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Abstract–As mobile ad hoc networks (MANETs) become ever 
more popular, it also becomes more and more interesting to build 
distributed network applications that one is accustomed to from 
the Internet on top of MANETs. In the Internet, Distributed Hash 
Tables (DHTs) have recently proven themselves an efficient 
building block for such distributed applications. However, DHTs 
are ill-suited for direct deployment in MANETs as they are 
largely oblivious of the physical routing. 

Therefore, we propose MADPastry, a DHT substrate explicitly 
designed for the use in MANETs. MADPastry considers physical 
locality and integrates the functionality of a DHT and an ad hoc 
routing protocol at the network layer to provide an efficient 
indirect routing primitive in MANETs.  

To answer the fundamental question whether the extra 
overhead of maintaining a DHT in MANETs is really worth the 
effort or, instead, one would be better off broadcasting the actual 
lookups in the first place, we compare MADPastry's performance 
against an unstructured Gnutella-style broadcast agent and a 
DHT substrate without locality awareness. 

I. INTRODUCTION 

When building distributed network applications, it is crucial 
to have an efficient mechanism by which to locate a node 
currently responsible for a certain object or service since there 
exists no authoritative central server that could map objects to 
specifics nodes. For that purpose, Distributed Hash Tables 
(DHTs) [12, 15, 18, 21] have recently been proposed. At the 
core of each DHT lies the ability to route a data packet to a 
node currently responsible for a certain key – usually some 
hash identifier – within a bounded number of hops. This 
routing process is also referred to as Indirect Routing. Unlike 
regular network-level routing, where a packet is routed from a 
source to a specific destination node, indirect routing delivers a 
packet from the source to a previously unknown destination 
solely based on the given key. Aside from efficiently locating 
nodes currently responsible for given keys, DHTs are also self-
organizing and fault-tolerant and, thus,  provide an elegant, 
scalable, and robust means for building distributed network 
applications. Lately, DHTs have been successfully used for 
building distributed data storage systems [3, 14], distributed 
email systems [8], and distributed event notification systems 
[16] to name but a few. 

It is important to bear in mind, though, that DHTs have been 
designed for the Internet. They are application-level overlay 
networks that run on top of and are largely oblivious of the 
underlying physical network. Therefore, one overlay routing 
hop usually consists of multiple physical routing hops. Since 

reliable network routing is practically taken for granted in the 
Internet today, DHTs do not primarily concern themselves with 
the physical aspects of an overlay routing step and rather focus 
on the optimization of the application-level routing. 

On the other hand, another field that has attracted great 
amounts of research are mobile ad hoc networks (MANETs). 
MANETs consist of wireless mobile devices that dynamically 
form a network between them. With wireless mobile devices 
being ever more present and powerful, it is becoming more and 
more interesting to build the distributed network applications 
that one is accustomed to from the Internet on top of MANETs. 
However, while numerous direct (i.e. from a source to a 
specific given target node) ad hoc routing protocols have been 
proposed over the last years, be they reactive [6, 10] or 
proactive [2, 9] approaches, indirect routing remains largely 
unsolved in MANETs. 

It is clear to see that MANETs and P2P networks share a 
good number of key characteristics, such as the lack of a 
central infrastructure, a highly dynamic network topology, and 
the need for self-organization. Hence, when designing 
distributed network applications for MANETs, it would be 
intuitive to consider the building blocks that have proven 
themselves appropriate in P2P systems. However, conventional 
DHTs are ill-suited for a simple deployment on top of 
MANETs for the following three reasons: 

1. First of all, it is important to realize that overlay traffic as 
such does not exist physically. What does exist, though, is the 
physical traffic incurred by the overlay network. Furthermore, 
as previously mentioned, DHTs were designed as application-
level overlay networks for the (wired) Internet. By abstracting 
away the underlying physical network, standard DHTs 
generally do not consider the physical topology in the 
construction of their overlay topology. In other words, by no 
means do two overlay neighbor nodes also have to be physical 
neighbors. This usually leads to the situation that overlay hops 
can incur unnecessarily long physical routes. Fig. 1 shows an 
example where four overlay hops actually traverse the physical 
network twice. Although a number of approaches have been 
proposed recently [13, 19, 20] to alleviate this problem, 
standard DHTs are not primarily concerned with physical 
locality. While this might be tolerable on the wired Internet 
with its high bandwidth, it is obviously not feasible for 
MANETs. Here, the delivery probability of a packet quickly 
decreases with each physical hop due to factors such as low 
bandwidth, low computation power (of a node), packet 



