CS21001 Discrete Structures

Autumn 2009–10

Tutorial on : Functions

1. Consider the following C function:

```
unsigned int f (unsigned int n)
{
    if ((n == 0) || (n == 1)) return 0;
    if ((n%2) == 0) return 1 + f(n/2);
    return 1 + f(5*n+1);
}
```

- (a) What does f (19) return?
- (b) What does f (5) return ?
- (c) What can you conclude about f as a function $\mathbb{N} \to \mathbb{N}$?
- 2. Let $f : A \to B$ and $g : B \to C$
 - (a) Prove that if the function $g \circ f : A \to C$ is injective then f is injective.
 - (b) Provide an example in which $g \circ f$ is injective but g is not.
 - (c) Prove that if $g \circ f$ is surjective, then g is surjective.
 - (d) Give an example in which $g \circ f$ is surjective but f is not.
- 3. Let $f : \mathbb{N} \to \mathbb{N}$ be a bijection not equal to the identity map. Prove that there exists $n \in \mathbb{N}$ such that n < f(n) and $n < f^{-1}(n)$.
- 4. Let $f_1 : \mathbb{R} \to \mathbb{R}$ be given by $f_1(a) = -a^2$ and $f_2 : \mathbb{R}^+ \to \mathbb{R}^+$ be given by $f_2(a) = \sqrt{a}$. Compute $f_1 \circ f_2$. Can $f_2 \circ f_1$ be defined ?
- 5. (a) Show that composition of functions is associative.
 - (b) Let $f_1(x) = x + 4$, $f_2(x) = x 4$, and $f_3 = 4x$ for $x \in \mathbb{R}$. Find $f_1 \circ f_2$, $f_2 \circ f_1$, $f_1 \circ f_1$, $f_2 \circ f_2$, $f_1 \circ f_3$, $f_3 \circ f_2$, $f_3 \circ f_1$ and $f_1 \circ f_3 \circ f_2$.
- 6. (a) Let $f : A \to B$ and $g : B \to A$ be functions such that $g \circ f = 1_A$ and $f \circ g = 1_B$. Then show that, f is a one-to-one correspondence between A and B, g is a one-to-one correspondence between B and A, and each is the inverse of the other.
 - (b) Let $f: A \to B$ and $g: B \to C$ be invertible. Then $g \circ f$ is invertible, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
 - (c) Let $A = B = \mathbb{R}$. Let $f : A \to B$ be given by the formula $f(x) = 2x^3 1$ and let $g : B \to A$ be given by

$$g(y) = \sqrt[3]{\frac{1}{2}y + \frac{1}{2}}.$$

Show that both f and g are bijective functions.

- 7. For real numbers a, b with a < b, we define the closed interval $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ and the open interval $(a, b) = \{x \in \mathbb{R} | a < x < b\}$. Prove that the closed interval [0, 1] is equinumerous with the open interval (0, 1).
- 8. (a) Show that $(n+a)^b = \Theta(n^b)$
 - (b) Prove or disprove the following statement $a^{2n} = O(a^n)$.