasal can drastically reduce the overall response
time to locate the object. Figure 7 shows an example of tgaloatk a hotspot.

5 Measurements

In this section, we present simulation results demonstyatie benefits of the Tapestry design, and how it
performs under adverse conditions. First, we examine hoariaty of factors affect location performance,
especially with respect to exploiting locality. Then wedak closer look at how novel uses of redundacy
can positively affect performance and performance stgb#iollowing this, we demonstrate that compared
to replicated directory servers, Tapestry location sengfiow graceful degradation in both throughput and
response time as ambient network traffic increases. Finayshow that as an overlay network, Tapestry
routing incurs a small overhead compared to IP routing.
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Figure 9:Location Pointers Effect on RDP: Transit-stub 5000: Location RDP of Tapestry (with and without
intermediate location pointers).

5.1 Locality Effects

Our first experiment$ examine the effectiveness of the location pointers stotedtermediate hops be-
tween the storage server and the root node of the object. eVitdxton, Rajamaran and Richa prove that
locating and routing to an object with these location pamiacurs a small linear factor of overhead com-
pared to routing using the physical layer [21], we would likeconfirm the theoretical results. We ran our
experiments on a packet level simulator of Tapestry usingdistance hop topologies, and measuteda-
tion Relative Delay Penalty (LRDP), the ratio of distance traveled via Tapestry location anding, versus
that traveled via direct routing to the object.

To avoid topology specific results, we performed the expenits on a representative set of real and artifi-
cial topologies, including two real networks (AS-Jan00, &M8) and two artificially generated topologies
(TIERS, Transit-stub). The AS-Jan00 graph models the ativity between Internet autonomous systems
(AS), where each node in the topology represents an AS. ligeasrated by the National Laboratory for

Applied Network Research [NLA] based on BGP tables. The MBgraph was collected by the SCAN

project at USC/ISI in 1999, and each node represents a MBauterr The TIERS graph includes 5000

nodes, and was generated by the TIERS generator. Finalluse® the GT-ITM package to generate the
transit-stub graph.

The results from experiments on all four topologies showdhme trend. Here we show results from the
two representative topologies, TIERS 5000 nodes and Trang 5000 nodes, in Figures 8 and 9. The
results largely confirm what we expected, that the presehlxality pointers helps maintain the LRDP at
a small relatively constant factor, and their absence tesula large number of hops to the root node and
large LRDP values.

5.2 Multiple Replicas for Performance Stability

To reach our goal oftability through statistics, Tapestry trades off use of resources to gain performance
stability. Specifically, we propose to improve performaacel lower variance in response time with the use
of redundant requests, utilizing Moore’s Law growth in cartgtional and bandwidth resources.

4All error bars shown as part of graphs in this section showstasdard deviation above and below the data point.
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Figure 11:Latency vs. Replicas with Link Failures: Time required for reconstruction threshold accounting
for timeouts and retransmission overhead when link fadurecur. (Error bars omitted for clarity.)

We examine the feasibility of this approach in Tapestry mdhntext of Silverback [30], the archival utility
of the OceanStore global storage infrastructure. Silvatheses Tapestry to distribute, locate, and collect
archival fragments generated by erasure-coding the aliginject or block. An object is erasure-coded into
a large number (e.g. 32) of fragments, and distributed ammandomly placed fragment storage servers.
Each server advertises its fragment via Tapestry locatieshanisms using the same ID of the original
object. The performance-critical operation in Silverbackearching for enough fragments from the erasure-
coded group in order to reconstruct the original object. W& on this operation, and examine the cost-
performance tradeoff of stability through statistics iffelient scenarios.

The key parameter in our experiments is the number of simetias requests for fragments issued. With a
threshold of 16 fragments needed out of 32 total, we simulaegime necessary to receive the fastest 16
fragment responses. These experiments are done using ety simulator on a Tapestry network of
4096 nodes running on a 5000 node GT-ITM generated Trandittepology. We apply a memoryless dis-
tribution to each network hop around an average latency uneas 1 "hop unit.” Furthermore, we simulate
the effect of server load and queuing delays by making haifldfervers “highly loaded,” which adds 6 hop
units to response time, while other servers add 1 unit tooresp time.

