
CS21001 Discrete Structures

Autumn 2009–10

Solutions to Tutorial on : Probability, Recurrence Relations, Pigeonhole principle

1. Solve:

(a) f (n) = 2f (n− 1) + n for n ≥ 1 and f (0) = 0.

Solution: This recurrence is of the form f(n) = g(n)f(n − 1) + h(n), n ≥ 1, where g(n) = 2 and
h(n) = n. Define, f ′(n) such that f(n) = g(n)g(n − 1) . . . g(1)f ′(n) and f(n − 1) = g(n − 1)g(n −
2) . . . g(1)f ′(n− 1). Substitute f(n) and f(n− 1) in the original recurrence, to get

n∏
i=1

g(i)f ′(n) =
n∏

i=1

f ′(n− 1) + h(n)

f ′(n) = f ′(n− 1) +
h(n)∏n
i=1 g(i)

for n ≥ 1. Comparing with this form, we have f(n) = 2nf ′(n). Thus,

f ′(n) = f ′(n− 1) +
n

2n

= f ′(0) +
n∑

i=1

i

2i

Since f ′(0) = 0, we have

f(n) = 2nf ′(n)

= 2n
n∑

i=1

i

2i

= 2n−1 − n− 2

(b) f (n) = 2f (
√
n) + log n for n > 2 and f (2) = 0.

Solution: Substitute m = log2 n. Therefore, f(2m) = 2f
(
2

m
2
)

+ log n. We can now rename
g(m) = f(2m). Thus the new recurrence becomes, g(m) = 2g

(
m
2

)
+ cm, for m > 1, g (1) = 0

and where c is a constant. Solving the recurrence, we have

g(m) = 2g(
m

2
) + cm

= 22g(
m

22
) + c2m

For simplicity, let us assume for some k, m = 2k. Then we have

g(m) = 2kg(1) + ckm

≤ m logm

So, g(m) = O(m logm). Finally, substituting original values, we have f(n) = O(log n log log n).
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2. Show that of any 5 points chosen in an unit square, there are two points which will be at most
1√
2

units apart.

Solution: Place the square with its vertices at
(
± 1

2 ,±
1
2

)
. The unit square can be covered by 4 closed discs, each

of diameter
√

2
2 , with centers at

(
± 1

4 ,±
1
4

)
. When 5 points are placed on the square, some two of them must lie

in the same disc, and these points will be at most
√

2
2 .i.e. 1√

2
units apart.

3. The distance travelled by a particle moving in the horizontal direction in each second is equal to twice the
distance it travelled in the previous one. Let si denote the position of the particle in the ith second. Determine
si given that s0 = 3 and s1 = 10.

Solution: The distance travelled by the particle in the ith second is si − si−1 and the distance travelled in the
(i− 1)th second is si−1 − si−2. By the problem, we have

si − si−1 = 2 (si−1 − si−2)
si − 3si−1 − 2si−2 = 0

The characteristic equation is x2−3x+2 = 0 with distinct roots x = 1, 2. The general solution is si = c1+c22n.
Now, on applying the initial conditions we have

s0 = 3 = c1 + c2

s1 = 10 = c1 + 2c2

Solving for c1 and c2, we obtain c1 = −4, c2 = 7. Therefore, the distance travelled by a particle in the ith

second, si = 7. 2i − 4.

4. A coin lands with head with a probability p. Let tn be the probability that after n independent tosses, the number
of heads are even. Derive a recursion that relates tn to tn−1, and solve this recursion to establish the formula

tn =
1 + (1− 2p)n

2

Solution: Let X be the event that the first (n−1) tosses produce an even number of heads, and let Y be the event
that the nth toss is a head. We can obtain an even number of heads in n tosses in two distinct ways. First, there
is an even number of heads in the first (n− 1) tosses, and the nth toss results in tails. This is the event X ∩ Y c.
Second, there is an odd number of heads in the first (n− 1) tosses, and the nth toss results in heads. This is the
event Xc ∩ Y . Since X and Y are independent,

tn = Pr ((X ∩ Y c) ∪ (Xc ∩ Y ))
= Pr (X ∩ Y c) + Pr (Xc ∩ Y )
= Pr(X) Pr(Y c) + Pr(Xc) Pr(Y )
= tn−1(1− p) + (1− tn−1)p.

We now use induction. For n = 0, we have t0 = 1, which agrees with given formula for tn. Assume, that the
formula holds with n replaced by n− 1, i.e.,

tn−1 =
1 + (1− 2p)n−1

2
Using this equation, we have

tn = tn−1(1− p) + (1− tn−1)p
= p+ (1− 2p)tn−1

= p+ (1− 2p)
1 + (1− 2p)n−1

2

=
1 + (1− 2p)n

2
Hence, the given formula applies for all n.
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5. Use generating functions to solve the following recurrence relations:

(a) F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

Solution: Let F (x) = F0 + F1x + F2x
2 + · · · + Fnx

n + · · · . Then, F (x) = F0 + F1x +
(F0 + F1)x2 + (F1 + F2)x3 + · · · + (Fn−2 + Fn−1)xn + · · · = F0 + F1x + x(F (x) − F0) +
x2F (x), i.e., (1 − x − x2)F (x) = F0 + F1x − F0x = x, i.e., F (x) =

x

(1− x− x2)
=

1
γ − γ′

(
1

1− γx
− 1

1− γ′x

)
, where γ =

1 +
√

5
2

and γ′ =
1−
√

5
2

. We have γ − γ′ =
√

5, and

so F (x) =
1√
5

[(
1 + γx+ γ2x2 + · · ·+ γnxn + · · ·

)
−
(
1 + γ′x+ γ′2x2 + · · ·+ γ′nxn + · · ·

)]
, i.e.

