DISCRETE STRUCTURES

SOLUTION 1

1. Let x be any general element of A, then 
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3. Let A be the set of people eating fruits, B be the set of people eating vegetables and C be the set of people eating cheese, D be the set of people eating only cheese and E be the set of people who do not eat any of the three offerings . According to the problem, 

A = 37, B = 33, C = ?, D = 12, E = ?
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C = 12 + 12 + 9 – 3 = 30
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i.e. 37 + 33 + 30 – 10 – 12 – 9 + 3 + E = 100
i.e. E = 100 – 103 + 31, i.e. E = 28.
Therefore the number of people who eat cheese is 30 and the number of people who do not take any of the three offerings is 28.
4. Let 
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. Since every element x that belongs to 
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5. a). a, +, 
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, b are REs over A as they all belong to A.

       
Now, we list all the REs over A in successive orders:

        
RE1: 
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b). Proceed in the same way as part (a).


c). Proceed in the same way as part (a).
6. If c divides a and b, it divides 
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 (Prove yourself).
Since a = b – (b – a) = -b + (b + a), we see that a common divisor of b and 
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 also divides a and b. Since a and b have the same common divisors as b and 
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, they must have the same greatest common divisor.
7. Let 
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where 
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 are all distinct. If mn is a perfect square, then, 
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 is a perfect square. Also as all of 
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 are distinct, so all the powers 
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 must be even. So m and n both are perfect squares.
8. Let 
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. Since 
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10.  Let 
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