DISCRETE STRUCTURES

ASSIGNMENT 2
1. a). For 
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so that 
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i.e. 
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b). [Induction on n] 
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The recurrence implies 
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c). [Induction on n] 
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, so take 
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assume that 
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. But then by part (a) we have
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 (since 
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2. [False]. Let P(x) be the predicate “x is even” and Q(x) be predicate “x+1 is even”. The for example 
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 is false. On the other hand 
[image: image20.wmf][()]

xPx

"

 is false since all integers are not even, and so 
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 is true. 
3. a). We proceed using 
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b). 
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c). 
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d). “If I attend the lecture, I wake (have woken) up early and do not

       have a headache”. 

e). “There exist two odd integers the sum of which is an odd integer”. 
4. We prove by contrapositive. Thus we need to prove that if not both p and q are odd, then their product pq is not odd (i.e. it must be even). Let p = 2k (even) and q = (2l+1) (odd) for some 
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. Now the product pq = 2k.(2l+1) = 4kl+2k = 2(2kl+k), which is even. Similarly for the case when both p and q are even, pq is again even. Hence, if not both p and q are odd, then their product pq is not odd.
5. We prove by Induction

[Basis] n = 1, 
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[Induction Step] Let us assume that it is true for k = n-1, i.e. 
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, Adding 
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. Hence Proved.
6. [Proof by contradiction] Let us assume that the sum of a rational number and irrational number results in an irrational number. Let the rational number be p/q, irrational number be x and the result be a/b. According to our assumption,

p/q + x = a/b, i.e. x = a/b – p/q, i.e. x is rational, which is a contradiction. Hence, our assumption that the sum of a rational number and irrational number is a rational number is wrong.
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