Lecture 31 DISCRETE STRUCTURES

Niloy Ganguly Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology

The Digraph Of a Relation

Let R be a relation on A. Draw an **edge**, from vertex a_i to vertex a_j if and only if $a_i R a_j$. The resulting pictorial representation of R is called a directed graph or digraph of R.

EXAMPLE: Let $A = \{1, 2, 3, 4\}$

 $\mathsf{R} = \{ (1,1), (1,2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1) \}.$

Then the digraph of R is as shown below.

Hasse Diagrams

Draw the digraph of a partial order with all edges pointing upward, so that arrows may be omitted from the edges.Replace the circles representing the vertices by dots.The resulting diagram of a partialorder is called the **Hasse diagram** of the partial order of the poset.

EXAMPLE: Let $\mathbf{A} = \{1,2,3,4,6\}$. Consider the partial order of divisibility on \mathbf{A} . That is , if a and $b \in A$, $a \le b$ if and only if a|b. Draw the Hasse diagram of the poset (A, \le).

SOLUTION: The Hasse diagram is shown below.

Toplogical Sorting

If **A** is a poset with partial order \leq , we sometimes need to find a linear order < for the set **A** that will merely be an extension of the given partial order in the sense that if a \leq b, then a < b. The process of constructing a linear order such as is called **Toplogical Sorting**.

EXAMPLE: Give a topological sorting for thr poset whose Hasse diagram is as shown below.

SOLUTION: The partial order < whose Hasse diagram (a) is clearly a linear order. It is easy to see that every pair in \leq is also in the order <,so < is a topological sorting of the partial order \leq .Figures (b) and (c)show two other solutions of this problem

Isomorphism

Let (A, \leq) and (A', \leq') be posets and let $f : A \rightarrow A'$ be a one to one correspondence between A and A'. The function f is called an **isomorphism** from (A, \leq) to (A', \leq') if, for any a and b in A,

 $a \le b$ if and only if $f(a) \le f(b)$.

If f: $A \rightarrow A'$ is an isomorphism, we say that (A, \leq) and (A', \leq') are **isomorphic** posets.

Example:

Let T be the set of all eve integers. Show that the semigroups $\{Z,+\}$ and $\{T,+\}$ are isomorphic.

Solution:

Define the function $f : Z \rightarrow T$ by f(a) = 2a. Suppose that $f(a_1)=f(a_2)$ then $2a_1=2a_2$, so $a_1=a_2$. Hence f is one-one. Suppose that b is any even integer .Then $a=b/2 \in Z$ and f(a)=f(b/2) = 2(b/2) = bf(a+b)=2(a+b) = 2a + 2b = f(a) + f(b)

Hence (Z, +) and (T, +) are isomorphic semigroups.