collisions, or transmission errors. 
2. As nodes move around incessantly, routes in MANETs 

are usually quite volatile and break quickly. For this reason, ad 
hoc routing protocols have to (re-) establish routes frequently. 
Due to the lack of a central infrastructure, the majority of ad 
hoc routing protocols, both proactive [2, 9] and reactive [6, 10], 
have to at one point or another resort to flooding the network – 
or regions thereof. This, of course, renders the overlay routing 
superfluous. There is no point in maintaining an application-
level DHT when the physical route to carry out an overlay hop 
has to be (frequently re-) established through broadcasting. In 
that case, one would have been better off broadcasting the key 
lookup itself in the first place. In fact, it is easy to imagine a 
situation where a key lookup requires two overlay hops, both 
of which have to have their physical routes discovered through 
broadcasting. In that case, the key lookup would cause the 
network to be flooded twice, which is clearly suboptimal. 

3. In order to guarantee routing convergence and 
consistency, DHTs have to periodically maintain their routing 
tables. Depending on the size and structure of a DHT's routing 
table and the lookup traffic pattern, the maintenance traffic can 
constitute a significant portion of the overall traffic. Given the 
limited bandwidth in MANETs, conventional DHT 
maintenance can be prohibitively heavy-weight and overwhelm 
the network. 

In this paper, we present MADPastry (Mobile Ad Hoc 
Pastry), a DHT substrate explicitly designed for the use in 
MANETs. MADPastry combines Pastry [15] and AODV [10] 
at the network routing level to provide an indirect routing 
primitive for MANETs. Our experimental results show that 
MADPastry achieves better packet delivery ratios at 
significantly lower overhead than a reference broadcast system. 
Thus, it is ideally suited as a building block for distributed 
network applications in practicably sized MANETs. 

The remainder of this paper is organized as follows. Section 
II presents MADPastry's system design in detail. In Section III, 
we evaluate and analyze MADPastry's performance with 
experimental results. Section IV discusses related work. 

Finally, Section V concludes this paper and provides a brief 
outlook on our future work. 

II. MADPASTRY – SYSTEM DESIGN 

Due to node mobility and the lack of a central infrastructure, 
conventional routing protocols in MANETs have to resort to 
flooding packets during their route discovery process at one 
time or another. However, these route discovery / maintenance 
broadcasts  create an immense overhead and, thus, constitute a 
key scalability bottleneck. For this reason, MADPastry was 
explicitly designed to avoid broadcasts whenever and wherever 
possible. MADPastry integrates the reactive ad hoc routing 
protocol AODV [10] and the application layer DHT Pastry [15] 
to provide light-weight and scalable indirect routing 
functionality at the network layer. 

A. Clusters 

In standard DHTs, two overlay neighbors can be located 
arbitrarily far from each other in terms of the underlying 
physical network. As discussed previously, this can lead to a 
large overlay stretch (i.e. the ratio between the physical route 
length traveled during an overlay key lookup compared to the 
direct physical path from the source to the eventual target 
node) as subsequent overlay hops can literally crisscross the 
physical network. Therefore, we believe that it is essential for 
any DHT substrate in the context of a MANET to consider 
physical locality ([7]). 

MADPastry utilizes the concept of Random Landmarking 
[20] to create physical clusters where nodes share a common 
overlay id prefix. Thus, two nodes that are physically close to 
each other are also likely to be "close" to each other in the 
overlay. Since there are generally no stationary nodes available 
in MANETs, MADPastry works without any fixed landmark 
nodes. Instead, it uses a set of landmark keys. A landmark key 
is simply an overlay id. Rather than having dedicated landmark 
nodes, in MADPastry those nodes become temporary landmark 
nodes that are currently responsible for one of the landmark 
keys (i.e. whose own overlay identifiers are currently closest to 
one of the landmark keys). Therefore, when one of the current 
landmark nodes fails or resigns, another node (that whose 
overlay id is now closest to the landmark key) will 
automatically assume its role. 

Landmark keys should be chosen so that they divide the 
overlay id space into equal-sized segments. For example, in a 
hexadecimal-based id space, an appropriate set of landmark 
keys could be: 0800…000, 1800…000, 2800…000, . . . , 
E800…000, F800…000. 

