CS21001:Discrete Structures

Autumn semester 2009-10

Tutorial: Relations and Digraphs

1. Let $A=1,2,3,4$ and let R and S be the relations on A described by

$$
M_{R}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

and

$$
M_{S}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Use Warshall's algorithm to compute the transitive closure of $R \cup S$.
2. Let R and S be relations on A.
(a) If R is symmetric, so are R^{-1} and \bar{R}.
(b) If R and S are symmetric, so are $R \cap S$ and $R \cup S$.
3. Let R and S be relations on A.
(a) If R is reflexive, so is R^{-1}.
(b) If R and S are reflexive, so are $R \cap S$ and $R \cup S$.
(c) R is reflexive if and only if \bar{R} is irreflexive.
4. Let R and S be relations on A.
(a) $(R \cap S)^{2} \subseteq R^{2} \cap S^{2}$.
(b) If R and S are transitive, so is $R \cap S$.
(c) If R and S are equivalence relations, so is $R \cap S$.
5. Prove that the number of partitions of a set with n elements into k subsets satisfies the recurrence relation

$$
S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)
$$

6. Let $P_{1}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a partition of A and $P_{2}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ a partition of B. Prove that

$$
P=\left\{A_{i} \times B_{j}, 1 \leq i \leq k, 1 \leq j \leq m\right\}
$$

is a partition of $A \times B$.
7. Prove by induction that if a relation R on a set A is symmetric, then R^{n} is symmetric for $n \geq 1$.
8. Let $A=\{a, b, c, d, e\}$ and $M_{R}=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$, give the relation R defined on A and its digraph.
9. Let R be a relation from A to B. Prove that for all subsets A_{1} and A_{2} of A

$$
\begin{aligned}
& R\left(A_{1} \cap A_{2}\right)=R\left(A_{1}\right) \cap R\left(A_{2}\right) \quad \text { if and only if } \\
& R(a) \cap R(b)=\{ \} \quad \text { for any distinct } a, b \text { in } A
\end{aligned}
$$

