CS21001 Discrete Structures

Autumn 2009–10

Solutions to Tutorial on : Functions

1. Consider the following C function:

```
unsigned int f (unsigned int n)
{
    if ((n == 0) || (n == 1)) return 0;
    if ((n%2) == 0) return 1 + f(n/2);
    return 1 + f(5*n+1);
}
```

(a) What does f (19) return?

Solution: We have f(19) = 1 + f(96) = 2 + f(48) = 3 + f(24) = 4 + f(12) = 5 + f(6)= 6 + f(3) = 7 + f(16) = 8 + f(8) = 9 + f(4) = 10 + f(2) = 11 + f(1) = 11 + 0 = 11.

(b) What does f (5) return?

Solution: We have $f(5) = 1 + f(26) = 2 + f(13) = 3 + f(66) = 4 + f(33) = 5 + f(166) = \cdots = 12 + f(13) = \cdots = 22 + f(13) = \cdots = 32 + f(13) = \cdots$. Thus the above function does not terminate when 5 is passed as its argument. When the recursion stack runs out of memory, it exits with an error message (typically segmentation fault).

(c) What can you conclude about f as a function $\mathbb{N} \to \mathbb{N}$?

Solution: The sequence of computation in Part (b) implies that f(13) = 10 + f(13) i.e., f is not well defined as a function $\mathbb{N} \to \mathbb{N}$.

- 2. Let $f : A \to B$ and $g : B \to C$
 - (a) Prove that if the function $g \circ f : A \to C$ is injective then f is injective. Solution: Try yourself !
 - (b) Provide an example in which $g \circ f$ is injective but g is not. Solution: Take $f(x) = \sqrt{x}$, $f(x) : \mathbb{R}^+ \to \mathbb{R}^+$ and $g(x) = x^2$, $g(x) : \mathbb{R} \to \mathbb{R}$.
 - (c) Prove that if $g \circ f$ is surjective, then g is surjective. Solution: Try yourself !
 - (d) Give an example in which $g \circ f$ is surjective but f is not. Solution: Take $f(x) = \sqrt{x}$, $f(x) : \mathbb{R}^+ \to \mathbb{R}$ and $g(x) = x^2$, $g(x) : \mathbb{R} \to \mathbb{R}$.
- 3. Let $f : \mathbb{N} \to \mathbb{N}$ be a bijection not equal to the identity map. Prove that there exists $n \in \mathbb{N}$ such that n < f(n) and $n < f^{-1}(n)$.

Solution: Let $S = \{a \in \mathbb{N} | f(a) \neq a\}$. Since f is not the identity map, we have $S \neq \phi$. Let n be the minimum element in S. Thus, f(0) = 0, $f(1) = 1, \ldots, f(n-1) = n-1$. Since f is injective, f(n) cannot be equal to $0, 1, 2, \ldots, n-1$. Moreover, since $f(n) \neq n$, we must have f(n) > n. Further, $f^{-1}(0) = 0$, $f^{-1}(1) = 1$, $\ldots, f^{-1}(n-1) = n-1$, whereas $f^{-1}(n) = n$ (since f(n) > n and f is injective). Therefore it follows that $f^{-1}(n) > n$, too.

4. Let $f_1 : \mathbb{R} \to \mathbb{R}$ be given by $f_1(a) = -a^2$ and $f_2 : \mathbb{R}^+ \to \mathbb{R}^+$ be given by $f_2(a) = \sqrt{a}$. Compute $f_1 \circ f_2$. Can $f_2 \circ f_1$ be defined ?

Solution: $(f_1 \circ f_2)(a) = f_1(f_2(a)) = f_1(\sqrt{a}) = -a \quad \forall a \in \mathbb{R}^+$. It is possible to define the function $f_1 \circ f_2 : \mathbb{R}^+ \to \mathbb{R}$ because the range of f_2 is \mathbb{R}^+ , which is a subset of \mathbb{R} and \mathbb{R} is the domain of f_1 . But, the range of f_1 is not included in the domain of f_2 . So, $f_2 \circ f_1$ cannot be defined.

5. (a) Show that composition of functions is associative.

