
CS21001 Discrete Structures

Autumn 2009–10

Solutions to Tutorial on : Groups and Graphs

1. Let (S, ∗) be a semigroup and a ∈ S. The sub-semigroup generated by a is the set 〈a〉 =
{a ∗ a ∗ a · · · a (n times) |n > 0}. S is cyclic if S = 〈a〉 for some a ∈ S. Justify which of the following
semigroups is/are cyclic.

(a) N under integer multiplication.
Solution: No. Every positive integer cannot be written as a power of a fixed (positive) integer. More
precisely, suppose N = 〈a〉 for some a ∈ N. But then, 2 = ai and 3 = aj for some i, j > 0. But
then a divides both 2 and 3, whereas 2, 3 are coprime. Thus a = 1 and consequently 〈a〉 = {1} 6= N, a
contradiction.

(b) Z under integer addition.
Solution: No. Consider 〈a〉 for some a ∈ Z. We have 〈a〉 = {0}. So assume a 6= 0. If a > 0, then 〈a〉
contains only positive integers. On the other hand, if a < 0, then 〈a〉 contains only negative integers. In
all these cases, 〈a〉 is a proper subset of Z.

(c) Zn under addition modulo n.
Solution: Yes. Zn is generated by (the equivalence class of) 1. Note that

1 ≡ 1 (mod n),
2 ≡ 1 + 1 (mod n),
· · ·

n− 1 ≡ 1 + 1 + · · ·+ 1 (n - 1 times) (mod n), and
0 ≡ 1 + 1 + · · ·+ 1 (n times) (mod n).

2. Let G be a finite multiplicative group and h = ord a for some a ∈ G. Show that an = e iff h|n.

Solution: [if] Let n = kh. Then an =
(
ah
)k = ek = e.

[only if] Suppose an = e, where n = qh+ r with 0 ≤ r < h. Since ah = e, it follows that ar = e. Since ord a
is the smallest positive integer h with property ah = e, we must have r = 0, i.e. n = qh is an integral multiple
of h.

3. (a) Define an operation ∗ on R as x ∗ y = x+ y + xy. Prove or disprove: (R, ∗) is a group.
Solution: [Closure] Obvious.
[Associativity] We have (x ∗ y) ∗ z = (x + y + xy) ∗ z = (x + y + xy) + z + (x + y + xy)z =
x + y + z + xy + yz + zx + xyz. Similarly, x ∗ (y ∗ z) = x + y + z + xy + yz + zx + xyz. Thus,
(x ∗ y) ∗ z = x ∗ (y ∗ z).
[Identity] It is easy to verify that 0 is the identity element w.r.t ∗.
[Inverse] Let x ∈ R have the inverse y ∈ R, i.e. x ∗ y = x + y + xy = 0, i.e. y = −x

1+x , i.e. y exists iff
x 6= −1. Since −1 does not have an inverse under ∗, (R, ∗) is not a group.

(b) Prove or disprove: (R \ {−1} , ∗) is a group.
Solution: The closure is the only property that requires to be verified. Take x, y ∈ R. Then, (1+x)(1+y) 6=
0, i.e. x+ y + xy 6= −1, i.e. R \ {−1} is closed under ∗.

4. Let G be an Abelian group. An element a ∈ G is called a torsion element of G if ord a is finite. Prove that the
set of all torsion elements of G is a subgroup of G.
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Solution: We denote by H the set of all elements of G of finite orders.
[Closure] Let a, b ∈ H , ord a = m and ord b = n. But then, (ab)mn = amnbmn = (am)n(bn)m = e, i.e.
ord(ab)|mn. In particular, ord(ab) is finite, i.e. ab ∈ H .
[Inverse] Let a ∈ H . Since ak = e iff (ak)−1 = (a−1)k = e, we have ord(a−1) = ord a.

5. Let G be a multiplicative group and H , K subgroups of G with H ∩ K = {e}. Assume that G = HK =
{hk|h ∈ H, k ∈ K}. Prove that every element a ∈ G can be written as a = hk for some unique elements
h ∈ H and k ∈ K.

Solution: Let a ∈ G be written as a = h1k1 = h2k2 with h1, h2 ∈ H and k1, k2 ∈ K. The element
h−1

1 h2 = k1k
−1
2 belongs to H ∩K and is the identity element by hypothesis. But then h1 = h2 and k1 = k2.

6. Show that the set of all complex numbers of the form x+ iy with x, y integers and with x even is a group under
addition of complex numbers.

Solution: It suffices only to check closure and inverse. If x,y,x′,y′ are integers then x + x′ and y + y′ are also
integers. Moreover, if x and x′ are even, then so also is x+ x′. Finally, the inverse of x+ iy is −x− iy. Here
−x, −y are also integers and −x is also even (if x is so).

7. Prove that an undirected graph has an even number of vertices of odd degree.

Solution: Let V1 and V2 be the set of vertices of even degree and odd degree, respectively, in an undirected graph
G = (V,E). Then

2e =
∑
∈V

deg() =
∑
∈V1

deg() +
∑
∈V2

deg()

Since deg() is even for ∈ V1, the first term in the R.H.S of the last equality is even. Furthermore, the sum of the
two terms on the R.H.S of the last equality is even, because this sum is 2e. Hence, the second term in the sum is
also even. Because, all the terms in this sum are odd, there must be an even number of such terms. Thus, there
are an even number of vertices of odd degree.

8. Show that a graph is bipartite iff it has no odd cycles.

Solution: [if] It is possible to color the graph with 2 colors. If the graph contained an odd cycle, that would not
have been possible.
[only if] Assume the graph has no odd cycles and consider a spanning tree of the graph. Start from a vertex of
this tree (call this root) and color this vertex red. Now color the graph with green, for adjacent vertices. The
distance of the red vertices from the root is even while green vertices are at odd distances. Consider an edge e
of the graph that connects vertex x to y. It is sufficient to show that (each) edge e cannot connect two red or two
green vertices. If e belongs to this spanning tree then this is true from construction. Now, if e does not belong
to this tree, then there exists a cycle in the graph which contains e. However, this cycle is even by the initial
assumption. Thus the vertices x and y cannot have the same color, which proves the graph to be bipartite.

9. Let G = (V,E) be a graph with |V | = n. Let the maximum degree of any node be at most d and a vertex cover
of G be of size at most c. Find the maximum number of edges that G can have.

Solution: Let V ′ ⊆ V be a vertex cover in G of size c′ ≤ c. As V ′ is a vertex cover, every edge in G has at least
one of its vertices in V ′. Also, each node having a degree of at most d can cover at most d edges. Thus we can
have a total of c′d ≤ cd edges in G.

10. If α and β denote the minimum vertex cover and maximum independent set respectively of an undirected
connected graph G with n vertices, then α+ β = n. Prove or disprove the above statement.

Solution: For any two vertices in the maximum independent set of size β, there is no edge joining the two
vertices. So, the remaining n− β vertices will definitely form a vertex cover (not necessarily minimum). Thus,
α ≤ n − β. On the other hand, for any two vertices not in the minimum vertex cover of size α, there can be
no edge between two such vertices. So, these vertices form an independent set of size n − α (not necessarily
maximum). Thus, β ≥ n−α. From the two inequalities, we have α+ β ≤ n and α+ β ≥ n, which proves the
above statement.

2