In Figure 10, we plot time to reach threshold as a functionwhher of fragments requested. We see that
as we increase number of requests above the minimum thdegheladditional requests greatly reduce the
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Figure 13:Effect of Multiple Roots on Location Latency: Time taken to find and route to object as a function
of client distance from object’s root node and number of beraequests made. (Error bars omitted for
clarity.)

overall latency as well as the variance in response time.t,Nex perform the measurement again while

allowing for link failures in the network. Whenever a linkillg a requests retries, and incurs a timeout
overhead in overall response time. As visible in Figure hk effect of additional requests above the
threshold become increasingly dramatic as link failure iatreases. This implies that stability through

statistics works better in the real wide-area Internet, i@tpacket errors resulting from congestion are not
uncommon. Finally, we show in Figure 12 the aggregate badttiviised by all fragment requests increases
linearly with number of fragment requests, and also inasasith the distance between the client and the
“root node” of the objectID. These results show that withlarable amount of bandwidth overhead, we can
significantly improve performance by making more requdsas tthe threshold minimum.

5.3 Multiple Roots for Performance Stability
While we can exploit application-level redundancy (as smamvthe Silverback archival simulations) for

performance stability, Tapestry provides its own leveledundancy in its location mechanism. Recall our
discussion on producing multiple root nodes per object ghhmg with salts in Section 3.2.2. We show
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Figure 14:Multiple Roots and Aggregate Bandwidth Used: Time to find and route to object graphed with
aggregate bandwidth as a function of number of parallelgstgumade.

through simulation results that sending out simultane@gsiests for a given object using its hashed IDs
provides better and less variable performance.

Again, we use the packet level simulator of 4096 Tapestryeaazh a 5000 node Transit-stub topology,
applying a memoryless distribution to hop latencies. Wégass random IDs to a randomly placed object,
and publish its presence using each ID. For the first expetinvee show latency taken to find and route
to the object from randomly placed clients as a function ahbmumber of parallel requests issued and
distance between clients and the root object. The resukiggre 13 shows several key features. First,
for all clients not immediately next to the root node, in@ieg the number of parallel requests drastically
decreases response time. Second, the most significantytatenrease occurs when two requests are sent in
parallel, with the benefit deceasing as more requests asdadhally, a smaller number of requests shows
a more jagged curve, showing their vulnerability to randdfaas such as long hop latencies. In contrast,
those factors are hidden in a smoothed curve when all fiveestguare issued in parallel.

In our second experiment shown in Figure 14, we present a eresppctive on the same experiment in con-
junction with aggregate bandwidth used. We plot the loca#iod routing latency and aggregate bandwidth
against the number of parallel requests. The chart confintifacis observed in Figure 13, including the

significant decrease in latency and variability with each additional request. Furthermore, by plotting the
aggregate bandwidth used on the secondary Y-axis, we sethéhgreatest benefit in latency and stability
can be gained with minimal bandwidth overhead.

5.4 Performance under Stress

In the experiments shown in Figures 15 and 16, we comparethpliied Tapestry location mechanism
against a centralized directory server on a 100 nwd2 [5] TCP/IP simulation of a topology generated by
GT-ITM [31]. We simulated a simplified Tapestry location rhanism without the benefit of replication

from hotspot managers or replicated roots, and assumedyitdgllookup times at the directory servers.

In our experiments, we measured throughput and responsgetdira synthetic query load while artificially
generating high background traffic from random paths actbesnetwork. The query load models web
traffic, and is mainly composed of serialized object reqgiestth 15% of requested objects receiving 90%
of query traffic. The background traffic causes high packss lates at multiple routers. Because of the
inherent replication along nodes between the server andijeet root node, Tapestry responds to sporadic
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Figure 16:Response Time Under Packet Loss This chart shows relative response time per query of Tapestr
location versus centralized directory server with highkggiound traffic causing packet loss.

packet loss favorably with graceful performance degradatas shown in Figures 15 and 16. Centralized
directory servers become isolated as packet loss increasg$shroughput and response time further degrade
due to TCP retransmissions and exponential backoffs.