To form clusters of common overlay id prefixes, nodes 
associate themselves with the temporary landmark node that is 
currently closest to them (e.g. as determined by the hop count)  
by adopting its overlay id prefix. For that purpose, temporary 
landmark nodes send out beacons periodically. These beacons 
are broadcast and whenever a node overhears a landmark 
beacon, it stores the current landmark node's id and the 
distance to it as given by the hop count of the beacon. Nodes 
periodically examine their landmark list to determine whether 
they have moved closer to a new landmark, i.e. whether they 
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have moved – with high probability -  into a new overlay 
cluster. If so, a node will assign itself a new random overlay id 
with its new cluster's overlay id prefix, resign from the overlay 
network with its old id, and rejoin the overlay network with its 
new id. 

Since broadcast messages impose a serious burden on 
wireless networks, temporary landmark nodes do not broadcast 
their beacons throughout the entire network. Instead, landmark 
beacons are only propagated within the landmark's own cluster, 
i.e. beacons are only forwarded by nodes belonging to that 
cluster. Nodes outside the landmark's cluster will store the 
beacon information and then drop the packet. The reasoning 
behind this is that nodes will not be interested in beacons 
originating halfway across the network since they would not – 
and in fact should not – join that cluster anyway. In fact, a 
beacon is only of value to its own cluster members and to 
nodes bordering the cluster (note that bordering nodes will 
receive the beacon but not forward it) as those are the regions 
where cluster crossovers (should) occur. 

MADPastry's Random Landmarking has the following 
effects. First of all, it leads to physically close nodes forming 
overlay regions, or clusters, with common id prefixes. This is 
demonstrated by Fig. 2 which shows the spatial distribution of 
overlay id prefixes in a 250 node MADPastry network. Equal 
symbols of equal colors represent equal overlay id prefixes. 
Furthermore, since the last overlay routing step in DHT 
systems is the numerically closest, with MADPastry the last 
overlay routing step also tends to be physically close, whereas 
with Pastry the opposite is often the case [1, 15]. 

B. Routing Tables 

MADPastry maintains three different routing tables: a 

standard AODV routing table for physical routes from a node 
to specific target nodes, as well as a stripped down Pastry 
routing table and a standard leaf set for indirect routing. 

Pastry Routing Table. The standard Pastry routing table 
consists of ⎡log2b N⎤ rows with (2b-1) entries each. The 
conventional Pastry protocol stipulates that each node would 
periodically choose one random entry from each routing table 
row for maintenance. It would then contact each selected node 
and receive its corresponding routing table row. Then, it would 
ping the entry candidate pair (i.e. the local entry and the remote 
entry) to determine the most appropriate entry (e.g. the closer 
one, the one with the lower latency, etc.) for each slot in the 
row. Obviously, the traffic induced by this maintenance 
process constitutes a large portion of the overall traffic and can 
easily overwhelm a wireless network. 

To avoid this prohibitive maintenance overhead, a 
MADPastry node only stores a degenerate Pastry routing table. 
A MADPastry routing table only needs to contain ⎡log2b K⎤ 
rows, with K being the number of landmark keys. In other 
words, it only needs to have as many rows as are necessary to 
fit a "pointer" entry into each overlay cluster. For example, 
with b=4 (hexadecimal overlay identifiers) and K=16, a 
MADPastry node only needs to have the first row of a standard 
Pastry routing table. Each slot would then contain an arbitrary 
reference node in the corresponding overlay cluster. 

At this point it is important to realize that with these 
strapped down routing tables we are deliberately sacrificing the 
O(log N) bound on the number of overlay hops during a key 
lookup for the sake of a drastically reduced maintenance 
overhead. In standard Pastry that bound stems from the idea 
that in each overlay routing step the current (intermediate) 
node determines the matching prefix length between the key 
and its own overlay id. It would then consult the corresponding 
row in its routing table to find the next hop that would, ideally, 
increase the prefix match by one ([15]). Clearly, this process is 
interrupted in MADPastry after the first (few) overlay hop(s). 

However, we believe that the benefits of abandoning 
complete Pastry routing tables far outweigh its penalties in 
practicably sized MANETs. First of all, we consider network 
sizes in the order of up to 1,000 nodes far more realistic than 
100,000 nodes in "pure" MANETs ([5]) without any wired 
infrastructural gateway nodes (in such wireless-cum-wired 
topologies, e.g., one could again have the wired gateway nodes 
maintain complete Pastry routing tables). Let's consider a large 
MANET of 1,000 nodes and let us assume 16 landmark keys 
and the Pastry id base b=4 (hexadecimal overlay identifiers). In 
that case, a MADPastry cluster would consist of slightly more 
than 60 nodes on average. Here, the first overlay hop would be 
decided by the first (and only) routing table row and would 
deliver a request to its target cluster. Once there, leaf set based 
intra-cluster routing would deliver the request to its eventual 
target node (see B for details on MADPastry's routing). Given 
a standard leaf set size L=16, intra-cluster routing would 
require about 8 hops in the worst case (62.5 / L/2). However, 
since nodes in a MADPastry cluster are very likely to be 
physically close to each other, there is a high chance that a) the 
eventual target node will overhear the request sooner, or b) the 

