Section 0

Нур

Lecture 7 LOGIC

Scribe prepared by Md Jawaid Iqbal ($07\mathrm{CS1006}$)

Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur

October 19, 2008

Contents

1	Introduction	4
T	Introduction	4
2	Operations on statements 2.1 Negation 2.2 Conjunction 2.3 Disjunction	${f 4} \\ {f 4} \\ {f 4} \\ {f 5}$
3	Quantifiers 3.1 Universal Quantifier 3.2 Existential Quantifier	5 5 6
4	Conditional Statement	6
5	Biconditional Statement	6
6	Tautology , Contradiction & Contingency	7
7	Properties of Operations	7

Table 1: Truth table for negation

Abstract

Logic is the discipline that deals with the method of reasoning.On an elementary level,logic provides rules and techniques for determining whether a given argument is valid.Logical reasoning is used in mathematics to prove theorems, in computer science to verify the correctness of programs and prove theorems, and in everyday life to solve a multitude of problems.In this lecture, a few basic ideas are discussed.

1 Introduction

A statement or proposition is a declarative sentence that is either true or false but not both.

Example:i)The earth is round. ii)2+3=5. iii)Do you speak English? iv)2+x=5.

Out of these i) and ii) are statements or propositions, iii) is a question and iv) is an equation true for x = 3 and false for other values of x.

2 Operations on statements

2.1 Negation

p: 2+3=5 $\neg p: 2+3 \neq 5$ Table 1 gives the truth table for negation of a statement.

2.2 Conjunction

p: It is snowing.

q: I am cold.

 $p \wedge q$: It is snowing and I am cold.

Table 2 gives the truth table for conjunction of two statements.

p	q	$p \wedge q$
Т	Т	Т
Т	\mathbf{F}	\mathbf{F}
F	Т	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

Table 2: Truth table for conjunction

p	q	$p \vee q$
Т	Т	Т
Т	\mathbf{F}	Т
\mathbf{F}	Т	Т
\mathbf{F}	F	\mathbf{F}

Table 3: Truth table for disjunction

2.3 Disjunction

p: 2 is a positive integer.

q: 3 is a negative integer.

 $p \lor q$: 2 is a positive integer or 3 is a negative integer. Since p is true, the disjunction of $p \lor q$ is true, even though q is false.

Disjunction can be used in two senses - i)exclusive and ii)inclusive.

In the exclusive sense both p and q can not be both true. *Example*:I will go on Friday or I will go on Monday. In the inclusive sense both p and q can be both true. *Example*:I will pass in Maths or I will fail in French. In computer science disjunction is used in inclusive sense. Table 3 gives the truth table for disjunction of two statements.

3 Quantifiers

 $\{x \mid P(x)\} \rightarrow$ set of all x for which P(x) is true.

3.1 Universal Quantifier

P(x): -(-x) = xp: P(x) is true. Hence, we say that p is a universal quantification of P(x).

p	q	$p \Rightarrow q$
Т	Т	Т
Т	\mathbf{F}	F
\mathbf{F}	Т	Т
\mathbf{F}	F	Т

Table 4: Truth table for conditional statement

3.2 Existential Quantifier

P(x): x + 4 < 7 $q: \exists x P(x)$ is true. Hence, we say that q is an existential quantification of P(x).

For universal quantifier order doesn't matter. $Example : \forall A \forall B, A * B = B * A \equiv \forall B \forall A, B * A = A * B.$ However, for existential quantifier order matters. $Example : p : \forall A \exists B, A + B = I$ is true. But, $q : \exists B \forall A, A + B = I$ is false. $r : \exists B \forall A, A + B = A$ is true.

We can write the universal quantification of a statement as the existential quantification of the negation of that statement and vice-versa.

Example: $\forall x P(x) = \neg(\exists x \neg P(x))$ $\exists x P(x) = \neg(\forall x \neg P(x))$

4 Conditional Statement

 $p \Rightarrow q$ means "If p then q." Here p is the hypothesis and q is the conclusion. Table 4 gives the truth table for conditional statement.

If $p \Rightarrow q$ is an implication , we say $q \Rightarrow p$ is the converse and $\neg q \Rightarrow \neg p$ is the contrapositive.

Example:

Statement : If it is raining, then I get wet. Converse : If I get wet, then it is raining.

Contrapositive : If I do not get wet, then it is not raining.

5 Biconditional Statement

 $p \Leftrightarrow q \text{ means } p \Rightarrow q \text{ and } q \Rightarrow p$

Table 5 gives the truth table for biconditional statement.

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	\mathbf{F}	F
\mathbf{F}	Т	F
F	F	Т

Table 5: Truth table for biconditional statement

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$	$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$
Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т
\mathbf{F}	Т	Т	Т	Т
\mathbf{F}	\mathbf{F}	Т	Т	Т

Table 6: Truth table for a tautology

6 Tautology, Contradiction & Contingency

A statement that is true for all possible values of its propositional variables is called a **tau-tolgy**. A statement that is always false is called a **contradiction** or an **absurdity**, and a statement that can be either true or false, depending on the truth values of its propositional variables, is called a **contingency**.

The truth table of a tautology contains all true entries. Table 6 shows the truth table of a tautology.

7 Properties of Operations

The operations for propsitions have the following properties: **Commutative Properties** $1.p \lor q \equiv q \lor p$ $2.p \land q \equiv q \land p$

Associative Properties $3.p \lor (q \lor r) \equiv (p \lor q) \lor r$ $4.p \land (q \land r) \equiv (p \land q) \land r$

Distributive Properties $5.p\lor(q\land r) \equiv (p\lor q)\land (p\lor r)$ $6.p\land (q\lor r) \equiv (p\land q)\lor (p\land r)$ $\begin{array}{l} \mbox{Idempotent Properties}\\ 7.p \lor p {\equiv} p \\ 8.p \land p {\equiv} p \end{array}$

 $\begin{array}{l} \textbf{Negation Properties} \\ 9.\neg(\neg p) \equiv p \\ 10.\neg(p\lor q) \equiv (\neg p) \land (\neg q) \\ 11.\neg(p\land q) \equiv (\neg p) \lor (\neg q) \end{array}$

Properties 10 and 11 are also called De Morgan's laws.