DISCRETE STRUCTURES
ASSIGNMENT No. 7

Question 1.
Let k 
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 N, S = {1, 2, . . . , k}, and A = P(S) \ {}, where P(S) denotes the power set of S, and 
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 denotes the empty set. In other words, the set A comprises all non-empty subsets of {1, 2, . . , k}. For each a 
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A denote by min(a) the smallest element of a (notice that here a is a set).
(a) Define a relation 
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 on A as follows: a 
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 b if and only if min(a) = min(b). Prove that 
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 is an equivalence relation on A.
Solution: [Reflexive] For any a ∈ A we have min(a) = min(a).

   [Symmetric] For any a, b ∈ A, if min(a) = min(b), then min(b) = min(a).

               [Transitive] For any a, b, c ∈ A, if min(a) = min(b) and min(b) = min(c), then 
   min(a)=min(c).

(b) What is the size of the quotient set A/
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 ?
Solution: Any two non-empty subsets of S having the same minimum element are related. On the other hand, two subsets of S having different minimum elements are not related. Therefore, each equivalence class of 
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 has a one-to-one correspondence with an element of S (the minimum element of every member in the class). Since S contains k elements, there are exactly k equivalence classes, i.e., the size of A/ 
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 is k
(c) Define a relation 
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 on A as follows: a 
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 b if and only if either a = b or min(a) < min(b). Prove that 
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 is a partial order on A.
Solution: [Reflexive] By definition, every element is related to itself.

[Antisymmetric] Take two elements a, b ∈ A. Suppose that a 
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 b and b 
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 a. If a 
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 b, then by definition, min(a) < min(b) and min(b)<min(a), which is impossible. So we must have a=b.

[Transitive] Suppose a 
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 b and b 
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 c for some a, b, c ∈ A. If a = b or b = c, then clearly 
a 
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 c. So suppose that a 
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 b and b 
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 c. But then min(a) < min(b) and min(b) < min(c). This implies that min(a) < min(c), i.e., a 
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 c.

(d) Is 
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 also a total order on A?
Solution: No! Take k 
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 2. The sets {1} and {1, 2} are distinct, but have the same minimum element, and are, therefore, not comparable.

(e) What is the total number of antisymmetric relations on a finite set of size n ?
Solution: Let X be a set of size n and R an arbitrary antisymmetric relation on X. For each 
x ∈ X there are two choices for the diagonal element (x, x): either include it in R or not. Both the choices are compatible with antisymmetry. So take two different elements x, y ∈ X. Antisymmetry demands that one of the following must be true:

(1) Neither (x, y) nor (y, x) belongs to R.

(2) (x, y) belongs to R, but (y, x) does not.

(3) (y, x) belongs to R, but (x, y) does not.

There are  
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n
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= n(n − 1)/2 ways of choosing two distinct elements x, y from X. Therefore, the total number of antisymmetric relations on X is 2n × 3n(n−1)/2.

Question 2

Let A be the set of all non-empty finite subsets of Z. Define a relation 
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 on A as: U 
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 V if and only if min(U) = min(V ). Also define the relation 
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 on A as: U 
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 V if and only if min(U) 
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 min(V ).
Solution 2

(a) Prove that 
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 is an equivalence relation on A.
For all U, V,W ∈ A we have:

(1) min(U) = min(U) [
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 is reflexive],

(2) min(U) = min(V ) implies min(V ) = min(U) [
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 is symmetric], and

(3) min(U) = min(V ) and min(V ) = min(W) imply min(U) = min(W) [
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 is transitive].

(b) Identify good representatives from the equivalence classes of 
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.
Consider the singleton sets {a} for all a ∈ Z.

(c) Define a bijection between the quotient set A/
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 and Z.
Take f : A /
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 → Z as [{a}] 
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 |→ a. Argue that f is well-defined, injective and 
surjective.

(d) Prove or disprove: 
[image: image39.wmf]s

 is a partial order on A.
No, since the relation 
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 is not antisymmetric, i.e., U 
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 V and V 
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 U imply min(U) = min(V ), but we may have U 
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 V as in the case of U = {1, 2} and V = {1, 3}, for example.

Question 3

Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in A, but glb(S) does not exist.
Solution 3

Take A = Q under the standard 
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 on rational numbers. Also take S = {x ∈ Q | x2 > 2}. Every rational number < √2 is a lower bound on S. Since √2 is irrational, glb(S) does not exist.

Another example: Take A to be the set of all irrational numbers between 1 and 5, and S to be the set of all irrational numbers between 2 and 3.

A simpler (but synthetic) example: Take A = {a, b, c, d} and the relation
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 = {(a, a), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (d, d)}

on A. The subset S = {c, d} of A has two lower bounds a and b, but these bounds are not comparable to one another.

Question 4

Let f : N → N be a bijection not equal to the identity map. Prove that there exists n 
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N such that n < f(n) and n < f−1(n).

Solution 4

Let S = {a 
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 N | f(a) 
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a}. Since f is not the identity map, we have S 
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. Let n be the minimum element in S. Thus, f(0) = 0, f(1) = 1, . . . , f(n − 1) = n − 1. Since f is injective, f(n) cannot be equal to 0, 1, 2, . . . , n − 1. Moreover, since f(n) 
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 n, we must have f(n) > n. Moreover, 
f−1(0) =0, f−1(1) = 1, . . . , f−1(n−1) = n−1, whereas f−1(n) 
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 n
(since f(n) > n and f is injective). Therefore, f−1(n) > n too.

Question 5
State True or False:

Solution 5
(a) The antisymmetric closure of a relation 
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 on a set A exists if and only if 
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 itself is antisymmetric.
True. If 
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 is already antisymmetric, then the antisymmetric closure of 
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 is 
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 itself.

On the other hand, suppose that 
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 is not antisymmetric. This means that 
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 contains two pairs

(a, b) and (b, a) for some a 
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 b. But then any superset of 
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 continues to contain these pairs

and, therefore, cannot be antisymmetric.

(b) There exists a relation that well-orders Z.

True. Consider the relation 
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 on Z defined as 0 
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 1 
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 −1 
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 2 
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 −2 
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 3 
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 −3 
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…  It is easy to argue that 
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well-orders Z.
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