Fig. 2. Spatial distribution of id prefixes. 



current node has overheard a packet from the eventual target in 
the past and thus knows about it (and a route to it) already. 
Therefore, intra-cluster routing can be expected to be 
performed efficiently with only a few overlay hops. 

Pastry Leaf Set. The standard Pastry leaf set contains L 
entries: the L/2 numerically closest (in terms of their overlay 
id) smaller nodes and the L/2 numerically closest larger nodes.  
Of course, the leaf set also needs to be maintained. For that 
purpose, a Pastry node periodically pings its leafs to determine 
whether a are still alive. The leafs respond with their respective 
leaf sets so the source node could learn about new close 
members of the overlay that it did not known about yet. 

Again for the sake of a reduced traffic overhead, we sacrifice 
the 100% accuracy of the leaf sets. It is important here to bear 
in mind that for a correct routing process it is actually not 
necessary that nodes always have 100% accurate leaf sets. To 
guarantee routing convergence, it is only essential for a node to 
always know its correct "left" and "right" overlay neighbor, i.e. 
the node that has the numerically closest smaller overlay id and 
the node that has the numerically closest larger overlay id. 
Otherwise, the routing process might not always end up at the 
right node. Therefore, a MADPastry node proactively only 
pings its "left" leaf and its "right" leaf who will respond with 
the id of the node that they think is the originator's left or right 
leaf (i.e. ideally themselves). Furthermore, each node 
periodically sends out a beacon with its current overlay id that 
is propagated throughout its cluster. Since nodes in a 
MADPastry cluster share a common overlay id prefix, the 
majority of a node's leafs will likely be from its own cluster. 
Thus, given MADPastry's leaf set maintenance scheme, one 
can expect the leaf set of a MADPastry node to have the 
correct "left" and "right" leaf and to include a close 
approximation of the accurate L/2 entries in each half. 

AODV Routing Table. To carry out a concrete overlay hop, 
a MADPastry node also maintains a standard AODV routing 
table. It includes for specific physical destinations the next 
(physical) hop address as well as for each such route a 
sequence number. 

C. Routing 

MADPastry provides an indirect routing primitive in 
MANETs. I. e., MADPastry routes packets based on an overlay 
id but the final (physical) target node is usually unknown. It 
does so by integrating overlay and physical routing. Therefore, 
when a MADPastry node receives a request packet, it can 
principally be due to the following two situations: 

1) The node could be the target (i.e. the physical destination) 
of an overlay hop. In this case, the node needs to determine the 
next overlay hop. For this purpose, it will consult its Pastry 
routing table to find a node that would increase the matching 
key prefix by one or its leaf set to find a node that is 
numerically closer to the key than the current node is. This 
corresponds to standard Pastry routing. 

2) The node could be an intermediate node on the physical 
path of an overlay hop that is being carried out. Now, the node 
would behave like a regular AODV node. It would consult its 
AODV routing table to determine the next physical hop on the 

route toward the destination of this overlay hop and then 
forward the packet on. 

To minimize the routing traffic, any such intermediate node 
on the physical path of an overlay hop inspects the destination 
of the overlay hop. If the intermediate node's own overlay id 
already happens to be numerically closer to the packet's key 
than that of the overlay hop's actual destination, it will 
"intercept" the packet. In other words, it will consider the 
current overlay hop completed and select from its Pastry 
routing table or leaf set the next overlay hop. 

An interesting question arises when the physical route to 
carry out an overlay hop is unknown. Again, this can happen in 
two situations: 

1) A node selects the next overlay destination from its Pastry 
routing table or leaf set, but there is no (valid) route 
information in its AODV routing table for that destination. 

2) An intermediate node on the physical path of a current 
overlay hop might not have a (valid) next hop entry in its 
AODV routing table to forward the packet. 

