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Abstract

Recurrence relations arise naturally in many counting problems and in analyz-
ing the programming problems.One such example is analysis of the time complexity
of an algorithm. Very often the time is obtained as a recurrence relation .In this
lecture we discuss the definition and also some examples of how these relations
basically work. Then the methods to solve the recursive equations are discussed.
Partitions are discussed as part of Relations and Digraphs. Here also the defini-
tion and the concepts of partitioning a set into its equivalence classes is given. The
basics of relations and partitions has been presented.

1 Recurrence Relations

1.1 Definition

Recursive formulae are commanly used to represent sequences. Its just like a com-
pact notation to represent a sequence. In these equations previous terms in the
sequence are referred to define the next term. These are said to be recursive in
nature. Every recursive formula has a starting place. Also some initial conditions
must be given for the sequence. Here’s a simple example :

Tn = Tn−1 + 2× Tn−2 and T0 = 2, T1 = 3

Another very common example is the Fibonacci Sequence.
Many times we encounter questions where the recursive relation has to be deter-
mined. One such example is given here:

Solve:An annuity of Rs.10000 earns 8% compounded monthly. Each month Rs.250
is withdrawn from here.Write a recurrence relation for the monthly balance at the
end of n months
Solution: Let Tn−1 balance at the end of last month, i.e. n-1 th month. Since in-
terest is compounded monthly the interest obtained for the nth month will be 8% of
Tn−1. Thus interest is 0.08 ×Tn−1. And since the amount of Rs.250 is withdrawn
from the account the total balance is Tn−1+0.08Tn−1−250. Thus we can write the
recursive relation as Tn = Tn−1+0.08Tn−1−250 with initial conditions T0 = 10000.

1.2 Solving Recursions

Solving recursive equations is a common task encountered in many of programming
problems and mathematics. Solving the recursive relation involves only finding the
explicit formula for the nth term.There are mainly two methods to solve for the
explicit formula of the nth term.
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1.2.1 Backtracking

The technique for solving using backtracking is shown here. From the nth term
equation given which consists of lower terms in the sequence the explicit formula
is obtained. The lower terms are substituted in much lower terms and finally all
terms on right are expressed in terms of n. Here’s an example:
Solve: Find explicit formula for the sequence defined by cn = 2cn−1 + 1, c1 = 7.
Solution: The definition of the previous term is substituted in the formula.

cn = 2cn−1 + 1
= 2(2cn−2 + 1) + 1
= 2[2(2cn−3 + 1) + 1] + 1
= 23cn−3 + 4 + 2 + 1
= 23cn−3 + 22 + 21 + 1

Slowly a regular pattern is coming up.this backtracking ends at

cn = 2n−1cn−(n−1) + 2n−2 + 2n−3 + ..... + 22 + 21 + 1

= 2n−1c1 + 2n−1 − 1
= 7.2n−1 + 2n−1 − 1
= 8.2n−1 − 1
= 2n+2 − 1

Backtracking can sometimes be cumbersome and lead to equations which are very hectic
to handle. Next a very easy method of solving recursion relation.

1.2.2 Linear Homogeneous Relations

This a more general technique for solving a recurrence relation. A recurrence relation is a linear
homogeneous relation of degree k if it is of the form

an = r1an−1 + r2an−2 + .... + rkan−k with ri’s constants

Examples:
• cn = cn−1 is a linear homogeneous recurrence relation of degree 1.
• an = an−1 + 3 is not a linear homogeneous recurrence relation.
• tn = t2n−1 + tn−2 is not a linear homogeneous recurrence relation.
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Each linear homogeneous recurrence relation of degree k is associated with a polynomial of
degree k known as its characteristic equation. Its given by :

xk = r1x
n−1 + r2x

n−2 + ... + rk

The roots of the characteristic equation are very importaant in expressing the explicit for-
mula of the sequence. For a homogeneous equation of degree 2 the characteristic equation is
x2 − r1x− r2 = 0

Theorem:
(a) If the characteristic equation x2−r1x−r2 = 0 of a recurrence relation an = r1an−1+r2an−2

has two distinct roots , s1 and s2 , then an = usn
1 + vsn

2 ,where u and v depend on initial con-
ditions, is the explicit formula for the sequence.
(b) If the characteristic equation x2−r1x−r2 = 0 has a single root s , then the explicit formula
is an = usn + vnsn,where u and v depend on initial conditions.
Proof:
Suppose that s1 and s2 are the roots of x2−r1x−r2 = 0 , so s2

1−r1s1−r2 = 0, s2
2−r1s2−r2 = 0

and an = usn
1 + vsn

2 , for n ≥ 1. We show that the definition of andefinesthesamesequenceas
an = r1an−1 + r2an−2. First we note that u and v are chosen so that a1 = us1 + vs2 and
a2 = us2

1 + vs2
2 so the initial conditions are satisfied. Then

an = usn
1 + vsn

2

= usn−2
1 s2

1 + vsn−2
2 s2

2

= usn−2
1 (r1s1 + r2) + vsn−2

2 (r1s2 + r2)
= r1usn−1

1 + r2usn−2
2 + r2vsn−2

2

= r1(usn−1
1 + vsn−1

2 ) + r2(usn−2
1 + vsn−2

2 )
= r1an−1 + r2an− 2

Solve: Solve the recurrence relation dn = 2dn−1 − dn−2 with the initial conditions d1 =1.5
and d2 =3.
Solution: The corresponding characteristic equation is x2−2x+1 = 0. This equation has one
root ,1. Thus using the theorem above and initial conditions we get d1 = 1.5 = u + v(1) and
d2 = 3 = uv(2). Solving for u and v we get u = 0 and v = 1.5. Thus dn = 1.5n is the explicit
formula.
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2 Relations

2.1 Cartesian Products

If A and B are two nonempty sets , the cartesian product A × B is defined as the set of all
ordered pairs (a, b) with aεA and bεB.Thus

A ×B = {(a, b)|aεA and bεB}.

Example: Let A = {1, 2, 3} and B = {r, s} Then the product

A×B = {(1,r),(1,s),(2,r),(2,s),(3,r),(3,s)}.

2.2 Partitions

A partition of a nonempty set A is a collection ℘ of nonempty subsets of A such that

1.Each element in A belongs to one of the sets in ℘.

2.If A1 and A2 are distinct elements of ℘ then A1 ∩ A2 = φ.

The sets in ℘ are the blocks of the partition .

Example: Let A = {a, b, c, d, e, f, g, h}. Consider the following subsets of A :

A1 = {a, b, c, d}, A2 = {a, c, e, f, g, h}, A3 = {a, c, e, g}, A4 = {b, d} and A5 = {f, h}.
Then {A1, A2} is not a partition since A1 ∩ A2 6= φ. The collection ℘ = {A3, A4, A5} is
a partition of A.Similarly we can have many partition sets like this.

2.3 Bell Number

The nth Bell number is the number of partitions of a set with n members, or equiva-
lently, the number of equivalence relations on it.

In general, Bn is the number of partitions of a set of size n. For example, B3 = 5
because the 3-element set {a, b, c} can be partitioned in 5 distinct ways:
{ {a}, {b}, {c} }
{ {a}, {b, c} }
{ {b}, {a, c} }
{ {c}, {a, b} }
{ {a, b, c} }.
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Bell Number follows the following recursive formula

Bn+1 =
∑n

k=0

(
n
k

)
Bk

***************************************************************
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