CS21001 Discrete Structures

Autumn 2009-10

Solutions to Tutorial on : Functions

1. Consider the following C function:
```
unsigned int f (unsigned int n)
{
    if ((n == 0) || (n == 1)) return 0;
    if ((n%2) == 0) return 1 + f(n/2);
    return 1 + f(5*n+1);
}
```

(a) What does f (19) return?

Solution: We have $\mathrm{f}(19)=1+\mathrm{f}(96)=2+\mathrm{f}(48)=3+\mathrm{f}(24)=4+\mathrm{f}(12)=5+\mathrm{f}(6)$ $=6+f(3)=7+f(16)=8+f(8)=9+f(4)=10+f(2)=11+f(1)=11+0=11$.
(b) What does $f(5)$ return ?

Solution: We have $\mathrm{f}(5)=1+\mathrm{f}(26)=2+\mathrm{f}(13)=3+\mathrm{f}(66)=4+\mathrm{f}(33)=5+\mathrm{f}(166)$ $=\cdots=12+\mathrm{f}(13)=\cdots=22+\mathrm{f}(13)=\cdots 32+\mathrm{f}(13)=\cdots$. Thus the above function does not terminate when 5 is passed as its argument. When the recursion stack runs out of memory, it exits with an error message (typically segmentation fault).
(c) What can you conclude about f as a function $\mathbb{N} \rightarrow \mathbb{N}$?

Solution: The sequence of computation in Part (b) implies that $f(13)=10+f(13)$ i.e., f is not well defined as a function $\mathbb{N} \rightarrow \mathbb{N}$.
2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$
(a) Prove that if the function $g \circ f: A \rightarrow C$ is injective then f is injective.

Solution: Try yourself !
(b) Provide an example in which $g \circ f$ is injective but g is not.

Solution: Take $f(x)=\sqrt{x}, f(x): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $g(x)=x^{2}, g(x): \mathbb{R} \rightarrow \mathbb{R}$.
(c) Prove that if $g \circ f$ is surjective, then g is surjective.

Solution: Try yourself!
(d) Give an example in which $g \circ f$ is surjective but f is not.

Solution: Take $f(x)=\sqrt{x}, f(x): \mathbb{R}^{+} \rightarrow \mathbb{R}$ and $g(x)=x^{2}, g(x): \mathbb{R} \rightarrow \mathbb{R}$.
3. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection not equal to the identity map. Prove that there exists $n \in \mathbb{N}$ such that $n<f(n)$ and $n<f^{-1}(n)$.

Solution: Let $S=\{a \in \mathbb{N} \mid f(a) \neq a\}$. Since f is not the identity map, we have $S \neq \phi$. Let n be the minimum element in S. Thus, $f(0)=0, f(1)=1, \ldots, f(n-1)=n-1$. Since f is injective, $f(n)$ cannot be equal to $0,1,2, \ldots, n-1$. Moreover, since $f(n) \neq n$, we must have $f(n)>n$. Further, $f^{-1}(0)=0, f^{-1}(1)=1$, $\ldots, f^{-1}(n-1)=n-1$, whereas $f^{-1}(n)=n$ (since $f(n)>n$ and f is injective). Therefore it follows that $f^{-1}(n)>n$, too.
4. Let $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f_{1}(a)=-a^{2}$ and $f_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be given by $f_{2}(a)=\sqrt{a}$. Compute $f_{1} \circ f_{2}$. Can $f_{2} \circ f_{1}$ be defined?

Solution: $\left(f_{1} \circ f_{2}\right)(a)=f_{1}\left(f_{2}(a)\right)=f_{1}(\sqrt{a})=-a \forall a \in \mathbb{R}^{+}$. It is possible to define the function $f_{1} \circ f_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ because the range of f_{2} is \mathbb{R}^{+}, which is a subset of \mathbb{R} and \mathbb{R} is the domain of f_{1}. But, the range of f_{1} is not included in the domain of f_{2}. So, $f_{2} \circ f_{1}$ cannot be defined.
5. (a) Show that composition of functions is associative.

Solution: Consider three functions $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$. Then we require to show that

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

Now, let us assume that $b=f(a), c=g(b)$, and $d=h(c)$. We have $(a, b) \in f,(b, c) \in g,(c, d) \in h$ and $(a, c) \in g \circ f,(b, d) \in h \circ g$. By the same argument we can write, $(a, d) \in h \circ(g \circ f)$. Similarly, $(a, d) \in(h \circ g) \circ f$. This being true for any a and corresponding d, proves the associativity.
(b) Let $f_{1}(x)=x+4, f_{2}(x)=x-4$, and $f_{3}=4 x$ for $x \in \mathbb{R}$. Find $f_{1} \circ f_{2}, f_{2} \circ f_{1}, f_{1} \circ f_{1}, f_{2} \circ f_{2}, f_{1} \circ f_{3}$, $f_{3} \circ f_{2}, f_{3} \circ f_{1}$ and $f_{1} \circ f_{3} \circ f_{2}$.
Solution:

$$
\begin{aligned}
f_{1} \circ f_{2} & =\{(x, x) \mid x \in \mathbb{R}\} \\
f_{2} \circ f_{1} & =\{(x, x) \mid x \in \mathbb{R}\} \\
f_{1} \circ f_{1} & =\{(x, x+8) \mid x \in \mathbb{R}\} \\
f_{2} \circ f_{2} & =\{(x, x-8) \mid x \in \mathbb{R}\} \\
f_{1} \circ f_{3} & =\{(x, 4 x+4) \mid x \in \mathbb{R}\} \\
f_{3} \circ f_{2} & =\{(x, 4 x-16) \mid x \in \mathbb{R}\} \\
f_{3} \circ f_{1} & =\{(x, 4 x+16) \mid x \in \mathbb{R}\} \\
\left(f_{1} \circ f_{3}\right) \circ f_{2} & =\{(x, 4 x-12) \mid x \in \mathbb{R}\}
\end{aligned}
$$