To avoid network-wide broadcasts whenever possible, 
MADPastry tries to leverage its cluster locality in such cases. If 
the node that has no (valid) information on how to continue the 
path of an overlay hop is already in the target cluster (i.e. 
shares a common prefix with the packet's destination), it will 
not issue an AODV-style route discovery for the destination. 
Instead, it will broadcast the overlay packet itself within the 
confines of its cluster. Due to the physical locality in 
MADPastry clusters, that broadcast is very likely to stay in a 
limited region of the network. Otherwise, if the node is not in 
the target cluster, it will queue the packet and start a regular 
AODV expanding ring broadcast to discover a route to the 
packet's destination. 

At this point, it is worth mentioning that MADPastry 
provides indirect routing in MANETs. However, it is not a 
stand-alone network application as such. That means that it is 
up to the actual application running on top of MADPastry to 
determine the action a node should take when it receives a 
packet. MADPastry merely delivers a packet to the node 
currently responsible for the packet's key. 

D. Routing Table Maintenance 

As described in Section II.B, the only proactive routing table 
maintenance that a MADPastry node performs is the periodic 
pinging of its "left" and "right" leaf. This is necessary to 
guarantee overlay routing convergence. 

All other routing entries are gained by overhearing data 
packets. For that reason, a MADPastry packet always contains 
the following information: 

- the AODV sequence number of the packet's source (i.e. 
the destination node of the previous overlay hop) 

- the AODV sequence number of the packet's previous 
physical hop (i.e. the immediate predecessor on the 
current physical path) 

- the overlay id of the packet's 
- the overlay id of the packet's previous physical hop 
Whenever a MADPastry node now receives or overhears a 

packet, it extracts the AODV sequence numbers to update its 



AODV routing table to contain a fresh route to the packet's 
source and, trivially, to the previous physical hop. MADPastry 
uses the heuristic that existing routes to those two nodes are 
overwritten in the favor of the fresh route. Analogously, it 
exploits their overlay identifiers included in the packet to insert 
the nodes into the corresponding slots in the Pastry routing 
table and leaf set. Again, any existing entries are overwritten in 
the favor of fresh physical routes. 

It is clear to see that the fill degree and accuracy of the 
Pastry routing tables and leaf sets largely depend on the 
number of packets that a MADPastry node receives or 
overhears. When network traffic is low and nodes receive only 
few packets, their routing tables and leaf sets might be scarcely 
filled so that the routing performance is likely to suffer. We 
believe, however, that when there are relatively few lookups – 
i.e. the network traffic is low – there really is no point in 
maintaining much routing structure in the first place. One 
would be better off broadcasting the occasional lookups 
instead. As the lookup frequency increases, so does the 
network traffic and thus the fill degree and accuracy of the 
MADPastry routing tables and leaf sets. Therefore, 
MADPastry is especially geared toward MANETs with high 
lookup rates – as otherwise we believe DHT substrates are of 
little practical use to begin with. Our experimental results 
support these assumptions. 

III. EXPERIMENTAL RESULTS 

To evaluate the performance of MADPastry, we 
implemented MADPastry as a routing agent in ns2. All 
simulations the we carried out modeled wireless networks over 
the course of one (simulated) hour. Nodes are always moving 
around according to the random way point model with 0s pause 
time and at a steady speed. For data transmission, nodes are 
using the 802.11 communication standard with a transmission 
range of 250m. 

The following metrics are analyzed: 
 
Success Rate – the percentage of random lookups that are 

eventually delivered to the correct responsible node. 
Packet Overhead – the number of packets that all routing 

agents forward during a simulation. This count is increased 
whenever a node forwards a packet to the next physical hop. In 
the case of MADPastry, this figure comprises all router-level 
packets that are created by a MADPastry node: lookups, leaf 
pings/pongs, join requests, join replies, leave messages and 
node beacons. In the case of the Gnutella-style broadcast 
router, this figure only consists of lookups as there simply are 
no maintenance messages. 

Overall Traffic – the total network traffic in Kbytes that is 
created during the simulated hour. Whenever a node forwards a 
packet, this figure is increased by the packet size. Again, this 
figure includes all router-level packet types for MADPastry. 
Here, it is important to mention that MADPastry packets on 
average are about 4 times larger (excluding the IP header) than 
the corresponding broadcast agent's packets as they carry 
additional information such as the last hop's overlay id and so 
forth. 

A. Reference Applications 

The ns2 routing agent implements the MADPastry protocol 
as described in section II. Nodes send out cluster beacons every 
30s and ping their left and right leafs every 60s. 16 landmark 
keys are used in the simulations. Additionally, to further 
increase the success rate, a lookup initiator always also issues a 
secondary lookup. That backup lookup is sent to the second 
best candidate for the first overlay hop. If both lookups arrive 
at the eventual target, the second one is dropped. 