In an experiment to demonstrate the Tapestry fault-tomranechanisms, we augmented normal TCP with
fault-aware routers on top of a 100 Tapestry node topologpes$try nodes uggng messages to estimate
reliability of next-hop neighbor links. In our simulatiowe use 15 randomly placed nodes to generate back-
ground traffic by sending out 500 byte packets. As backgrquatkets flood the network with increasing
frequency, router queues begin to overflow and packet lassases. When reliability falls under a thresh-
old, outgoing packets are duplicated and the duplicatensteean alternate next hop neighbor. Because of
the hierarchical nature of Tapestry neighbor links, raaitater in the path will see duplicate packets quickly
converge, and drop duplicate packets on arrival. Figurehbivs results from ams-2 simulation using
Drop-tail queues on a GT-ITM transit-stub topology, mea®ua single connection’s packet loss statistics
as background traffic increases on the network. We foundtieanodified TCP significantly reduces packet
loss as duplicate packets route around congestive regkurshermore, the reduced packet loss results in
fewer retranmissions and overall higher throughput.
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IP for multiple network topologies, including Internet anbmous systems, the MBone, TIERS 5000, and
transit-stub 5000.

5.5 Overlay Routing Overhead

To measure the routing overhead that a Tapestry overlayanktiwcurs compared to IP routing, we mea-
sured physical hop counts between pairs of nodes in bothsTigpand IP topologies. We used the four
topologies first introduced in Section 5.1.

We use as our unit of overlay overhead measurement, theirRe@élay Penalty (RDP), first introduced
in [8]. Here it is defined as the ratio of Tapestry routing alistes to IP routing distances. By definition,
IP unicast has an RDP of 1. Figure 18 plots the 90th perceR® values for topologies from the four
network models as we modify the Tapestry ID base used. Weureghsll pair-wise node distances in hop
counts.

6 Related Work

The research area of decentralized routing and locatiom igctive one. Since the start of the Tapestry
project in March 2000, several projects have begun to atteekecentralized routing problem with different
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approaches, including Pastry [10], CHORD [28], and CAN [2¥Je discuss Tapestry’s approach in the
context of these and other work on network location, conteating, network measurements and overlay
networks.

6.1 Pastry

PAST [11] is a recent project begun at Microsoft Researchiding on peer-to-peer anonymous storage.
The PAST routing and location layer, called Pastry [10], i®@ation protocol sharing many similarities
with Tapestry. Key similarities include the use of prefitfsuaddress routing, and similar insertion/deletion
algorithms, and similar storage overhead costs.

There are several key differences that distinquish Pasing ffapestry. First, objects in PAST are replicated
without control by the owner. Upon “publication” of the objgit is replicated and replicas are placed on
several nodes whose nodelDs are closest in the namespd tif the object’s objectID. Second, where
Tapestry places references to the object location on hopgeba the server and the root, Pastry assumes
that clients use the objectID to attempt to route directlyhivicinity where replicas of the object are kept.
While placing actual replicas at different nodes in the meknmay reduce location latency, it comes at the
price of storage overhead at multiple servers, and brings ivia set of questions on security, confiden-
tiality, and consistency. Finally, Pastry routing’s arplaf Tapestry’s “surrogate routing” algorithm (see
Section 3.3) provides weaker analytic bounds on the numblerga@al hops taken. In Tapestry, we have
analytically proven, well-defined, probabilistic boundsrouting distances, and are guaranteed to find an
existing reachable object (see Section 3).

