DISCRETE STRUCTURES

ASSIGNMENT 4
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 for which any pair of consecutive integers (i, i + 1) does not belong to the same subset of a partition. Prove that 
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 for all  n > 1.
2. Solve the following recurrence relation to find the explicit formula for the sequence 
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 for all 
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3. Let k belong to Z+, 
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 denotes the power set of S, and 
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 denotes the empty set. In other words the set A comprises of all non-empty subsets of 
[image: image17.wmf]{

}

1,2,...,

k

. For each 
[image: image18.wmf]aA

Î

 denote by min(a) the smallest element of a (notice here that a is a set). Define a relation 
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 on A as follows: 
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 if and only if min(a) = min(b). Prove that  
[image: image21.wmf]d

 is a reflexive, symmetric and transitive relation on A.
4. For the following recurrence relation, find a closed form equivalent expression.

L(1) = 3,
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 where n is a positive integral power of 2.

5. 
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Solve the above recurrence relation to obtain an explicit formula for 
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. Conclude that 
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, where 
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 is the golden ratio.

6. Find a recurrence relation for the number of bit strings of length n that have three consecutive 0s. Use this relation to find the number of such bit strings of length 7.

7. The number f(n) of steps required to solve the ‘Chinese rings puzzle’ with n rings satisfy f(1) = and 
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Prove that f(n+2) = f(n+1) + 2f(n) + 1, hence or otherwise find a formula for f(n).
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