As discussed before, the fundamental question to be 
answered when deploying a DHT substrate in MANETs is 
whether the extra overhead of maintaining the DHT structure is 
really worth the effort. Or, is the  benefit gained from using a 
DHT so miniscule that we would have, indeed, been better off 
just broadcasting the lookups in the first place. Therefore, as a 
reference application to compare MADPastry's results against, 
we implemented a Gnutella-style broadcast routing agent. The 
broadcast agent maintains no overhead structure and, thus, has 
no extra maintenance overhead. It broadcasts a packet to all its 
one-hop neighbors who, then, forward the packet to all their 
one-hop neighbors and so forth. Nodes keep track of the packet 
sequence number so that already forwarded packets will not be 
sent a second time. 

To verify whether MADPastry's extra overhead stemming 
from cluster roaming (leaving, rejoining, coping with invalid 
overlay identifiers, etc.) is justified, we also implemented a 
routing agent that integrates regular Pastry and AODV as a 
second reference application. It works very similar to 
MADPastry except that it does not employ Random 
Landmarking. Thus, there are no physical clusters of nodes 
sharing a common overlay id prefix and no overlay id 
reassignment – i.e. leaving and rejoining the network – either. 
Since Pastry's standard routing table and leaf set maintenance 
is prohibitive in MANETs, the integrated Pastry routing agent, 
too, fills its routing table by forwarding and overhearing live 
packets and also only pings its left and right leaf proactively. 
Furthermore, beacons as well as lookups for which no physical 
route is known are broadcast throughout the entire network – as 
there are no clusters. Also, the integrated Pastry routing agent 
does not issue any secondary lookups (as the MADPastry 
routing agent does) since its overhead is already drastically 
higher than MADPastry's – as the simulation results will show. 

B. Basic Results 

We compare the performances of MADPastry, the Pastry 
routing agent without clusters and the Gnutella-style broadcast 
agent in networks of 100 and 250 nodes. In all simulations, we 
use square planes with a node density of 100 nodes/km². In a 
first set of simulations, nodes are moving around at a regular 
speed of 1.4 m/s, which corresponds to a fast walking speed. 
As a traffic source, we implemented an application sitting on 
top of either MADPastry, the Pastry router without clusters or 
the broadcast agent that issues lookups for random keys 
periodically. For this first set of simulations, each node sends 
out a random key lookup every 10s. 

Fig. 3 shows the success rate of the three routing agents for 
the random lookups. As can be seen, MADPastry achieves 



better success rates in both 100 and 250 node networks 
compared to the broadcast agent. Furthermore, MADPastry 
retains success rates of well above 90% for both network sizes, 
whereas the broadcast agent's rate drops below 90% in a 250 
node network. The success rate of the Pastry router without 
clusters is practically the same as MADPastry's (approx. 1-2% 
higher). 

Fig. 4 shows the number of messages that the routing agents 
send and forward during the simulated hour in order to achieve 
their respective success rates. It becomes clear that MADPastry 
produces drastically less network traffic than the Gnutella-style 
broadcast agent does. In a 100 node network, the broadcast 
router needs about 5 times and in a 250 node network even 
about 7 times the number of messages that MADPastry needs. 
The Pastry router without clusters incurs roughly 1/3 of the 
message traffic of the broadcast agent in a 100 node network 
and roughly 1/2 in a 250 node network, which is well above 
MADPastry's message traffic. 

 However, it is important to bear in mind that MADPastry / 
Pastry packet headers are longer than those of the broadcast 
router due to the extra information included in them (see 
above). To make sure we are not comparing apples and 
oranges, Fig. 5 shows the traffic in forwarded Kbytes instead. 
Even with that metric, MADPastry still produces several times 

less traffic than the broadcast router does. An interesting 
observation can be made here for the Pastry router without 
clusters. While still below the broadcast agent's overhead in a 
100 node network, its overall traffic becomes larger than the 
broadcaster's in a 250 node network. This can easily be 
explained by the fact that Pastry's overlay routing usually 
requires several overlay hops per lookup. Since there are no 
clusters, successive overlay hops can crisscross the physical 
network. Thus, when the Pastry router has to resort to 
broadcasting a lookup (because the physical route to carry out 
the next overlay hop is unknown), the lookup could already 
have crossed the network several times. Obviously, one would 
have been better off if one had broadcast the lookup right away 
– which is exactly what the broadcast agent does. Furthermore, 
even if the lookup could be delivered without being broadcast 
(i.e. the routes for all overlay hops involved were known), the 
accumulated physical path lengths of the overlay hops might 
only be slightly more light-weight than a broadcast. 
Additionally, the required periodic beacon broadcasts are 
added on top. Since both physical and overlay paths are much 
shorter in a 100 node network, this effect is less pronounced 
there. 

