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1 COMPOSITION OF RELATIONS

1 Composition of Relations

In this section we will study what is meant by composition of relations and how it can
be obtained.

Suppose that we have three sets A, B and C; a relation R defined from A to B,
and a relation S defined from B to C. We can now define a new relation known as the
composition of R and S, written as S ◦R. This new relation is defined as follows. If a is
an element in A and c is an element in C, then a(S ◦R)c if and only if there exists some
element b in B, such that aRb and bSc. This means that we have a relation S ◦R from
a to c, if and only if we can reach from a to c in two steps; i.e. from a to b related by
R and from b to c related by S. In this manner relation S ◦ R can be interpreted as R
followed by S, since this is the order in which the two relations need to be considered,
first R then S.

† Example 1:

Let us try to understand this better through an example.
Let A = {1, 2, 3, 4}, R = {(1, 2), (1, 1), (1, 3), (2, 4), (3, 2)},
and S = {(1, 4), (1, 3), (2, 3), (3, 1), (4, 1)}.
Find S ◦R.

Solution:
Here we see that (1, 2) ∈ R and (2, 3) ∈ S. This gives us (1, 3) ∈ S ◦R.
Similarly we can proceed with the others:

• (1, 1) ∈ R and (1, 4) ∈ S ⇒ (1, 4) ∈ S ◦R

• (1, 1) ∈ R and (1, 3) ∈ S ⇒ (1, 3) ∈ S ◦R

• (1, 3) ∈ R and (3, 1) ∈ S ⇒ (1, 1) ∈ S ◦R

• (2, 4) ∈ R and (4, 1) ∈ S ⇒ (2, 1) ∈ S ◦R

• (3, 2) ∈ R and (2, 3) ∈ S ⇒ (3, 3) ∈ S ◦R

⇒ S ◦R = {(1, 3), (1, 4), (1, 1), (2, 1), (3, 3)}.

§ Theorem 1

Let R be a relation from A to B and let S be a relation from B to C. Then, if A1 is
any subset of A, we have:

(S ◦R)(A1) = S(R(A1))
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1 COMPOSITION OF RELATIONS

Proof
If an element z ∈ C is in (S ◦ R)(A1), then x(S ◦ R)z for some x ∈ A1. By the

definition of composition, this means that xRy and ySz for some y ∈ B.
So now we have z ∈ S(y) and y ∈ R(x) ⇒ z ∈ S(R(x)).
Since {x} ⊆ A1, we can also say that S(R(x)) ⊆ S(R(A1)). Now, since z ∈ S(R(x)),

therefore z ∈ S(R(A1)) also. This means that (S ◦R)(A1) ⊆ S(R(A1)).
Conversely, suppose z ∈ S(R(A1)). Then z ∈ S(y) for some y ∈ R(A1). Similarly,

y ∈ R(x) for some x ∈ A1.
This means that xRy and ySz. So from the definition of composition we can say

x(S◦R)z. Thus z ∈ (S◦R)(x). Since {x} ⊆ A1, we can say that (S◦R)(x) ⊆ (S◦R)(A1).
Hence z also belongs to (S ◦R)(A1). So S(R(A1)) ⊆ (S ◦R)(A1).

Since (S ◦R)(A1) ⊆ S(R(A1)) and S(R(A1)) ⊆ (S ◦R)(A1), we can say that
(S ◦R)(A1) = S(R(A1)).

This proves the theorem.

† Example 2:

Let A = {a, b, c} and let R and S be relations on A whose matrices are:

MR =




1 0 1
1 1 1
0 1 0




MS =




1 0 0
0 1 1
1 0 1




Find S ◦R.

Solution:
We see from the matrices that:

• (a, a) ∈ R and (a, a) ∈ S ⇒ (a, a) ∈ S ◦R

• (a, c) ∈ R and (c, a) ∈ S ⇒ (a, a) ∈ S ◦R

• (a, c) ∈ R and (c, c) ∈ S ⇒ (a, c) ∈ S ◦R

It is easily seen that (a, b) /∈ S ◦ R since, if we had (a, x) ∈ R and (x, b) ∈ S, then
from Matrix MR we know that x would have to be either a or c; but from matrix MS we
know that neither (a, b) nor (c, b) is an element of S.

