DISCRETE STRUCTURES
ASSIGNMENT No. 7

Question 1.
Let k 
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 N, S = {1, 2, . . . , k}, and A = P(S) \ {}, where P(S) denotes the power set of S, and 
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 denotes the empty set. In other words, the set A comprises all non-empty subsets of {1, 2, . . , k}. For each a 
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A denote by min(a) the smallest element of a (notice that here a is a set).
(a) Define a relation 
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 on A as follows: a 
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 b if and only if min(a) = min(b). Prove that 
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 is an equivalence relation on A.

(b) What is the size of the quotient set A/
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 ?

(c) Define a relation 
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 on A as follows: a 
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 b if and only if either a = b or min(a) < min(b). Prove that 
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 is a partial order on A.
(d) Is 
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 also a total order on A?

(e) What is the total number of antisymmetric relations on a finite set of size n ?
Question 2

Let A be the set of all non-empty finite subsets of Z. Define a relation 
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 on A as: U 
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 V if and only if min(U) = min(V ). Also define the relation 
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 on A as: U 
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 V if and only if min(U) 
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 min(V ).

(a) Prove that 
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 is an equivalence relation on A.

(b) Identify good representatives from the equivalence classes of 
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.

(c) Define a bijection between the quotient set A/
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 and Z.

(d) Prove or disprove: 
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 is a partial order on A.

Question 3

Give an example of a poset A from number systemand a non-empty subset S of A such that S has lower bounds in A, but glb(S) does not exist.
Question 4

Let f : N → N be a bijection not equal to the identity map. Prove that there exists n 
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N such that n < f(n) and n < f−1(n).

Question 5
State True or False:
(a) The antisymmetric closure of a relation 
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 on a set A exists if and only if 
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 itself is antisymmetric.

(b) There exists a relation that well-orders (partial as well as total order) Z.
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