<u>DISCRETE</u> STRUCTURES

Instructor: Prof. Niloy Ganguly

Scribe by: Praveen Kumar (07CS1016)

Date: 2nd September 2008

EQUIVALENCE RELATION:

If a relation R satisfies the following:

- a) Reflexivity
- b) Symmetry
- c) Transitivity

then R is an equivalent relation OR R is said to satisfy equivalence.

- a) **Reflexivity**: A relation R on a set A is reflexive if $(a,a) \in R$ for all $a \in A$, i.e. a R a for all $a \in A$.
- b) **Symmetry**: A relation R on a set A is symmetric if whenever a R b, then b R a ,i.e. a R $b \Rightarrow b R a$.
- c) **Transitivity**: A relation R on a set A is transitive if whenever a R b and b R c then a R c, i.e. a R b & b R c \Rightarrow a R c.

Example 1: Let A be the set of all triangles in a plane.

 $R = \{ (a,b) \in A \times A \text{ if } a \equiv b \}$

Show that R is an equivalence relation.

 \Rightarrow a) a \equiv a (a is congruent to itself) \Rightarrow REFLEXIVE

b) $a \equiv b \iff b \equiv a$; so SYMMETRIC

c) if $a \equiv b$ and $b \equiv c$ then $a \equiv c$; so TRANSITIVE.

Hence, R is an equivalence relation.

Example 2: Let A = Z and R be a relation on A such that a R b if $a \le b$. Is R equivalent?

 \Rightarrow a) $a \le a \Rightarrow a \in R(a)$, so reflexive.

b) $a \le b < \ne > b \le a$

 \Rightarrow a R b \iff b R a. So not symmetric.

c) $a \le b$ and $b \le c \implies a \le c$

Therefore, a R b and b R c \Rightarrow a R c. So, transitive.

Since the relation is not symmetric, it is not an equivalent relation.

Example 3: Let A = Z and R be a relation on A such that

 $R = \{ (a,b) \in A \times A \mid a \& b \text{ yield the same remainder when divided by } 2 \}$

a) a R a (since a will always yield the same remainder when divided by 2) Hence, reflexive.

- b) a R b <=> b R a (when a and b yield the same remainder when divided by 2). Hence, symmetric.
- c) a R b & b R c => a R c (when a,b and c yield the same remainder when divided by 2). Hence, transitive.

Hence, the relation is an equivalence relation.

Equivalence Relations and Partitions

THEOREM: Given a partition P on A. Define a relation R such that a R b if and only if a and b are members of the same block of P. R is an equivalence relation on A.

Proof: REFLEXIVITY: If $a \in A$, then clearly a is in the same block as itself; so a R a.

SYMMETRY: If a R b, then a and b are in the same block, so b R a.

So,a R b \leq bRa.

TRANSITIVITY: If a R b and b R c, then a, b and c are in the same block. Hence a R c. So, a R b and b R c \Rightarrow a R c.

Since R is reflexive, symmetric and transitive, it is an equivalence relation and R is called the equivalence relation determined by P.

Example 4: Let R be an equivalence relation on set A and let $a \in A$ and $b \in B$, then a R b if and only if R(a) = R(b). Prove.

Proof: We will have to prove it both ways as:

a) Given R(a) = R(b) then a R b.

b) Given a R b then R(a) = R(b).

a) Given R(a) = R(b) and since R is reflexive

so, $b \in R(a)$

so, a R b. (proved)

b) Given a R b and since R is symmetric

so, bR a

(1) b \in R(a)

(2) $a \in R(b)$

```
Take x \in R(b), from (1), b \in R(a)
so, x \in R(a)
so, R(b) is a subset of R(a).
Take y \in R(a), from (2), a \in R(b)
so, y \in R(b)
so, y \in R(a) is a subset of y \in R(b).
Hence y \in R(a) = R(b). (proved)
```

THEOREM: Let R be an equivalence relation on Aand P b a collection of all distinct relative sets R(a) in A. Then P is a partition of A, and R is the equivalence relation determined by P.

Proof: To prove the theorem, we must prove:

```
a) Every element of A belongs to some relative set.
```

b) If R(a) and R(b) are not identical, then R(a) \cap R(b) = ϕ .

Since R is reflexive, $a \in R(a)$. So, (a) is true.

For proving (b), let us consider its contrapositive statement i.e.,

if $R(a) \cap R(b) != \phi$, then R(a)=R(b).

Let $x \in R(a) \cap R(b)$

So, $x \in R(a)$ and $x \in R(b)$

so, a R x and x R b

so, a R b.

=> R(a) = R(b).

Hence proved.

QUOTIENT SET

Given set A and given equivalent relation R.

Quotient equivalent relation Q(s) = A/R --> set of subsets (partitioned by R)

How many partitions?

The number of partitions of a set having 'n' elements is given by the *Bell Number*, B(n), which can be recursively expressed as :

$$\begin{split} &B(n+1) = B(n) + {}^{n}C_{1}B(n-1) + {}^{n}C_{2}B(n-2) + \dots + {}^{n}C_{n}B(0) \\ => &B(n+1) = {}^{n}C_{n}B(n) + {}^{n}C_{n-1}B(n-1) + {}^{n}C_{n-2}B(n-2) + \dots + {}^{n}C_{0}B(0) \\ => &B(n+1) = \sum_{k=0}^{n} {}^{n}C_{k}B(k). \end{split}$$

$$B(n) = \sum_{k=0}^{n-1} {n-1 \choose k} B(k).$$

GENERAL PROCEDURE TO FIND THE PARTITION

Input : Relation R and set A

Output: Partition P

Algorithm:

```
B = A
while(B!=\phi)
   {
       Take a \in B
       a = P(i)
       while(1)
          {
               X = R(a)
               P(i) = P(i) U X
               If(X != new)
                      break
          }
       P = P + P(i)
       B = B - B(i)
       i = i + 1
   }
```