Fn =
1√
5

(γn − γ′n), ∀n ∈ N.

(b) a0 = 1, a1 = 3, an = 4an−1 − 4an−2 for n ≥ 2.

Solution: Let a(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · . Then, a(x) = a0 +
a1x + (4a1 − 4a0)x2 + (4a2 − 4a1)x3 + · · · + (4an−1 − 4an−2)xn + · · · = a0 + a1x +
4x(a(x) − a0) − 4x2a(x), i.e., (1 − 4x + 4x2)a(x) = a0 + a1x − 4a0x = 1 − x, i.e.

a(x) =
1− x

1− 4x+ 4x2
=

1− x
(1− 2x)2

=
1
2

[
1 + (1− 2x)
(1− 2x)2

]
=

1
2

[
1

(1− 2x)2
+

1
(1− 2x)

]
=

1
2
[(

1 + 2(2x) + 3(2x)2 + · · ·+ (n+ 1)(2x)n + · · ·
)

+
(
1 + 2x+ (2x)2 + · · ·+ (2x)n + · · ·

)]
, i.e. an =

1
2
(n+ 1 + 1)2n = (n+ 2)2n−1, ∀n ∈ N.

6. A salesman sells at least one car everyday for 60 consecutive days, with an average of 1.5 cars per day. Show
that there must be a period of consecutive days during which he sells exactly 29 cars.

Solution: Let ci be the number of cars the salesman has sold till the end of the ith day. Since, the salesman sells
at least one car each day and at most 60× 1.5 = 90 cars in 60 days, we have

1 ≤ c1 < c2 < . . . < c60 ≤ 90

Now, as each ci is different, we have

c1 + 29 < c2 + 29 < . . . < c60 + 29 ≤ 90 + 29 = 119

There are 120 numbers, each between 1 and 119. By the pigeonhole principle, two of the numbers have to be
the same. Since, c1 < c2 < . . . < c60 are all different and c1 + 29 < c2 + 29 < . . . < c60 + 29 are all different,
there exists ci and cj such that ci = cj + 29. Therefore, in between the ith day and the jth day, the salesman
sells exactly 29 cars.

7. 51 integers are chosen from the set {1, 2, 3, . . . , 100}. Show that one of the chosen integers is a multiple of
another.

Solution: Let the chosen integers be a1, a2, . . . , a51. Now, we can express any integer as ak = 2mkbk, where bk
is an odd integer and k = 1, 2, . . . , 51. The 51 numbers b1, b2, . . . , b51 are all odd, however only 50 odd integers
can exist within {1, 2, 3, . . . , 100}. By the pigeonhole principle, some pair of the numbers bk must be equal.
Since, the chosen 51 integers are distinct and bi = bj , then mi 6= mj which implies either ai is a multiple of aj

or vice-versa.

8. N queens are placed in distinct squares of an N × N chessboard, with all possible placements being equally
likely. A queen is free to move along horizontally or vertically, however no diagonal movement is allowed.
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What is the probability that no queen intersects the rest ?

Solution: By the problem, there should be no row or column with more than one queen. The first queen
can occupy any position in the N × N chessboard. Placing this queen, however eliminates one row and
one column. For the second queen, we can imagine that the conflicting row and column have been removed,
thus leaving us with a (N − 1) × (N − 1) chessboard. Therefore, the second queen has (N − 1)2 choices.
Similarly, for the third queen we have (N − 2)2 choices, and so on. In the absence of any constraints, there are

N2· (N2−1) · · · (N2− (N −1)) =
N2!

(N2 −N)!
ways in which we can place N queens. So the probability that

no queen intersects each other is

N2· (N − 1)2 · · · 22

N2!
(N2 −N)!

=
(N !)2

N2!
(N2 −N)!

9. A hunter has two hunting dogs. One day, on the trail of some animal, the hunter comes to a place where the
road diverges into two paths. He is aware that, each dog, independent of the other, will choose the correct path
with probability p. The hunter decides to let each dog choose a path and if they agree, take that one and if they
disagree, to randomly pick a path. Is his strategy better than just letting one of the two dogs decide on a path ?

Solution: Consider the sample space for the hunter’s strategy. The events that lead to the correct path are:

(a) Both dogs agree on the correct path [probability p2, by independence].

(b) The dogs disagree, dog A chooses the correct path, and the hunter follows dog A [probability
1
2
p(p− 1)].

(c) The dogs disagree, dog B chooses the correct path, and the hunter follows dog B [probability
1
2
p(p− 1)]

Since the above events are disjoint, so the probability that the hunter chooses the correct path is

p2 +
1
2
p(p− 1) +

1
2
p(p− 1) = p

On the other hand, if the hunter lets one dog choose the path, this dog will also choose the correct path with
probability p. Thus, the two strategies are equally effective.

10. The numbers 1 to 10 are arranged in random order around a circle. Show that there are 3 consecutive numbers
whose sum is at least 17.

Solution: Let the numbers occur around the circle as a1, a2, a3, . . . , a10. Then the triples of the consecutive
numbers are :

{a1, a2, a3}, {a2, a3, a4}, {a3, a4, a5} . . . , {a9, a10, a1}, {a10, a1, a2}

Thus we see that each number occurs in exactly 3 triples. Hence the sum of all the triples

{a1 + a2 + a3}+ {a2 + a3 + a4}+ {a3 + a4 + a5}+ · · ·+ {a9 + a10 + a1}+ {a10 + a1 + a2}
= 3(1 + 2 + 3 + · · ·+ 10)

=
3× 10× 11

2
= 165

Now, there are 10 triples whose sum is 165 > 10× 16. Hence, there must be at one triple whose sum is at least
16 + 1 = 17.
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