Hence we see that the first row of MS◦R is 1 0 1.
Proceeding in a similar manner we get:

• (b, a) ∈ R and (a, a) ∈ S ⇒ (b, a) ∈ S ◦R
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1 COMPOSITION OF RELATIONS

• (b, b) ∈ R and (b, b) ∈ S ⇒ (b, b) ∈ S ◦R

• (b, b) ∈ R and (b, c) ∈ S ⇒ (b, c) ∈ S ◦R

• (b, c) ∈ R and (c, a) ∈ S ⇒ (b, a) ∈ S ◦R

• (b, c) ∈ R and (c, c) ∈ S ⇒ (b, c) ∈ S ◦R

Hence the second row of MS◦R is 1 1 1.

• (c, b) ∈ R and (b, b) ∈ S ⇒ (c, b) ∈ S ◦R

• (c, b) ∈ R and (b, c) ∈ S ⇒ (c, c) ∈ S ◦R

Hence the third row of MS◦R is 0 1 1.
Therefore the composition matrix is

MS◦R =




1 0 1
1 1 1
0 1 1




Now we shall deduce an important and useful result.
Let us consider three sets, A = {a1, . . . , an}, B = {b1, . . . , bp} and C = {c1, . . . , cm};

and relation R defined from A to B, and S defined from B to C. The Boolean matrices
MR and MS are of sizes n× p and p×m respectively. Let us represent MR as [rij], MS

as [sij] and MS◦R as [tij]. Now tij = 1 ⇔ (ai, cj) ∈ S ◦ R, which means that for some
k between 1 and p, (ai, bk) ∈ R and (bk, cj) ∈ S, that is, rik = 1 and skj = 1. In other
words, if rik = 1 and skj = 1 then tij ← 1. This is identical to the condition needed for
MR ¯MS to have a 1 in position (i,j).

Hence we can say that:
MS◦R = MR ¯MS.

In the special case when we have S = R, S ◦R = R2 and MS◦R = MR2 = MR ¯MR.

§ Theorem 2

Let A, B, C and D be sets, R a relation from A to B, S a relation from B to C and
T a relation from C to D. Then

T ◦ (S ◦R) = (T ◦ S) ◦R

Proof
Let the Boolean matrices for the relations R, S and T be MR, MS and MT respec-

tively. As was shown in Example 2, the Boolean matrix product represents the matrix
of composition, i.e. MS◦R = MR ¯MS.

Thus we have:
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1 COMPOSITION OF RELATIONS

MT◦(S◦R) = MS◦R ¯MT = (MR ¯MS)¯MT

Similarly we have:
M(T◦S)◦R = MR ¯MT◦S = MR ¯ (MS ¯MT )

Now, we know that Boolean multiplication is associative. This implies:
(MR ¯MS)¯MT = MR ¯ (MS ¯MT )

⇒ MT◦(S◦R) = M(T◦S)◦R
Now since the Boolean matrices for these relations are the same,

⇒ T ◦ (S ◦R) = (T ◦ S) ◦R
This completes the proof.

zNote:
In general R ◦ S 6= S ◦R. This can be shown by the following example.
Let A = {a, b}, R = {(a, a), (b, a), (b, b)} and S = {(a, b), (b, a), (b, b)}. In this case

S ◦ R = {(a, b), (b, a), (b, b)}, while R ◦ S = {(a, a), (a, b), (b, a), (b, b)}. Here, we can
clearly see that R ◦ S 6= S ◦R.

§ Theorem 3

Let A, B and C be three sets, R a relation from A to B, and S a relation from B to
C. Then (S ◦R)−1 = R−1 ◦ S−1.

Proof
Let c ∈ C and a ∈ A. Then (c, a) ∈ (S ◦R)−1 if and only if (a, c) ∈ S ◦R. This is true

if and only if there is a b ∈ B with (a, b) ∈ R and (b, c) ∈ S. Finally, this is equivalent
to the statement that (c, b) ∈ S−1 and (b, a) ∈ R−1; that is, (c, a) ∈ R−1 ◦ S−1 (by the
definition of composition). This proves that

(S ◦R)−1 ⊆ R−1 ◦ S−1

Conversely, let (c, a) ∈ R−1 ◦ S−1, then for some b ∈ B, (c, b) ∈ S−1 and (b, a) ∈ R−1

(again by the definition of composition). This implies that, (a, b) ∈ R and (b, c) ∈ S.
Hence we can say that (a, c) ∈ S ◦ R, which also means that (c, a) ∈ (S ◦ R)−1. This
proves that

R−1 ◦ S−1 ⊆ (S ◦R)−1

Since (S ◦R)−1 ⊆ R−1 ◦ S−1 and R−1 ◦ S−1 ⊆ (S ◦R)−1, we can say that:
(S ◦R)−1 = R−1 ◦ S−1

This completes the proof.
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2 Transitive Closure

A relation R is said to be transitive if for every (a, b) ∈ R and (b, c) ∈ R there is a
(a, c) ∈ R.

