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[Write your answers in the question paper itself. Be brief and precise. Answer all questions. ]
Question 1









      (5 Marks)
Let G be an Abelian group. An element a 
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G is called a torsion element of G if order(a) is finite. Prove that the set of all torsion elements of G is a subgroup of G. 

Solution:  Denote by H the set of all elements of G of finite orders. 
[Closure] Let a; b 2 H, order(a) = m and order(b) = n. But then (ab)mn = amnbmn = (am)n(bn)m = e, i.e., order(ab) | mn. In particular, order(ab) is finite, i.e., ab 
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H. 
[Inverse] Let a 
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H. Since ak = e if and only if (ak)-1 = (a-1)k = e, we have order(a-1) = order(a)
Question 2





                                (2 Marks each = 12 marks)
In this question, we plan to construct a well-ordering of A = N × N.

(a) First define a relation 
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on A as (a, b) 
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(c, d) if and only if a 
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 c or b 
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d. 
Prove or disprove: 
[image: image8.wmf]r

 is a well-ordering of A.
Solution No. Indeed, 
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 is not at all a partial order, since it is not antisymmetric: we have both (1, 2) 
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 (2, 1) and (2, 1) 
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 (1, 2), but (1, 2) 
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 (2, 1).
(b) Next define a relation 
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on A as (a, b) 
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(c, d) if and only if a 
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 c and b 
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 d. 
Prove or disprove:   
[image: image17.wmf]s

is a well-ordering of A.
Solution No. One can easily check that 
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is a partial order on A. However, it is not a total order (and hence cannot be a well-ordering of A): the pairs (1, 2) and (2, 1) are, for example, not comparable.
(c) Finally, define a relation 
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L on A as (a, b) 
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L (c, d) if either (i) a < c or (ii) a = c and b 
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d. 
Prove that 
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L is a partial order on A.
Solution By Condition (ii), (a, b) 
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L (a, b). Now suppose that (a, b) 
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L (c, d) and (c, d) 
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L (a, b). If

a < c, we cannot have (c, d) 
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L (a, b). Similarly, if c < a, we cannot have (a, b) 
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L (c, d). So a = c. But then b 
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 d and d 
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 b, i.e., b = d. Finally, suppose that (a, b) 
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L (c, d) and (c, d) 
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L (e, f). Then 
a 
[image: image32.wmf]£

 c and c 
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e. If a < c or c < e, then a < e. On the other hand, if a = c = e, we must have b 
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 d and d 
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 f. But then b 
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 f.
(d) Prove that 
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L is a total order on A.
Solution Take any (a, b) and (c, d) in A. If a < c, then (a, b) 
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L (c, d). If a > c, then (c, d) 
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L (a, b).

Finally, suppose that a = c. Since either b 
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 d or d 
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 b, we have either (a, b) 
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L (c, d) or (c, d) 
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L (a, b).
(e) Is A well-ordered under 
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L?
Solution Yes. Let S be a non-empty subset of A. Take X = {a ∈ N | (a, b) ∈ A for some b ∈ N}.

Since S is non-empty, X is non-empty too and contains a minimum element; call it x. For this x, let

Y = {b ∈ N | (x, b) ∈ S}. Since Y is a non-empty subset of N, it contains a minimum element; call it y. It

is now an easy check that (x, y) is a minimum element of S.
(f) Prove or disprove: An infinite subset of A may contain a maximum element.
Solution True. The infinite subset {(1, b) | b ∈ N} ∪ {(2, 1)} of A contains the maximum element (2, 1).

Note: The ordering 
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L on N×N described in this exercise is called the lexicographic ordering, since this is how you sort two-letter words in a dictionary. One can readily generalize this ordering to Nn for any 
n > 3.
Question 3








               (4 + 4 Marks)
For real numbers a, b with a < b, we define the closed interval [a, b] = {x ∈ R | a 
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 x 
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 b} and the open interval (a, b) = {x ∈ R | a < x < b}.
(a) Prove that the closed interval [0, 1] is equinumerous with the open interval (0, 1).

Solution The inclusion map f: (0, 1) → [0, 1] taking x |→ x is injective. Also the map

g: [0, 1] → (0, 1) taking x |→ (1/4 + x/2) is an (injective) embedding of [0, 1] in the interval [ 1/4 , 3/4 ]
which is a subset of (0, 1).
(b) Provide an explicit bijection between R and R \ {0}.
Solution  For n ∈ N, denote In = [n, n + 1) and Jn = (n, n + 1]. For any fixed n, the map fn : In → Jn taking x |→ (2n + 1) − x is a bijection. We have the disjoint unions R = (−∞, 0) ∪ (Un∈N In) and 
R \ {0} = (−∞, 0) ∪ (Un∈N Jn). The map that relocates In to Jn using fn for all n ∈ N and that fixes (−∞, 0) element-wise is a bijection R → R \ {0}.
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