DISCRETE STRUCTURES

SOLUTION 4
1. Call a partition P of 
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 special, if no subset in P contains two consecutive integers. Denote by 
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 containing exactly r non-empty subsets. First I prove by induction on n, that 
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 and the induction basis is proved. So take 
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 for all legitimate indices 
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 into r-1 non empty subsets. Adding {n} as singleton gives a special partition of 
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 into r non-empty subsets. Adding n to any one the r-1 subsets not containing n-1 yields a special partition of 
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 into r non-empty subsets can be generated in this way. Subsequently:
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 [by the Induction hypothesis]
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[by the recurrence for Stirling numbers]
And the inductive step is established. For 
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 [Since 
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2. The characteristic equation is 
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Therefore, a general solution of the given recurrence is:
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Plugging in the initial values gives:
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The solution of this system is 
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3. We prove all the three properties as follows:

[Reflexive] For any 
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 we have min(a) = min(a).

[Symmetric] For any 
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, if min(a) = min(b), then min(b) = min(a)

[Transitive] For any 
[image: image36.wmf],,

abcA

Î

, if min(a) = min(b), min(b) = min(c), then min(a) = min(c).
4. The proof is as follows: 

Given L(1) = 3 and 
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i.e. 
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i.e. 
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Similarly, 
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 and so on.

In general, 
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 for any positive integer a
Let 
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i.e. 
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5. The characteristic equation 
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where u, v are constants to be determined from the initial conditions 
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Solving this system gives,
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Notice that the exact values of the constants u, v, w are not very important here. It suffices to know the form of the solution. In particular, since a, b, d are positive, it follows that u > 0. Also 
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6. Let 
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 denote the total number of bit strings of length n that have three consecutive 0s. Now we have two possibilities, if 1 occurs on the first place or 0 occurs in the first place. If 1 occurs, then the problem reduces to finding the number of bit strings of length n-1 that have three consecutive 0s i.e. 
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 and if 0 occurs in the first place then we look for the 2nd digit. Similarly if 1 occurs in the 2nd digit as well, then we have to solve the relation 
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, and if again 0 occurs we see the 3rd digit, if 1 occurs here then we solve 
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 otherwise the remaining n-3 places can be either filled with 1 or 0, giving a total number of ways as 
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 Hence the recurrence relation becomes
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From the above recurrence relation, we get
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7. If n is odd, the f(n+2) = 2f(n+1) + 1 and f(n+1) = 2f(n); if n is even, f(n+2) = 2f(n+1) and f(n+1) = 2f(n) + 1. So the result holds in either case.

This is not a “pure” recurrence relation because of added 1. But if we set g(n) = f(n) + ½, the g(n+1) + 2g(n) = f(n+1) + 2f(n) + 3/2 = g(n+2). The characteristic equation is 
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. The initial values g(1) = 3/2 and g(2) = 5/2 yield a = 2/3 and b = -1/6. So 
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