
CS21001:Discrete Structures

Autumn semester 2009-10

Solutions to tutorial: Relations and Digraphs

1. Let A = {1, 2, 3, 4} and let R and S be the relations on A described by

MR =


0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0


and

MS =


1 1 0 0
0 1 0 0
0 0 1 0
0 1 0 1


Use Warshall’s algorithm to compute the transitive closure of R ∪ S.

Solution: First calculate MR∪S = MR ∨MS

This will be the initial CLOSURE matrix of Warshall’s algorithm. Apply the
algorithm with N = 4

2. Let R and S be relations on A.

(a) If R is symmetric, so are R−1 and R.

(b) If R and S are symmetric, so are R ∩ S and R ∪ S.

Proof: If R is symmetric, R = R−1

∴ (R−1)−1 = R = R−1

⇒ R−1 is also symmetric.

Also, (a, b) ∈ (R)−1 ⇔ (b, a) ∈ R⇔ (b, a) /∈ R⇔ (a, b) /∈ R−1 = R

⇔ (a, b) ∈ R⇒ R is symmetric.

For part (b), we use the properties

(R ∩ S)−1 = R−1 ∩ S−1 and (R ∪ S)−1 = R−1 ∪ S−1

Since R and S are symmetric, we can replace R−1 by R and S−1 by S



⇒ R ∩ S and R ∪ S are symmetric.

3. Let R and S be relations on A.

(a) If R is reflexive, so is R−1.

(b) If R and S are reflexive, so are R ∩ S and R ∪ S.

(c) R is reflexive if and only if R is irreflexive.

Proof: The solution is provided as Theorem 2 in Chapter 4 of Kolman.

4. Prove that the number of partitions of a set with n elements into k subsets satisfies
the recurrence relation

S(n, k) = S(n− 1, k − 1) + k.S(n− 1, k)

Solution: There are two cases:

(a) The nth element is the only element in its partition. In this case, the

number of partitions is S(n− 1, k − 1)

(b) The nth element is in a subset with more than one elements. In this case, the

remaining elements can be in S(n− 1, k) partitions. The nth element can

be in any of these k sets.

∴ S(n, k) = S(n− 1, k − 1) + k.S(n− 1, k)

5. Let P1 = {A1, A2, ..., Ak} be a partition of A and P2 = {B1, B2, ..., Bm} a partition
of B. Prove that

P = {Ai ×Bj, 1 ≤ i ≤ k, 1 ≤ j ≤ m}

is a partition of A×B.

Solution: We have to prove that for all 1 ≤ i ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ k, 1 ≤ s ≤ m

(Ai ×Bj) ∩ (Ar ×Bs) = φ

where i 6= r and j 6= s



Since Ai ∩ Ar = φ and Bj ∩Bs = φ, there can be no two (Ai ×Bj)’s having

the same values i. e.

(Ai ×Bj) = (Ar ×Bs)⇒ i = r and j = s

We also have to prove that
⋃

(Ai ×Bj) = A×B

To do this, we just have to prove that the number of elements on both sides

is the same which is a counting problem.

6. Prove by induction that if a relation R on a set A is symmetric, then Rn is
symmetric for n ≥ 1.

Solution: Let a and b be two elements belonging to A. Since R is symmetric, aRb = bRa

We have to prove that aRnb = bRna

Basis: For n = 1, the expression is true.

Induction step: Let us assume that the expression is true for n = k − 1.

aRkb = aRk−1a1Rb

∴ aRkb = aRk−1bRa1

∴ aRkb = bRk−1aRa1

∴ aRkb = bRk−1a1Ra

∴ aRkb = bRka

Hence, proved.

7. Let A = {a, b, c, d, e} and MR =


1 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 1 1 0 0
1 0 0 0 0

, give the relation R defined on

A and its digraph.

Solution: The relation R is defined by

mij = 1 if (ai, bj) ∈ R
= 0 if (ai, bj) /∈ R



The digraph will have 5 vertices V = a, b, c, d, e and E = {(i, j) where mij = 1}

8. Let R be a relation from A to B. Prove that for all subsets A1 and A2 of A

R(A1 ∩ A2) = R(A1) ∩R(A2) if and only if

R(a) ∩R(b) = {} for any distinct a, b in A

Solution: We will break the proof down into two parts.

Let R(A1 ∩ A2) = R(A1) ∩R(A2) . . . (1)

and R(a) ∩R(b) = {} . . . (2)

Necessary part: (1)⇒ (2)

We prove this by proving the contrapositive i.e. ∼ (2)⇒∼ (1)

⇒ There exist atleast two distinct elements a, b such that their image sets have elements in
common.

⇒ If a ∈ A1 and b ∈ A2 then A1 ∩ A2 can be equal to φ but the R.H.S of (1) will not be
empty.

Hence, proved.

Sufficient part: (2)⇒ (1)

R(A1) ∩ R(A2) will consist of images of only those elements which have a duplicate in the
other subset. (∵ of (2))

R(A1 ∩ A2) will consist of images of common elements of A1 and A2

Hence, proved


