

Understanding Human Mobility in Wireless Mobile Networks

Aug. 25, 2009

KAIST, Dept. of EE Kyunghan Lee

Presentation Outline

Introduction

- Wireless Mobile Networks
- Understanding Mobility in Wireless Mobile Networks
- Conventional Mobility Models

Human Mobility Models

- Theme I : Statistical Mobility Model based on Empirical Data (Levy-walk)
- Theme II : Context-based Mobility Model (SLAW)
- Conclusions

Wireless Mobile Networks

Wireless Mobile Network

- A collection of wireless mobile devices interworking through multi-hop or movement without an infrastructure
- E.g. Mobile Ad-hoc Networks(MANETs), Delay Tolerant Networks(DTNs)

How to Get $\Theta(I)$ in Wireless Mobile Networks

- Grossglauser and Tse ('01)
 - Exploiting mobility of nodes : Mobile Relay for a packet delivery

- Delay : O(n)

Mobility-oriented Space Time DTN

- ST-DTN : Superset of MANET & DTN
- Future Network Design should enable
 - Any point in mobility-oriented "space-time continuum" of networks*

* S. Merugu, M. Ammar, and E. Zegura, "Routing in space and time in networks with predictable mobility," in Technical report: GIT-CC-04-07. College of Computing, Georgia Institute of Technology, 2004.

KH. Lee, Y.Yi, J. Jeong, H.Won, I. Rhee, S. Chong, "Max-Contribution : On Optimality Resource Allocation in Delay Tolerant Networks", submitted to INFOCOM 2010

Classification of Mobility Models

Classification of Remarkable Mobility Models

• Lack of Scalable, Reproducible and Realistic Model

Theme I : Statistical Mobility Model based on Empirical Data (Levy-walk Nature of Human Mobility)

Joint work with NCSU

(Injong Rhee, Minsu Shin, Seongik Hong, Song Chong)

Motivation

Mobility models for mobile networks

- Many synthetic mobility models & even recent models : Lack of Reality ! —
- Reality of a mobility models
 - In terms of Movement Trajectory
 - In terms of Inter-Contact Time (Especially meaningful measure for DTNs)

Do humans walk like animals? ۲

- Statistical patterns of human mobility
- Similar to commonly observed patterns in animals : Levy walk (flight)
 - (e.g. albatrosses[Viswanathan96], monkeys [Atkinson02], and jackals[Ramos04])

Our GPS Traces

- 103 participants, 226 daily traces
- 5 different sites

Site	# of flights	Duration (hour)		Radius (Km)			
(# of participants, # of daily traces)	# of samples	Min.	Avg.	Max.	Min.	Avg.	Max.
KAIST (32, 92)	9416 135055	4.21	12.22	23.33	0.27	1.62	13.51
NCSU (20, 35)	4286 42829	1.71	10.19	21.69	0.46	1.82	5.84
New York City (12, 39)	1161 39554	1.23	8.44	22.66	0.28	3.94	12.47
Disney World (18, 41)	4548 44386	2.18	9.01	14.28	0.19	2.53	9.37
State fair (19, 19)	685 5861	1.48	2.56	3.45	0.22	0.38	0.59

Garmin 60CSx Accuracy < 3m (at 95% of time)

Levy-walk Trajectory & GPS Traces

• Sample trajectories

Random waypoint

Levy walk

• Real traces

What Is the "Levy-walk"?

• Levy Distribution (introduced to explain atypical particle diffusion)

Paul Pierre Lévy (1886~1971)

$$p(x) \sim x^{-(1+\alpha)}, 0 < \alpha < 2$$

$$(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx - |ct|^{\alpha}} dt$$

$$\frac{\alpha c^{\alpha} \sin(\pi \alpha) \Gamma(\alpha) / \pi}{x^{1+\alpha}}$$

• Position of a random walker after time t

- Brownian motion (Gaussian distribution)
 - Normal diffusion : Mean squared displacement grows linearly with time t. (i.e. $MSD \sim t^{\gamma}, \ \gamma = 1$)
- Levy walk (Levy distribution)

ľ

p

• Super-diffusion : MSD ~ t^{γ} , $\gamma > 1$

Flight Length Distribution

- Identification of Best Describing Distribution of Flight Length
 - Maximum Likelihood Estimation
 - Akaike Test (Evaluation method of Goodness of Fit)