A transitive closure of a relation R is the smallest transitive relation containing R.
Suppose that R is a relation defined on a set A and that R is not transitive. Then

the transitive closure of R is the connectivity relation R∞. We will now try to prove this
claim.

§ Theorem 4

Let R be a relation on a set A. Then R∞ is the transitive closure of R.

Proof
We need to prove that R∞ is transitive and also that it is the smallest transitive

relation containing R.
If a and b ∈ A, then aR∞b if and only if there exists a path in R from a to b. If

aR∞b and bR∞c, then we can say that aR∞c. This is because aR∞b means that there
exists a path from a to b in R, similarly bR∞c means that there exists a path from b to
c in R. Hence there will also exist a path form a to c in R. (We can simply start along
the path from a to b and then continue along the path from b to c. This will give us the
path from a to c.) This proves that R∞ is transitive.

Now let us consider a transitive relation S (containing R) i.e. R ⊆ S. Since S is
transitive we can say that Sn ⊆ S ∀ n. (This means that if there is a path of length n
from a to b, then aSb, which is true as S is a transitive relation.) Now, S∞ =

⋃∞
n=1 Sn.

Hence S∞ ⊆ S. Since R ⊆ S, therefore R∞ ⊆ S∞, and as S∞ ⊆ S, we can say that
R∞ ⊆ S. This means that R∞ is the smallest of all transitive relations on A that contain
R.

As R∞ satisfies both the properties, we can say that R∞ is the transitive closure of
R on set A. This completes our proof.

zNote:
If we include the identity relation ∆ then R∞ ∪∆ is the reachability relation R∗.

† Example 3:

Let A = {1, 2, 3, 4}, and let R = {(1, 2), (2, 3), (3, 4), (2, 1)}. Find the transitive
closure of R.

Solution:
Method 1: Using Digraph
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2 TRANSITIVE CLOSURE

Figure 1: Digraph of R

We can determine R∞ by geometrically computing all paths from the digraph. From
vertex 1 we have paths to vertices 1, 2, 3 and 4. So the ordered pairs (1, 1), (1, 2), (1,
3) and (1,4) ∈ R∞. From vertex 2 we have paths to vertices to vertices 1, 2, 3 and 4.
This gives us the ordered pairs (2, 1), (2, 2), (2, 3) and (2, 4). From vertex 3 we have
only one path to vertex 4. This gives us the ordered pair (3, 4). From vertex 4 we do
not have any paths. So we have

R∞ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}
Method 2: Using Matrices
Writing down the Boolean matrix we get

MR =




0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0



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If we compute the higher powers of MR we get:

(MR)2
¯ =




1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0




(MR)3
¯ =




0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0




(MR)4
¯ =




1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0




Thus we observe that (MR)n
¯ equals (MR)2

¯ if n is even, and equals (MR)3
¯ if n is odd

and greater than 1. Hence we get,
MR∞ = MR ∨ (MR)2

¯ ∨ (MR)3
¯

Thus,

MR∞ =




1 1 1 1
1 1 1 1
0 0 0 1
0 0 0 0




which is nothing but the matrix representation of the relation we obtained earlier by
the digraph method (1). Thus we see that we need not consider all the powers of Rn to
obtain R∞ when the set A is finite. This result always holds good, as we will now prove.

9



2 TRANSITIVE CLOSURE

§ Theorem 5

Let A be a set with |A| = n, and let R be a relation on A. Then
R∞ = R ∪R2 ∪ . . . ∪Rn

i.e. powers of R greater than n need not be considered to compute R∞.

Proof
Let a and b ∈ A, and let a, x1, x2, . . . , xm, b be a path from a to b in R; i.e.

(a, x1), (x1, x2), . . . , (xm, b) ∈ R. Now if xi and xj correspond to the same vertex for
some i < j, then the path from a to b can be distinctly divided into three regions. First,
a path from a to xi; second, a path from xi to xj; and lastly, a path from xj to b. Here
we see that the second path forms a closed loop as xi = xj. So we can eliminate it
altogether and put the first and third paths together to give us a shorter path. In a
similar manner we can keep eliminating all the loops we get later on in the path too, to
give us a path a, x1, x2, . . . , xk, b where all of x1, x2, . . . , xk are distinct. This path is the
shortest one possible from a to b.
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2 TRANSITIVE CLOSURE

Figure 2: Shows how a closed loop can be eliminated to give the shortest path. Here,
i = 2 and j = 5.