6.2 Chord

Several recent projects at MIT are closely related to TapeBastry and CAN. The Chord [28] project
provides an efficient distributed lookup service, and uskxarithmic-sized routing table to route object
gueries. The focus is on providing hashtable-like fundliin of resolving key-value pairs. For a namespace
defined as a sequencerafbits, a node keeps at mast pointers to nodes which follow it in the namespace
by 2!, 22, and so on, up t8™~!, modulo2™. Thei,, entry in noden’s routing table contains the first node
that succeeds by at leas2’~! in the namespace. Each key is stored on the first node whostfieleis
equal to or immediately follows it in the namespace. Choaljoles similar logarithmic storage and loga-
rithmic logical hop limits as Tapestry, but provides weagaarantees about worst-case performance. The
main distinction worthy of note is that there is no naturalrefation between overlay namespace distance
and network distance in the underlying network, openingphssibility of extremely long physical routes
for every close logical hop. This problem is partially aleged by the use of heuristics.

Several other projects from MIT are also relevant. Firstrg€a et. al. presented a decentralized wide-
area location architecture for use with geographic routm@RID [18]. GRID uses a notion of embedded
hierarchies to handle location queries scalably, much tiiteeembedded trees in Tapestry. Second, the
Intentional Naming System (INS) [1] combines location amdlting into one mechanism. Finally, Resilient
Overlay Networks [3], leverages the GRID location mechangd the semantic routing of the Intentional
Naming System (INS) [1] to provide fault-resilient overleyuting across the wide-area. Because of the
scalability of INS, however, the RON project focuses on rueks of size less than 50 nodes.
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6.3 CAN

The “Content Addressable Networks” (CAN) [22] work is beithgne at AT&T Center for Internet Research
at ICSI (ACIRI). In the CAN model, nodes are mapped ontdy @imensional coordinate space on top of
TCP/IP in a way analogous to the assignment of IDs in TapeBhy space is divided up int¥ dimensional
blocks based on servers density and load information, wésch block keeps information on its immediate
neighbors. Because addresses are points inside the cat@dpace, each node simply routes to the neighbor
which makes the most progress towards the destination @ted Object location works by the object
server pushing copies of location information back in threction of the most incoming queries.

There are several key differences between CAN and Tapéstogmparison, Tapestry’s hierarchical overlay
structure and high fanout at each node results in paths fiffereht sources to a single destination con-
verging quickly. Consequently, compared to CAN, querigddoal objects converge much faster to cached
location information. Furthermore, Tapestry’s use of ir#m locality paired with introspective mechanisms
means it allows queries to immediately benefit from quenglibg while being adaptive to query patterns

and allowing consistency issues to be handled at the afiplidayer. CAN assumes objects are immutable,
and must be reinserted once they change their values. ¥ifalbestry node organization uses local net-
work latency as a distance metric, and has been shown to Esanable approximation of the underlying

network. CAN, however, like Chord, does not attempt to agpnate real network distances in their topol-

ogy construction. As a result, logical distances in CAN mogitcan be arbitrarily expensive, and a hop
between neighbors can involve long trips in the underlyifghétwork. The main advantage a CAN has is
that because of the simplicity of the node addition alganithit can better adapt to dynamically changing
environments such as sensor networks.

In summary, Pastry, Chord and CAN are very similar to Tagasttheir functionality and run-time proper-
ties. In particular, Pastry is the closest analogy offeflngating and routing” to an object, where Chord and
CAN both focus on providing distributed hashtable funcailily. Because Pastry controls replica placement,
and Chord and CAN are not optimized for large objects, Tapésthe only system which allows the user
to control the location and consistency of the original datwing the system to manipulate and control
only references to the object for performance. It is als@wotthy that Tapestry and Pastry have natural
correlation between the overlay topology and the undeglyiatwork distance, while CAN and Chord may
incur high physical hop counts for every logical hop.

6.4 Other Related Work

The TRIAD [13] project at Stanford University focuses on t@blem content distribution, integrating
naming, routing and connection setup into its content layHney propose a query routing mechanism
which strives for greater reliability and adaptibility g access to protocol-level information.

