Discrete Structures Lecture Dated on 08/09/08 By Prof NILOY GANGULY Scribe prepared by NANDISH TELLA(07CS1018

1 Theorem 1:-

1.1 Statement:-

Suppose R and S are relations fom A to B then:

- 1. If $R \subseteq S$, then $R^{-1}S^{-1}$
- 2. If $R\subseteq S$, then $\overline{S}\subseteq\overline{R}$
- 3. $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$ and $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$
- 4. $\overline{(R \cap S)} = \overline{R} \cup \overline{S} \text{ and } \overline{(R \cup S)} = \overline{R} \cap \overline{S}$

1.2 Proof:-

- 1. $(a,b) \in R \in S$ For every $(b,a) \in R^{-1}$ it belongs to S⁻¹ $\Rightarrow (b,a) \in S^{-1}$
- 2. This part is a special case of general set properties
- 3. Suppose $(a,b) \in (R \cap S)^{-1}$ then $(b,a) \in (R \cap S)$, so $(b,a) \in R$ and $(b,a) \in S$

This means that $(a,b) \in R^{-1}$ and $(a,b) \in S^{-1}$, so $(a,b) \in R^{-1} \cap S^{-1}$

The converse containment can be proved by reversing the steps.

A similar argument works to show that $(\mathbf{R} \cup S)^{-1} = R^{-1} \cup S^{-1}$

4. This part is a special case of general set properties

2 Theorem 2:-

2.1 Statement:-

Let R and S be relations on set A then:-

- 1. If R is reflexive so is R^{-1}
- 2. If R and S are reflexive , then so are $R\cap S$ and $R\cup S$
- 3. R is reflexive if and only if \overline{R} is irreflexive.

2.2 Proof:-

- 1. Let Δ be the equality relation on A. We know that for R to be reflexive $\Delta \subseteq R$ But, We know that $\Delta = \Delta^{-1}$ So $if \Delta \subseteq R$ then $\Delta = \Delta^{-1} \subseteq R^{-1}$ So R^{-1} is also Reflexive.
- 2. If R and S are reflexive then:- $\Delta \subseteq R$ and $\Delta \subseteq S$ $\Rightarrow \Delta \subseteq R \cap S$ and $\Delta \subseteq R \cup S$ Hence $R \cap S$ and $R \cup S$ are also reflexive.
- 3. For a Relation S to be irreflexive it has to satisfy $S \cap \Delta = \phi$ A Relation R is reflexive if and only if $\Delta \subseteq S$ That is if and only if $\Delta \cap \overline{R} = \phi$ That is if and only if \overline{R} is irreflexive.

3 Theorem 3:-

3.1 Statement:-

Let R be a relation on set A. Then:-

- 1. R is symmetric if and only if $R = R^{-1}$
- 2. R is antisymmetric if and only if $R \cap R^{-1} \subseteq \Delta$
- 3. R is asymmetric if and only if $R \cap R^{-1} = \phi$
- 4. If R is symmetric, so are R^{-1} and \overline{R}
- 5. If R and S are symmetric, so are $R \cap S$ and $R \cup S$

3.2 Proof:-

1. For every $(a, b) \in R$ $\Rightarrow (b, a) \in R$ because R is symmetric $\Rightarrow (a, b) \in R^{-1}$ $\Rightarrow R \subseteq R^{-1}$ Similarly, For every $(a, b) \notin R$ $\Rightarrow (b, a) \notin R$ $\Rightarrow (a, b) \notin R^{-1}$ \Rightarrow For every $(a, b) \in R$ $(a, b) \in R^{-1}$ and for every $(a, b) \notin R$ $(a, b) \notin R^{-1}$ Hence we get $R = R^{-1}$ if R is symmetric Similarly We can prove R is symmetric if $R = R^{-1}$ Thus we get R is symmetric if and only if $R = R^{-1}$ 2. Let $(a, b) \in R$ case 1: $a \neq b$ $\Rightarrow (b, a) \notin R$ $\Rightarrow (a, b) \notin R^{-1}$ For Every $(a, b) \in R$ $(a, b) \notin R^{-1}$ $\Rightarrow R \cap R^{-1} = \phi$ For this case case 2:- a = b $\Rightarrow (a, a) \in R^{-1}$ $\Rightarrow R \cap R^{-1} \subseteq \Delta$ From Case 1 and Case 2 We get $R \cap R^{-1} \subseteq \Delta$ if R is antisymmetric Similarly We can show that R is antisymmetric if $R \cap R^{-1} \subseteq \Delta$ Thus we get R is antisymmetric if and only if $R \cap R^{-1} \subseteq \Delta$

- 3. Let $(a, b) \in R$ $\Rightarrow (b, a) \notin R$ $\Rightarrow (a, b) \notin R^{-1}$ For Every $(a, b) \in R$ $(a, b) \notin R^{-1}$ $\Rightarrow R \cap R^{-1} = \phi$ if R is asymmetric Similarly We can show that R is symmetric if $R \cap R^{-1} = \phi$ Thus we get R is asymmetric if and only if $R \cap R^{-1} = \phi$
- 4. If R is symmetric, then $R = R^{-1}$ and thus $(R^{-1})^{-1} = R = R^{-1}$ which means that R^{-1} is also symmetric. Also if $(a, b) \in (\overline{R})^{-1}$ if and only if $(b, a) \in \overline{R}$ if and only if $(b, a) \notin R$ if and only if $(a, b) \notin R^{-1} = R$ if and only if $(a, b) \in \overline{R}$ $\Rightarrow R^{-1}$ and \overline{R} are symmetric
- 5. We have

 $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$ and $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$ But as R and S are symmetric we have $R = R^{-1}$ and $S = S^{-1}$ Therefore $(R \cap S)^{-1} = R^{-1} \cap S^{-1} = R \cap S$ and $(R \cup S)^{-1} = R^{-1} \cup S^{-1} = R \cup S$ $\Rightarrow R \cap S$ and $R \cup S$ are also symmetric.

4 Theorem 4:-

4.1 Statement:-

Let R and S be Relations on A

- 1. $(R \cap S)^2 \subseteq R^2 \cap S^2$.
- 2. If R and S are transitive so is $R \cap S$

3. If R and S are equivalence relations , so is $R\cap S$

4.2 Proof :-

- 1. Geometrically we have $a(R \cap S)^2 b$ if and only if there is a path of length 2 from a to b in $R \cap S$. Both edges of this path lie in R and in S, so aR^2b and aS^2b , which implies that $a(R^2 \cap S^2)b$ Therefore, $(R \cap S)^2 \subseteq R^2 \cap S^2$.
- 2. A relation T is transitive if and only if $T^2 \subseteq T$. If R and S are transitive ,then $R^2 \subseteq R$ and $S^2 \subseteq S$ so $(R \cap S)^2 \subseteq R^2 \cap S^2 \subseteq R \cap S$ so $R \cap S$ is transitive.
- 3. From the previous theorems we have that If R and S are Reflexive then $R \cap S$ is Reflexive If R and S are Symmetric then $R \cap S$ is Symmetric If R and S are Transitive then $R \cap S$ is Transitive

Therefore We have if R and S are Equivalence relations then $R \cap S$ is also an Equivalence relation.

5 Closure:-

The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P.

- 1. $R\cup\Delta$ is the reflexive closure of R
- 2. $R \cup R^{-1}$ is the symmetric closure of R
- 3. R^{inf} is the transitive closure of R.