Now let us consider the case when a 6= b. Since the total number of elements in the
set A is n, the maximum path length we can get is n − 1. If a = b, then we get the
maximum path length as n (as |A| = n and all the vertices except a and b are distinct).
’There is a path from a to b in R’ is equivalent to aR∞b. And if aR∞b (i.e. there is
a path from a to b in R), from the preceding discussion we know that aRkb for some
k, 1 ≤ k ≤ n (as the maximum path length possible is n). Thus R∞ = R∪R2∪ . . .∪Rn.
Hence the theorem is proved.
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3 Warshall’s Algorithm

Need for Warshall’s Algorithm
The methods used to solve Example 3 have certain drawbacks. The graphical method

is unsystematic and impractical for large sets. The matrix method is better than the
graphical method and can be implemented with the help of a program, but it tends
to become costly in terms of time and space requirement in the case of large matrices.
So this method is inefficient too. The Warshall’s algorithm as described next helps to
overcome these drawbacks.

The Procedure

Let A be a set such that A = {a1, a2, . . . , an} and R be a relation defined on A.
Considering a general path x1, x2, . . . , xm in R, all vertices except the two at the extremes,
i.e. x1 and xm, are called the interior vertices. Now, we define a Boolean matrix Wk

(1 ≤ k ≤ n) as follows. Wk has a 1 in position (i, j) if and only if there is a path from
ai to aj in R whose interior vertices, if any, come from the set {a1, a2, . . . , ak}.

If we take k = n, any vertex must come from the set {a1, a2, . . . , an}, and hence Wn

has a 1 in position (i, j) if and only if some path in R connects ai with aj. This means
that Wn = R∞. If we take W0 equal to MR, we will get a sequence W0,W1,W2, . . . , Wn,
where W0 corresponds to MR and Wn corresponds to MR∞ . The Warshall’s algorithm
gives us a way to compute each matrix Wk from the previous matrix Wk−1. Hence we
begin with the matrix representation of R and proceed to R∞. The computation of Wk is
different from that of the powers of MR and saves time considerably as the steps involved
are fewer and less complicated.

Let us suppose Wk = [pij] and Wk−1 = [sij]. If pij = 1, then there exits a path from
ai to aj in R whose interior vertices are from {a1, a2, . . . , ak}. If the vertex ak is not an
interior vertex in this path, then all the interior vertices are from {a1, a2, . . . , ak−1} ⇒
sij = 1. If the vertex ak is an interior vertex in the path, then there will be a subpath
from ai to ak and another subpath from ak to aj. All the interior vertices in the path
from ai to aj are distinct (Theorem 5). So ak appears in the path only once, and
hence all the interior vertices in the two subpaths mentioned earlier come from the set
{a1, a2, . . . , ak−1}. This means that sik = 1 and skj = 1.

Thus pij = 1 only under two conditions. If and only if either sij = 1, OR sik = 1 and
skj = 1. So if Wk−1 has a 1 in the position (i, j), so will Wk. A new 1 can be added at
position (i, j) in Wk if and only if column k in Wk−1 has a 1 at position i and row k of
Wk−1 has a 1 at position j. So the procedure for calculating Wk from Wk−1 is :

1. Transfer to Wk all the 1’s in Wk−1.

2. List the locations y1, y2, . . . , in column k of Wk−1 where the entry is 1, and the
locations z1, z2, . . . , in row k of Wk−1 where the entry is 1.
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3. Put 1’s at all positions (yi, zj) of Wk (if not already present).

† Example 4:

Find the transitive closure of R defined in Example 3.
Solution:

W0 = MR =




0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0




Here we have n = 4.
To find W1, k = 1. We can see that W0 has 1’s in column 1 at location 2, and in row

1 at location 2. Thus W1 has a new 1 at position (2, 2).

W1 =




0 1 0 0
1 1 1 0
0 0 0 1
0 0 0 0




For W2, k = 2. W1 has 1’s in column 2 at locations 1 and 2, and in row 2 at locations
1, 2 and 3. So the new 1’s would go to positions (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) and
(2, 3) (if not already there).

W2 =




1 1 1 0
1 1 1 0
0 0 0 1
0 0 0 0




For W3, k = 3. W2 has 1’s in column 3 at locations 1 and 2, and in row 3 at location
4. So the new 1’s would come at positions (1, 4) and (2, 4) (if not already there).