This clearly demonstrates how important it is for a DHT 
substrate in MANETs to consider physical locality – as 
MADPastry does. 

C. Node Velocity 

So far, we have only considered networks with node velocity 
of 1.4 m/s. In the next set of simulations, we will examine 250 
node networks with various node velocities: 0.1 m/s, 0.6 m/s 
(slow walking speed), 1.4m/s (fast walking speed), 2.5 m/s and 
5.0 m/s. We continue to use a request frequency of one random 
lookup every 10s per node. 

Fig. 6 shows the success rates of the three routing agents in 
reference to the different node velocities. One can see that both 
MADPastry and Pastry without clusters achieve better success 
rates than the Gnutella-style router does for speeds up to a fast 
walking speed (1.4 m/s). At a speed of 2.5 m/s, the success 
rates of MADPastry and Pastry without clusters start falling 
below the broadcast router's. With fast speeds, routes break so 
frequently that Pastry without clusters can no longer keep its 
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Fig. 3. Lookup success rate - 1.4m/s. 
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routing table and leaf set sufficiently valid – hence its success 
rate drops below the broadcast agent's success rate. With 
MADPastry this problem is further aggravated by the fact that 
nodes move from cluster to cluster so rapidly that a) they spend 
a significant  amount of their time leaving and rejoining the 
network, and thus b) their overlay routing tables frequently 
contain stale entries. 

Fig. 7 shows the overall traffic produced by the routing 
agents during an average simulation run. As can be expected, 
the overhead of the broadcast agent is practically independent 
of the node velocity. Since broadcasts in MADPastry are 
restricted to their respective cluster, MADPastry's overall 
traffic stays significantly below that of the other two routing 
agents. For Pastry without clusters, the overall traffic quickly 
surpasses even that of the broadcast agent as route failures 
occur more and more frequently and the effects described in 
Section III.B become ever more pronounced. 

D. Request Rates 

The scenarios considered thus far all assumed a node lookup 
rate of one lookup per 10s. Next, we take a look at the impact 
of the lookup rate on the overall performance. We will evaluate 
lookup intervals of 1s, 10s, and 60s in a 250 node network with 
a node velocity of 1.4 m/s. 

Fig. 8 shows the success rates of the three routing agents in 

reference to the lookup rate. As already seen in Section III.B, 
MADPastry and Pastry without clusters achieve comparable 
success rates well above 90% for a per-node lookup interval of 
10s. The Gnutella-style router's success rate here drops below 
90%. 

A very interesting observation can be made in networks with 
high lookup rates of 1 lookup per second per node. At such 
high lookup rates, both the broadcast agent and Pastry without 
clusters can no longer keep up with MADPastry. Their 
(frequent) network-wide broadcasts of the lookup requests 
clearly overwhelm the wireless physical network, resulting in 
so many packet collisions that the majority of lookups fail to be 
delivered. Thus, their success rates drop to 20%. On the other 
hand, MADPastry's physically shorter overlay hops (compared 
to Pastry without clusters) and its local cluster broadcasts allow 
it to still maintain a success rate of 92% in the presence of such 
high lookup rates. Again, MADPastry's overall traffic remains 
significantly below that of both the broadcaster and Pastry 
without clusters, as Fig. 9 shows. 

If there is only one lookup per minute, MADPastry's lookup 
rate falls below 90% (87%). This is due to fact that the nodes 
overhear much less packets to update their routing tables with. 
Therefore, nodes often do not detect other nodes' cluster 
changes, which can result in packets being routed to stale 
overlay addresses. However, we believe that a request rate of 
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one lookup per minute is probably too low to justify the effort 
of maintaining a DHT in the first place. 

E. Handovers 

Our experimental results have shown that MADPastry 
produces drastically less overhead than the broadcast agent and 
Pastry without clusters do. It is important to realize, though, 
that our experimental results present the gross overhead 
savings of MADPastry. When MADPastry nodes change their 
cluster membership, they effectively change their overlay id. 
Therefore, when a MADPastry node changes its overlay id, it 
would have to pass the objects (or, more likely, references to 
them) that it was responsible for under its old overlay id to its 
old left and right leaf before leaving the network and acquire 
the new objects (or, more likely, references to them) that it is 
now responsible for from its new left and right leaf. However, 
the nature of that additional handover traffic clearly depends on 
the actual application running on top of MADPastry, as well as 
the amount and distribution of the objects in the network. 