Previous efforts have approached the wide-area locatioblgam with varying degrees of success. The
Globe [29] project was one of the first location mechanismfotms on wide-area operation. It used a
small fixed number of hierarchies to scale location data, ingak unable to scale to increasingly large
networks. The wide-area extension to the Service LocatimioBol (SLP) [26] used a pair-wise query
routing model between administrative domains, which presa potential bottleneck as the number of
domains increases. The Berkeley Service Discovery Seijtidkuses lossy bloom filters to compress
service metadata to complement its use of multiple wide-&ierarchies. In the area of server location,
Boggs first introduced the notion of expanding ring searchisnPh.D. thesis [4]. Partridge et al. proposed
anycast, which attempts to deliver messages to one neaghyI&j.
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Tapestry depends on accurate network measurements toizptwerlay topology. Paul Francis et al. pro-
pose a solution in IDMaps [12], which uses distributed trade build a distance estimation map. Mark
Stemm et al. have proposed SPAND [27], a shared network mezasat architecture and adaptive applica-
tion framework.

Several projects have examined construction of overlagltmpes while optimizing network distances. In
the Overcast [15] multicast system, Jannotti et al. propesehanisms for constructing spanning trees that
minimize duplicate packets on the underlying network. Aiddally, both End System Multicast [8] and
ScatterCast [7] utilize self-configuring algorithms fomstructing efficient overlay topologies. ESM also
introduces the Relative Delay Penalty (RDP) metric for meaag overhead of overlay routing.

7 Status and Future Work

We have implemented packet level simulators of the Tapasstem in C, and are finishing a Java imple-
mentation for large-scale deployment. We have also usedsTigpto support several applications. The
driving application for Tapestry is OceanStore [17, 24],idevarea distributed storage system designed to
span the globe and provide continuous access to persisttat Data can be cached anywhere in the sys-
tem and must be available at all times. Tapestry providesliject location and routing functionality that
OceanStore requires while meeting its demands for comsigtand performance. In particular, Tapestry
efficiently and robustly routes messages across the wike-ay routing around heavily loaded or failed
links. Finally, the self-contained archival storage lagéfOceanStore called Silverback [30] uses Tapestry
for distribution and collection of erasure-coded data fnagts.

We have also developed Bayeux [32], an application-levéticaist protocol on top of Tapestry. Bayeux uses
the natural hierarchy of Tapestry routing to provide sirgbeirce multicast data delivery while conserving
bandwidth. Initial measurements show that Bayeux provedasability beyond thousands of listeners, while
leveraging Tapestry to provide fault-tolerant on-time lggaelivery and minimal duplication of packets.

Our current priority is on further performance analysis end variety of conditions and parameters. This
would help us better understand Tapestry’s position in #eedtralized routing research space, how it com-
pares to other approaches such as Pastry, Chord and CANpasithly allow us to define a taxonomy of the
research space. We are also working on studying the secagtyirements of Tapestry, and how it can be
made secure and resilient to attacks. On the applicatian wid are developing intelligent network appli-
cations that exploit network-level statistics and utilizggpestry routing to minimize data loss and improve
latency and throughput. We are also exploring the postitofi offering Mobile IP-like [20] functionality
using the location-independent naming mechanism of Tgpest

8 Conclusion

In this paper, we presented the Tapestry location and mwinhitecture, a self-organizing, scalable, ro-
bust wide-area infrastructure that efficiently routes e=sjis to content in the presence of heavy load and
network and node faults. We showed how a Tapestry overlayarktcan be efficiently constructed to sup-
port dynamic networks using distributed algorithms. WHikgestry is similar to the Plaxton distributed
search technique [21], we have additional mechanisms évardge soft state information and provide
self-administration, robustness, scalability, dynangaftation, and graceful degradation in the presence of
failures and high load, all while eliminating the need faolgdl information, root node vulnerabilities, and a
lack of adaptability.

24



Tapestry provides an ideal solution for dynamic wide-are@at naming and message routing systems that
need to deliver messages to the closest copy of objects\icegiin a location independent manner, using
only point-to-point links and without centralized sengcéapestry does this, in part, by using randomness
to achieve both load distributicsnd routing locality.
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