DISCRETE STRUCTURES

ASSIGNMENT – 6

Question 1

Let f : A → B be a function and 
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 an equivalence relation on B. Define a relation 
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 on A as:  a 
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 a′ if and only if f(a) 
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 f(a’).

(a) Prove that 
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 is an equivalence relation on A.

(b) Define a map f’: A/
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 → B/
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 as     [a]
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 |→ [f(a)]
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. Prove that f is well-defined.

(c) Prove that f’ is injective.

(d) Prove or disprove: If f is a bijection, then so also is f'.

(e) Prove or disprove: If f’ is a bijection, then so also is f.

Question 2

Show that N×N is equinumerous with N. 
[HINT: Define the map f: N → N×N. Any n
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N can be written uniquely as n = 2st, where s is a non-negative integer and t is a positive odd integer. For this n, define f(n) = (s + 1, (t + 1)/2). Prove that f is a bijection.]
Question 3
Use a diagonalization argument to prove that the set of all functions N -> N is uncountable. 

Question 4

Let f : A → B be a function. Prove that f is a bijection if and only if there exists a function g : B → A

with the properties that g ◦ f = idA and f ◦ g = idB.

Question 5

Let f : A → B be a function, S, S′ ⊆ A and T, T′ ⊆ B. Define

f(S) = {f(a) | a ∈ S} ⊆ B, f−1(T) = {a ∈ A | f(a) ∈ T} ⊆ A.

Notice that f−1 is not necessarily a function from B to A. It maps subsets of  B to subsets of A (and so can be treated as a function P(B) → P(A)). However, if f is a bijection, then f−1 is naturally a function from B to A. If f is injective, then f−1 is a partial function not defined for the elements in B \ f(A).

 (a) If S ⊆ S′, then prove that f(S) ⊆ f(S′).

 (b) If T ⊆ T′, then prove that f−1(T) ⊆ f−1(T′).

 (c) Prove that S ⊆ f−1(f(S)).

 (d) Give an example in which S 
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¹

 f−1(f(S)).

 (e) Prove that f(f−1(T)) ⊆ T.

 (f) Give an example in which f(f−1(T)) 
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 T.

 (g) Prove that f(f−1(f(S))) = f(S).

 (h) Prove that f−1(f(f−1(T))) = f−1(T).

A general comment: In order to prove that two sets X and Y are equal, it suffices to show X ⊆ Y and Y ⊆ X. That is, choose an arbitrary element x ∈ X and show that x ∈ Y too. Moreover, take an arbitrary element y ∈ Y and show that y ∈ X too.
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