To evaluate the principal performance impact of handovers, 
we next extended the test application  from the previous 
sections. Aside from periodically issuing random lookups, we 
also distribute objects randomly among the nodes. Since it can 
be prohibitive to transfer large objects in MANETs, the DHT 
actually stores references to the objects. A reference contains 
the object's id (i.e. hash key) and the physical address of the 
node where the object resides. When a MADPastry node 
changes its overlay id, it hands over and acquires the 
corresponding references. 

Again, we employ a 250 node network and examine the 
effect that a total of 1,000, 10,000, 100,000, and 1,000,000 
randomly distributed objects have on the overall performance. 
We consider a lookup rate of one lookup per second. Fig. 10 
shows that for up to 100,000 objects, MADPastry can sustain 
success rates of above 90% as the additional handover packets 
help spread node information through the network, thereby 
mitigating the negative effects of an increased number of 
packet collisions. MADPastry's overall traffic (now also 
including handover packets) remains well below 50% of the 
broadcast agent's overhead (see Fig. 11). With 1,000,000 
objects in the network, however, the handover packets start 

massively interfering with lookup packets, as they now 
dominate the overall traffic, so that the success rate starts 
falling. 

IV. RELATED WORK 

To the best of our knowledge, the first approach that 
proposes the integration of a conventional DHT with an ad hoc 
routing protocol to provide indirect routing in MANETs is Ekta 
[11]. Ekta, like MADPastry, is based on Pastry [15], but it uses 
DSR [6] for its route discoveries. The main difference to 
MADPastry is that Ekta does not explicitly consider physical 
proximity in its DHT routing table. Instead, it merely  tries to 
optimize its DHT entries by overhearing packets and replacing 
physically remote entries by nearer ones.  Ekta has no notion of 
overlay clusters of physically close nodes. Thus, the routes 
traveled during its overlay routing process may be expected to 
be less efficient than those in the cluster-based MADPastry. 
This should become even more pronounced as the network size 
increases. 

In [4], cross-layering is used to combine Pastry with the 
proactive ad hoc routing protocol OLSR [2]. Again, physical 
proximity is not explicitly taken into consideration in the DHT 
so that routes may also be expected to be less efficient than in 
MADPastry. Furthermore, experimental results are only 
provided for an 8-node network, which we believe shows only 
little of the characteristics that we consider (such as multi-hop 
overlay routes and physical routes). 

A different approach to providing indirect routing in 
MANETs is taken by the Safari Project [17]. The Safari 
architecture is based on a hierarchical ad-hoc routing protocol 
and ultimately aims at providing network services such as 
name resolution, storage, email, instant messaging, etc. in very 
large-scale mobile networks. Safari's routing is based on 
hierarchical cells of increasing diameter. Each node is assigned 
an overlay address based on its position in the hierarchy. 
Objects are then hashed into the Safari address space to map 
objects to nodes. Due to its many hierarchy levels, overlay ids 
change frequently in Safari, which leads to a significant 
maintenance overhead. We believe that this overhead will 
outweigh MADPastry's overhead in practically sized MANETs 
in the order of up to 1,000 nodes that we consider. 
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V. CONCLUSION 

As MANETs become ever more popular, it also becomes 
interesting to build distributed network applications that one is 
accustomed to from the Internet on top of MANETs. We have 
presented MADPastry as an efficient building block for such 
applications in MANETs. MADPastry provides reliable 
indirect routing in MANETs by a) considering physical locality 
in the construction of its DHT and b) by integrating the 
functionality of a DHT and an ad hoc routing protocol at the 
network layer. Our simulation results have shown that 
MADPastry achieves comparable or better lookup success rates 
at significantly less overall traffic compared to a reference 
broadcast application and a reference DHT substrate without 
locality awareness for most practicable scenarios considered. 
We, therefore, conclude that it is essential for any DHT 
substrate in MANETs to explicitly consider physical locality. 
Then, it is well worth the effort to maintain a DHT in 
MANETS with node velocities up to at least fast walking 
speeds. 

As future work, we plan to implement real network 
applications, such as an event notification system, on top of 
MADPastry. Furthermore, it would be interesting to investigate 
how other DHTs such as CAN or Chord would fare in 
MANETs when integrated with ad hoc routing protocols. 
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