CS21001:Discrete Structures

Autumn semester 2009-10

Solutions to tutorial: Relations and Digraphs

1. Let $A=\{1,2,3,4\}$ and let R and S be the relations on A described by

$$
M_{R}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

and

$$
M_{S}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Use Warshall's algorithm to compute the transitive closure of $R \cup S$.
Solution: First calculate $M_{R \cup S}=M_{R} \vee M_{S}$
This will be the initial CLOSURE matrix of Warshall's algorithm. Apply the algorithm with $N=4$
2. Let R and S be relations on A.
(a) If R is symmetric, so are R^{-1} and \bar{R}.
(b) If R and S are symmetric, so are $R \cap S$ and $R \cup S$.

Proof: If R is symmetric, $R=R^{-1}$

$$
\begin{aligned}
& \therefore\left(R^{-1}\right)^{-1}=R=R^{-1} \\
& \Rightarrow R^{-1} \text { is also symmetric. }
\end{aligned}
$$

Also, $(a, b) \in(\bar{R})^{-1} \Leftrightarrow(b, a) \in \bar{R} \Leftrightarrow(b, a) \notin R \Leftrightarrow(a, b) \notin R^{-1}=R$
$\Leftrightarrow(a, b) \in \bar{R} \Rightarrow \bar{R}$ is symmetric.
For part (b), we use the properties

$$
(R \cap S)^{-1}=R^{-1} \cap S^{-1} \text { and }(R \cup S)^{-1}=R^{-1} \cup S^{-1}
$$

Since R and S are symmetric, we can replace R^{-1} by R and S^{-1} by S
$\Rightarrow R \cap S$ and $R \cup S$ are symmetric.
3. Let R and S be relations on A.
(a) If R is reflexive, so is R^{-1}.
(b) If R and S are reflexive, so are $R \cap S$ and $R \cup S$.
(c) R is reflexive if and only if \bar{R} is irreflexive.

Proof: The solution is provided as Theorem 2 in Chapter 4 of Kolman.
4. Prove that the number of partitions of a set with n elements into k subsets satisfies the recurrence relation

$$
S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)
$$

Solution: There are two cases:
(a) The $n^{\text {th }}$ element is the only element in its partition. In this case, the number of partitions is $S(n-1, k-1)$
(b) The $n^{\text {th }}$ element is in a subset with more than one elements. In this case, the remaining elements can be in $S(n-1, k)$ partitions. The $n^{\text {th }}$ element can be in any of these k sets.

$$
\therefore S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)
$$

5. Let $P_{1}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a partition of A and $P_{2}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ a partition of B. Prove that

$$
P=\left\{A_{i} \times B_{j}, 1 \leq i \leq k, 1 \leq j \leq m\right\}
$$

is a partition of $A \times B$.
Solution: We have to prove that for all $1 \leq i \leq k, 1 \leq j \leq m, 1 \leq r \leq k, 1 \leq s \leq m$

$$
\left(A_{i} \times B_{j}\right) \cap\left(A_{r} \times B_{s}\right)=\phi
$$

where $i \neq r$ and $j \neq s$

Since $A_{i} \cap A_{r}=\phi$ and $B_{j} \cap B_{s}=\phi$, there can be no two ($A_{i} \times B_{j}$)'s having the same values i. e.
$\left(A_{i} \times B_{j}\right)=\left(A_{r} \times B_{s}\right) \Rightarrow i=r$ and $j=s$
We also have to prove that $\bigcup\left(A_{i} \times B_{j}\right)=A \times B$
To do this, we just have to prove that the number of elements on both sides is the same which is a counting problem.
6. Prove by induction that if a relation R on a set A is symmetric, then R^{n} is symmetric for $n \geq 1$.

Solution: Let a and b be two elements belonging to A. Since R is symmetric, $a R b=b R a$
We have to prove that $a R^{n} b=b R^{n} a$
Basis: For $n=1$, the expression is true.
Induction step: Let us assume that the expression is true for $n=k-1$.
$a R^{k} b=a R^{k-1} a_{1} R b$
$\therefore a R^{k} b=a R^{k-1} b R a_{1}$
$\therefore a R^{k} b=b R^{k-1} a R a_{1}$
$\therefore a R^{k} b=b R^{k-1} a_{1} R a$
$\therefore a R^{k} b=b R^{k} a$
Hence, proved.
7. Let $A=\{a, b, c, d, e\}$ and $M_{R}=\left[\begin{array}{ccccc}1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$, give the relation R defined on A and its digraph.

Solution: The relation R is defined by

$$
\begin{aligned}
m_{i j} & =1 \text { if }\left(a_{i}, b_{j}\right) \in R \\
& =0 \text { if }\left(a_{i}, b_{j}\right) \notin R
\end{aligned}
$$

The digraph will have 5 vertices $V=a, b, c, d, e$ and $E=\left\{(i, j)\right.$ where $\left.m_{i j}=1\right\}$
8. Let R be a relation from A to B. Prove that for all subsets A_{1} and A_{2} of A

$$
\begin{aligned}
& R\left(A_{1} \cap A_{2}\right)=R\left(A_{1}\right) \cap R\left(A_{2}\right) \quad \text { if and only if } \\
& R(a) \cap R(b)=\{ \} \quad \text { for any distinct } a, b \text { in } A
\end{aligned}
$$

Solution: We will break the proof down into two parts.
Let

$$
\begin{align*}
& R\left(A_{1} \cap A_{2}\right)=R\left(A_{1}\right) \cap R\left(A_{2}\right) \ldots(1) \\
& R(a) \cap R(b)=\{ \} \quad \ldots(2) \tag{2}
\end{align*}
$$

and

Necessary part: $(1) \Rightarrow(2)$
We prove this by proving the contrapositive i.e. $\sim(2) \Rightarrow \sim(1)$
\Rightarrow There exist atleast two distinct elements a, b such that their image sets have elements in common.
\Rightarrow If $a \in A_{1}$ and $b \in A_{2}$ then $A_{1} \cap A_{2}$ can be equal to ϕ but the R.H.S of (1) will not be empty.

Hence, proved.
Sufficient part: $(2) \Rightarrow(1)$
$R\left(A_{1}\right) \cap R\left(A_{2}\right)$ will consist of images of only those elements which have a duplicate in the other subset. (\because of (2))
$R\left(A_{1} \cap A_{2}\right)$ will consist of images of common elements of A_{1} and A_{2}
Hence, proved

