CS21001 Discrete Structures

Autumn 2009-10

Tutorial on : Functions

1. Consider the following C function:
```
unsigned int f (unsigned int n)
{
    if ((n == 0) || (n == 1)) return 0;
    if ((n%2) == 0) return 1 + f(n/2);
    return 1 + f(5*n+1);
}
```

(a) What does $f(19)$ return ?
(b) What does $f(5)$ return ?
(c) What can you conclude about f as a function $\mathbb{N} \rightarrow \mathbb{N}$?
2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$
(a) Prove that if the function $g \circ f: A \rightarrow C$ is injective then f is injective.
(b) Provide an example in which $g \circ f$ is injective but g is not.
(c) Prove that if $g \circ f$ is surjective, then g is surjective.
(d) Give an example in which $g \circ f$ is surjective but f is not.
3. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection not equal to the identity map. Prove that there exists $n \in \mathbb{N}$ such that $n<f(n)$ and $n<f^{-1}(n)$.
4. Let $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f_{1}(a)=-a^{2}$ and $f_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be given by $f_{2}(a)=\sqrt{a}$. Compute $f_{1} \circ f_{2}$. Can $f_{2} \circ f_{1}$ be defined ?
5. (a) Show that composition of functions is associative.
(b) Let $f_{1}(x)=x+4, f_{2}(x)=x-4$, and $f_{3}=4 x$ for $x \in \mathbb{R}$. Find $f_{1} \circ f_{2}, f_{2} \circ f_{1}, f_{1} \circ f_{1}, f_{2} \circ f_{2}, f_{1} \circ f_{3}$, $f_{3} \circ f_{2}, f_{3} \circ f_{1}$ and $f_{1} \circ f_{3} \circ f_{2}$.
6. (a) Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions such that $g \circ f=1_{A}$ and $f \circ g=1_{B}$. Then show that, f is a one-to-one correspondence between A and B, g is a one-to-one correspondence between B and A, and each is the inverse of the other.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be invertible. Then $g \circ f$ is invertible, and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
(c) Let $A=B=\mathbb{R}$. Let $f: A \rightarrow B$ be given by the formula $f(x)=2 x^{3}-1$ and let $g: B \rightarrow A$ be given by

$$
g(y)=\sqrt[3]{\frac{1}{2} y+\frac{1}{2}}
$$

Show that both f and g are bijective functions.
7. For real numbers a, b with $a<b$, we define the closed interval $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$ and the open interval $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$. Prove that the closed interval [0, 1] is equinumerous with the open interval $(0,1)$.
8. (a) Show that $(n+a)^{b}=\Theta\left(n^{b}\right)$
(b) Prove or disprove the following statement $a^{2 n}=O\left(a^{n}\right)$.