	Rectangular	Angle	Pause-based
	$a_{\theta} = 0^{\circ}$		$a_{\theta} = 360^{\circ}$
Campus I	-1.53 (0.03)	-1.64 (0.03)	-1.22 (0.11)
Campus II	-2.27 (0.02)	-2.15 (0.04)	-1.63 (0.11)
NYC	-1.62 (0.02)	-1.57 (0.04)	-1.17 (0.10)
Disney World	-2.20 (0.04)	-2.16 (0.08)	-1.85 (0.09)
State fair	-2.81 (0.45)	-2.11 (0.18)	-1.76 (0.15)

Human Walk ~ Levy-walk of α = [0.53,1.81]

Pause Time Distribution

Maximum Likelihood Estimation on Pause Time

Levy-walk Mobility Model

Model parameters ۲

Flight length	l	Direction	θ
Flight time	Δt_f	Pause time	Δt_p

- Flight length : follows the distribution ۲
- Direction : uniform in [0 2pi] ۲
- Flight time : function of flight length ۲
- Pause time : follows the distribution ٠

0

Average velocity [km/hour] (with 95% confidence intervals) 0 0 0 0 0 0 0

0 Legenge

10

$$\Delta t_{f} = k l^{1-\rho}, 0 \le \rho \le 1$$

$$\psi(\Delta t_{p}) \sim \Delta t_{p}^{-(1+\beta)}$$

p

Velocity Model

$$k = 30.55, \rho = 0.89$$
 for $l < 500m$
 $k = 0.76, \rho = 0.28$ for $l \ge 500m$

Turning Angle Distribution

270

000

90 0.02 60

> 0.01 0.005

120

24

150

210

180

14

100

Flight length [m]

Average Velocity over Flight Length

1000

Verification of Levy-walk Mobility Model

Recreation of Inter-Contact Time

DTN Routing Performance

- Simulation : 2-hop Relay Scheme / MATLAB Simulator
- Delay Performance
 - Levy-walk spends much longer time for delivery (due to Power-law ICT)

*Routing Performance Analysis of Human-Driven Delay Tolerant Networks using the Truncated Levy Walk Model, ACM SIGMOBILE Mobility Models 08 (Colocated with MobiHoc 08)

MANET Routing Performance

- Simulation : DSR (Reactive Routing Protocol) / GloMoSim Simulator
- Throughput
 - Levy walk & BM provides more throughput than RWP
- Connection Probability
 - Levy walk & BM provides less connection probability than RWP

Theme II : Context-based Mobility Model (SLAW : Self-similar Least Action Walk)

Joint work with NCSU (Seongik Hong, Seongjoon Kim, Injong Rhee, Song Chong)

Motivation

Fundamental Statistical Features in Human Mobility

(F1) Levy-walk : Truncated power-law flights and pause-times.

(F2) Heterogeneously bounded mobility areas.

(F3) Truncated power-law intercontact times (ICTs).

(F4) Fractal waypoints. From the analysis of the GPS.

Comparison of Existing Models

	Features	F1	F2	F3	F4
Category	Models	1			
Random	RWP, RD	N	N	N	Ν
	BM(RW)	N	Ν	Y	Ν
	TLW [32]	Y	N	Y	N
Random	MWP [21]	N	N	N	N
Variants	GM [25]	N	N	?	Ν
	RPGM [20]	N	Ν	?	Ν
Geographic	Freeway [2]	N	N	?	Ν
	Manhattan [2]	N	N	?	Ν
	OM [22]	N	Ν	?	Ν
Social	Dartmouth [24]	N	N	?	N
	CMM [26]	N	N	?	Ν
	ORBIT [15]	N	Y	?	Ν

Challenge I : Demystifying the Interaction of 4 Features

Challenge 2 : A Realistic Mobility Model Satisfying 4 Features

Challenge 3 : A Realistic Model Implying Correlation of Humans

Levy-walk Reconstruction (Mobility Model)

- Reconstruction methods of Levy-walk
 - I. Using flight lengths taken from the distribution
 - Reconstruction as a random walk : Truncated Levy-walk Mobility Model
 - 2. Demystifying and applying the underlying mechanism of Levy-walk
 - Fundamental approach but very complicated
- Hypothesis to demystify the mechanism of Levy-walk
 - Levy-walk might be a result of sequential visit patterns of the locations of meaningful contexts.
- We've tried so many algorithms to model the Hypothesis but failed.