W3 =




1 1 1 1
1 1 1 1
0 0 0 1
0 0 0 0




For W4, k = 4. W3 has 1’s in column 4 at locations 1, 2 and 3 but no 1’s in row 4.
So no new 1’s are added. Hence W4 = W3. This gives us the matrix representation of
R∞ which is the same as that obtained in Example 3.
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The Algorithm

To find the matrix CLOSURE of the transitive closure of a relation R whose n × n
matrix representation is MAT.

WARSHALL

1. CLOSURE ← MAT

2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. CLOSURE(i, j) ← CLOSURE(i, j)∨(CLOSURE(i, k)∧CLOSURE(k, j))

This algorithm involves three for loops, with two of them nested. Each loop iterates
from 1 to n. This gives us a time complexity of O(n3). If we were to find the transitive
closure using the matrix multiplication method we would get a time complexity of O(n4).
Each time a matrix multiplication is performed the time complexity is O(n3) as there
are three loops running (two nested) from 1 to n. The matrix multiplications are carried
out a total of n − 1 times to find matrices (MR)2

¯, (MR)3
¯, . . . , (MR)n

¯, since MR∞ =
MR ∨ (MR)2

¯ ∨ . . . ∨ (MR)n
¯. So the number of steps involved are n3(n− 1), giving us a

time complexity of O(n4). Thus we see that Warshall’s algorithm is surely simpler and
more efficient than the matrix multiplication method.

An Application of Warshall’s Algorithm
§ Theorem 6

If R and S are equivalence relations on a set A, then the smallest equivalence relation
containing both R and S is (R ∪ S)∞.

Proof
We know that a relation is reflexive if and only if it contains the identity or equality

relation ∆. Since both R and S are reflexive, ∆ ⊆ R and ∆ ⊆ S. This implies that
∆ ⊆ R ∪ S ⊆ (R ∪ S)∞. So (R ∪ S)∞ is also reflexive.

R and S are symmetric. Let us consider (a, b) ∈ R ⇒ (b, a) ∈ R (as R is symmetric).
Since R ⊆ (R∪ S) ⊆ (R∪ S)∞, therefore (a, b) and (b, a) ∈ (R∪ S)∞. This implies that
(R∪S)∞ is also symmetric. This can be proved in a similar manner by taking (a, b) ∈ S
instead of R.

The property of transitive closure tells us that any relation T∞ is the smallest transi-
tive relation containing the relation T . Applying this property to R∪S, we can conclude
that (R∪S)∞ is the smallest transitive relation containing (R∪S). Since it is transitive
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also, it is an equivalence; and since it contains (R∪S), it contains both R and S. Hence
we have proved that (R∪S)∞ is the smallest equivalence relation containing both R and
S.

† Example 5:

Let A = {1, 2, 3, 4, 5}, R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)},
and S = {(1, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)} (where R and S are equivalence
relations) . The partition A/R of A corresponding to R is {{1, 2}, {3, 4}, {5}}, and
the partition A/S of A corresponding to S is {{1}, {2}, {3}, {4, 5}}. Find the smallest
equivalence relation containing R and S, and compute the partition of A that it produces.

Solution:

MR =




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1




and

MS =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1




So,

MR∪S = MR ∨MS =




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 1
0 0 0 1 1




We now compute M(R∪S)∞ using Warshall’s algorithm. First W0 = MR∪S. Next we
compute W1 (k = 1). W0 has 1’s at locations 1 and 2 in column 1, and at locations 1
and 2 in row 1. No new 1’s need to be added as 1’s are already present at positions (1,
1), (1, 2), (2, 1) and (2, 2). So W1 = W0.

We now compute W2 (k = 2). Since W1 has 1’s at locations 1 and 2 of column 2, and
at locations 1 and 2 of row 2, no new 1’s need to be added. So W2 = W1.

Next we move on to W3 (k = 3). Since W2 has 1’s at locations 3 and 4 of column 3,
and at locations 3 and 4 of row 3, no new 1’s need to be added. So W3 = W2.

15



3 WARSHALL’S ALGORITHM

Now we compute W4 (k = 4). W3 has 1’s at locations 3, 4 and 5 of column 4, and at
locations 3, 4 and 5 of row 4. So new 1’s need to be added at positions (3, 5) and (5, 3)
of W3 to get W4. Thus

W4 =




1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1




To compute W5 (k = 5), we see that, since W4 has 1’s at locations 3, 4 and 5 of column
5, and at locations 3, 4 and 5 of row 5, no new 1’s need to be added. So W5 = W4.

∴ (R ∪ S)∞ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)}.
The corresponding partition is {{1, 2}, {3, 4, 5}}.

♣♣♣
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