6. (a) Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions such that $g \circ f=1_{A}$ and $f \circ g=1_{B}$. Then show that, f is a one-to-one correspondence between A and B, g is a one-to-one correspondence between B and A, and each is the inverse of the other.

Solution: The assumption means that

$$
g(f(a))=a \text { and } f(g(b))=b, \forall a \in A, b \in B
$$

This shows that $\operatorname{Ran}(f)=B$ and $\operatorname{Ran}(g)=A$, so each function is onto. If $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=a_{2}$. Thus f is injective. In a similar way, we see that g is injective, so both f and g are invertible. Note f^{-1} is everywhere defined since $\operatorname{Dom}\left(f^{-1}\right)=\operatorname{Ran}(f)=B$. Now, if b is any element in B,

$$
f^{-1}(b)=f^{-1}(f(g(b)))=\left(f^{-1} \circ f\right) g(b)=1_{A}(g(b))=g(b)
$$

Thus $g=f^{-1}$, so also $f=\left(f^{-1}\right)^{-1}=g^{-1}$. Then, since g and f are onto, f^{-1} and g^{-1} are onto, so f and g must be everywhere defined.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be invertible. Then $g \circ f$ is invertible, and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Solution: We know that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$, since this is true for any two relations. Since g^{-1} and f^{-1} are functions by assumption, so is their composition, and then $(g \circ f)^{-1}$ is a function. So $g \circ f$ is invertible.
(c) Let $A=B=\mathbb{R}$. Let $f: A \rightarrow B$ be given by the formula $f(x)=2 x^{3}-1$ and let $g: B \rightarrow A$ be given by

$$
g(y)=\sqrt[3]{\frac{1}{2} y+\frac{1}{2}}
$$

Show that both f and g are bijective functions.
Solution: Let $x \in A$ and $y=f(x)=2 x^{3}-1$. Then $\frac{1}{2}(y+1)=x^{3}$; therefore,

$$
x=\sqrt[3]{\frac{1}{2} y+\frac{1}{2}}=g(y)=g(f(x))=(g \circ f)(x)
$$

Thus $g \circ f=1_{A}$. Similarly, $f \circ g=1_{B}$, so by the previous proof both f and g are bijections.
7. For real numbers a, b with $a<b$, we define the closed interval $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$ and the open interval $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$. Prove that the closed interval $[0,1]$ is equinumerous with the open interval $(0,1)$.

Solution: The inclusion map $f:(0,1) \rightarrow[0,1]$ taking $x \mapsto x$ is injective. Also the map $g:[0,1] \rightarrow(0,1)$ taking $x \mapsto \frac{1}{4}+\frac{x}{2}$ is an injective embedding of $[0,1]$ in the interval $\left[\frac{1}{4}, \frac{3}{4}\right]$ which is a subset of $(0,1)$.
8. (a) Show that $(n+a)^{b}=\Theta\left(n^{b}\right)$

Solution: Here we will want to find constants $c_{1}, c_{2}, n_{0}>0$ such that $0 \leq c_{1} n^{b} \leq(n+a)^{b} \leq c_{2} n^{b}, \forall n \geq$ n_{0}. Note that

$$
\begin{aligned}
& n+a \leq n+|a| \leq 2 n \text { when }|a| \leq n, \text { and } \\
& n+a \geq n-|a| \geq \frac{1}{2} n \text { when }|a| \leq \frac{1}{2} n .
\end{aligned}
$$

Thus, when $n \geq 2|a|, 0 \leq \frac{1}{2} n \leq n+a \leq 2 n$. Since $b>0$, the inequality still holds when all parts are raised to the power of b :

$$
\begin{aligned}
& 0 \leq\left(\frac{1}{2} n\right)^{b} \leq(n+a)^{b} \leq(2 n)^{b} \\
& 0 \leq\left(\frac{1}{2}\right)^{b} n^{b} \leq(n+a)^{b} \leq 2^{b} n^{b}
\end{aligned}
$$

Thus, $c_{1}=(1 / 2)^{b}, c_{2}=2^{b}$, and $n_{0}=2|a|$ satisfy the relation.
(b) Prove or disprove the following statement $a^{2 n}=O\left(a^{n}\right)$.

Solution: If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists and is $\neq \infty$, then $f(n)=O(g(n))$. Now, we have $\lim _{n \rightarrow \infty} \frac{a^{2 n}}{a^{n}}=$ $\lim _{n \rightarrow \infty} \frac{a^{n} * a^{n}}{a^{n}}=\lim _{n \rightarrow \infty} a^{n}=\infty$. Hence, $a^{2 n} \neq O\left(a^{n}\right)$.