Successful Decomposition

- I. Geographical distribution of locations of underlying contexts
- 2. Movement decision rule of humans over the given locations

Geographical Distribution of Underlying Contexts

Waypoint Distribution (KAIST) (Aggregated from all walkers)

The road network in London (colored by level of connectivity)

Related Finding :

The shape of cities are also fractal

- Batty, M. The Size, Scale, and Shape of Cities. *Science 319*, 769-771 (2008).

Fractal Waypoints

Hurst parameter Measurement (Aggregated Variance Method, R/S)

Hurst parameters of all traces > 0.5

Power-law Gaps over Fractal Points

- Fractal points in one-dimensional space
 - Distances among neighboring points
 Power-law distribution

23

Cantor Set			

Theorem :

Fractal points over one-dimensional space induce power-law gap.

(I-to-I: Hurst parameter, power-law slope)

- Fractal points in two-dimensional space ?
 - 2D gaps can be approximated by Delaunay Triangulation¹

Related Reference

(Gaite, J. Zipf's law for fractal voids and a new void-finder. *Eur. Phys. J. B* **47, 93-98 (2005).**)

Power-law Gaps over Fractal Points

Lessons learned : Humans basically visit neighboring waypoints (Delaunay triangulation tends to avoid skinny triangles)

Least Action Trip Planning (LATP)

- Trip planning algorithm based on a weight function of I/d^{α}
 - Destructive visit over given waypoints
 - d : distance from the current location to a candidate location
 - α : a positive constant (determines the distance weight)

Algorithm 1 Least action trip planning (LATP) algorithm with a distance weight function $d^{-\alpha}$

V: set of all vertices (waypoints) V': set of all visited vertices $s \in V$: starting vertex $c \in V$: current vertex $c \notin s$ $V' \notin \{c\}$ while $V' \neq V$ do Calculate distances to all unvisited vertices, $d(c, v) = ||c - v||_2$ for all $v \in V - V'$ Calculate probability to move to all unvisited vertices, $P(c, v) = \frac{\left\{\frac{1}{d(c, v)}\right\}^{\alpha}}{\sum_{v} \left\{\frac{1}{d(c, v)}\right\}^{\alpha}}$ for all $v \in V - V'$ Choose a next vertex $v' \in V - V'$ according to the probabilities P(c, v) $c \notin v'$ $V' \notin V' \cup \{c\}$ end while

LATP Example

Interpretation of LATP

• Selection of α has some meanings

- α is zero : random visit over given waypoints (no distance optimization)
- α is infinite : always visit the nearest unvisited waypoint first
 - Approximation to the optimal traveling salesman (TSP) algorithm (NP-hard) : Nearest Neighbor First

LATP Performed on Real Waypoints

Comparison of Recent Mobility Models

- Dartmouth
 - Movement over given spots with probability obtained from real traces
- CMM (Clustered Mobility Model)
 - Movement over given regions with probability obtained from virtual preferential attachment procedure
- ORBIT
 - Planned movement over given clusters of way-points

Self-similar Least Action Walk (SLAW)

• Synthesis of SLAW

SLAW Verification : Flight Length and ICT Distributions

Flight length

SLAW presents very realistic distributions of flight length and ICT

DTN Routing Performance

- Comparison of average DTN routing delay
 - New routing metric, ECT (Expected Contact Time) is suggested
 - 4 routing schemes are compared (Direct, Random, LET, PRoPHET)
 - Some routing metrics show bad performance in recent models
 - ECT shows best performance in SLAW
 - Movement over common contexts among users reduces the delay

Applications of SLAW

- Telecommunication
 - Cell tower, Base Station Deployment Planning
 - Handoff Prediction
 - User Distribution Prediction (in a cell, in multi-cells)
- Networking
 - MANET Performance Evaluation
 - DTN Performance Evaluation
- Civil Engineering
 - City Planning, Pathway Planning
- Disease and outbreak control
 - Virus Spread Pattern Analysis
- Sociology
 - Human Social Network Study (modeling Familiar Stranger)
- Marketing
 - Optimal Marketing Location Planning

