CS21001 Discrete Structures

Autumn 2009-10

Tutorial on: Groups & Graphs

- 1. Let (S,*) be a semigroup and $a \in S$. The sub-semigroup generated by a is the set $\langle a \rangle = \{a*a*a\cdots a \text{ (n times) } | n>0 \}$. S is cyclic if $S=\langle a \rangle$ for some $a \in S$. Justify which of the following semigroups is/are cyclic.
 - (a) \mathbb{N} under integer multiplication.
 - (b) \mathbb{Z} under integer addition.
 - (c) \mathbb{Z}_n under addition modulo n.
- 2. Let G be a finite multiplicative group and h = ord a for some $a \in G$. Show that $a^n = e$ iff h|n.
- 3. (a) Define an operation * on \mathbb{R} as x*y=x+y+xy. Prove or disprove: $(\mathbb{R},*)$ is a group.
 - (b) Prove or disprove: $(\mathbb{R} \setminus \{-1\}, *)$ is a group.
- 4. Let G be an Abelian group. An element $a \in G$ is called a *torsion element* of G if ord a is finite. Prove that the set of all torsion elements of G is a subgroup of G.
- 5. Let G be a multiplicative group and H, K subgroups of G with $H \cap K = \{e\}$. Assume that $G = HK = \{hk|h \in H, k \in K\}$. Prove that every element $a \in G$ can be written as a = hk for some unique elements $h \in H$ and $k \in K$.
- 6. Show that the set of all complex numbers of the form x + iy with x, y integers and with x even is a group under addition of complex numbers.
- 7. Prove that an undirected graph has an even number of vertices of odd degree.
- 8. Show that a graph is bipartite iff it has no odd cycles.
- 9. Let G = (V, E) be a graph with |V| = n. Let the maximum degree of any node be at most d and a vertex cover of G be of size at most c. Find the maximum number of edges that G can have.
- 10. If α and β denote the minimum vertex cover and maximum independent set respectively of an undirected connected graph G with n vertices, then $\alpha + \beta = n$. Prove or disprove the above statement.