Lecture 35 DISCRETE STRUCTURES

Niloy Ganguly Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology

Binary operations:

A binary operation on a set A is an everywhere defined function $f : AxA \rightarrow A$.

In view of the above definition following properties hold for all binary operations :

1. Since dom (f) = AxA, It is defined for every ordered pair (a, b) of AxA.

2. A is closed under the binary operation.

3. Only one element of A is assigned to an ordered pair.

A generic binary operation is denoted by *. Thus f(a, b) = c is same as saying that

a*b = c.

Examples:

1. Let A = Z. If we define a*b as a+b. Then * is a binary operation on Z.

2. Let $\mathsf{A}=\mathsf{P}(\mathsf{S})$ for some set S. If U and V are subsets of S and we define $\mathsf{U}^*\mathsf{V}$

as U ^ V. (^ is union), then * is a binary operation on P(S).

3.let A = Z. If we define a*b = a number less than both a and b, then * is not a binary operation as corresponding rule f is not a function.

Properties of binary operations:

- 1. Commutative: If a*b = b*a, then * is said to be commutative binary operation. For ex. + in example 1 above is a commutative binary operation.
- Associative :
 If a*(b*c) = (a*b)*c , then * is said to be associative.
- 3. Idempotent :

If $a^*a = a$, then * is said to be idempotent.

Example :

Let a*b = LCM (a , b). Then * is commutative, associative and idempotent.

Semigroups :

A semigroup is a non empty set S together with an associative binary operation (*) defined on S. It is denoted by (S, *). This semigroup is called a commutative semigroup if * is a commutative binary operation.

Example :

The power set of a set S , P(S) together with the operation of union is a commutative semigroup (P(S), U).

Let L be a lattice. Then if we define $a*b = a^b$, then L is a commutative semigroup.

Theorem 1.

If a1 , a2 , a3 An , n ≥ 3 are arbitrary elements of a semigroup, then all products of

a1, a2 an that can be obtained by inserting meaningful parantheses are equal. Here by product we mean ab = a*b, call a*b as product of a and b. Thus a*b*c*d = (a*b*c)*d = (a*b)*(c*d) = a*(b*c)*d = a*(b*c*d) etc.

Identity element :

If the semigroup (S, *) is such that it has an element e for which e * a = a * e = a, Then e is called identity element of semigroup (S, *).

Example :

The semigroup (Z, +) has an identity element e = 0, as

 $0+a = a+0 = a, a \in Z.$

The semigroup (Z + , +) does not have any identity element.

Let A be an alphabet with A* as the set of all regular expressions. If we define binary operation \cdot as catenation of one string s1 another string s2 i.e. , s1·s2 .Then empty sequence

```
<sup>^</sup> is the identity element of A*.
```

Monoid :

Definition : A monoid is a semigroup(S , *) with an identity element *e*. Examples of monoids are above given semigroups.

Subsemigroup and Submonoid :

Let (S , *) be a semigroup with T as its subset. If T is closed under the operation *.

(that is, if a, b \in T, then a*b \in T) then T is called a subsemigroup. By similar logic a subset T of a monoid (M, *) such that identity element belongs to it and the set is closed under * is said to be submonoid (T, *).

Example:

1. If T be the set of all even integers then (T, +) is a subsemigroup of (Z, +).

It is even a submonoid (identity element e = 0)

2. If (S, *) is semigroup and $a \in S$ and T=ai $i \in Z+$ }, then T is subsemigroup.

Furthermore if e identity element of (S, *) i.e., S is a monoid and we define a0 = e, then T is a submonoid.