Solution: Consider three functions $f : A \to B$, $g : B \to C$, and $h : C \to D$. Then we require to show that

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Now, let us assume that b = f(a), c = g(b), and d = h(c). We have $(a, b) \in f$, $(b, c) \in g$, $(c, d) \in h$ and $(a, c) \in g \circ f$, $(b, d) \in h \circ g$. By the same argument we can write, $(a, d) \in h \circ (g \circ f)$. Similarly, $(a, d) \in (h \circ g) \circ f$. This being true for any a and corresponding d, proves the associativity.

(b) Let $f_1(x) = x + 4$, $f_2(x) = x - 4$, and $f_3 = 4x$ for $x \in \mathbb{R}$. Find $f_1 \circ f_2$, $f_2 \circ f_1$, $f_1 \circ f_1$, $f_2 \circ f_2$, $f_1 \circ f_3$, $f_3 \circ f_2$, $f_3 \circ f_1$ and $f_1 \circ f_3 \circ f_2$. Solution:

$$\begin{aligned} f_1 \circ f_2 &= \{(x,x) | x \in \mathbb{R} \} \\ f_2 \circ f_1 &= \{(x,x) | x \in \mathbb{R} \} \\ f_1 \circ f_1 &= \{(x,x+8) | x \in \mathbb{R} \} \\ f_2 \circ f_2 &= \{(x,x-8) | x \in \mathbb{R} \} \\ f_1 \circ f_3 &= \{(x,4x+4) | x \in \mathbb{R} \} \\ f_3 \circ f_2 &= \{(x,4x-16) | x \in \mathbb{R} \} \\ f_3 \circ f_1 &= \{(x,4x+16) | x \in \mathbb{R} \} \\ (f_1 \circ f_3) \circ f_2 &= \{(x,4x-12) | x \in \mathbb{R} \} \end{aligned}$$

6. (a) Let $f : A \to B$ and $g : B \to A$ be functions such that $g \circ f = 1_A$ and $f \circ g = 1_B$. Then show that, f is a one-to-one correspondence between A and B, g is a one-to-one correspondence between B and A, and each is the inverse of the other.

Solution: The assumption means that

$$g(f(a)) = a$$
 and $f(g(b)) = b, \forall a \in A, b \in B$.

This shows that Ran(f) = B and Ran(g) = A, so each function is onto. If $f(a_1) = f(a_2)$, then $a_1 = g(f(a_1)) = g(f(a_2)) = a_2$. Thus f is injective. In a similar way, we see that g is injective, so both f and g are invertible. Note f^{-1} is everywhere defined since $Dom(f^{-1}) = Ran(f) = B$. Now, if b is any element in B,

$$f^{-1}(b) = f^{-1}(f(g(b))) = (f^{-1} \circ f)g(b) = 1_A(g(b)) = g(b).$$

Thus $g = f^{-1}$, so also $f = (f^{-1})^{-1} = g^{-1}$. Then, since g and f are onto, f^{-1} and g^{-1} are onto, so f and g must be everywhere defined.

(b) Let $f: A \to B$ and $g: B \to C$ be invertible. Then $g \circ f$ is invertible, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Solution: We know that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$, since this is true for any two relations. Since g^{-1} and f^{-1} are functions by assumption, so is their composition, and then $(g \circ f)^{-1}$ is a function. So $g \circ f$ is invertible.

(c) Let $A = B = \mathbb{R}$. Let $f : A \to B$ be given by the formula $f(x) = 2x^3 - 1$ and let $g : B \to A$ be given by

$$g(y) = \sqrt[3]{\frac{1}{2}y + \frac{1}{2}}.$$

Show that both f and g are bijective functions.

Solution: Let $x \in A$ and $y = f(x) = 2x^3 - 1$. Then $\frac{1}{2}(y+1) = x^3$; therefore,

$$x = \sqrt[3]{\frac{1}{2}y + \frac{1}{2}} = g(y) = g(f(x)) = (g \circ f)(x).$$

Thus $g \circ f = 1_A$. Similarly, $f \circ g = 1_B$, so by the previous proof both f and g are bijections.

7. For real numbers a, b with a < b, we define the closed interval $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ and the open interval $(a, b) = \{x \in \mathbb{R} | a < x < b\}$. Prove that the closed interval [0, 1] is equinumerous with the open interval (0, 1).

Solution: The inclusion map $f : (0,1) \to [0,1]$ taking $x \mapsto x$ is injective. Also the map $g : [0,1] \to (0,1)$ taking $x \mapsto \frac{1}{4} + \frac{x}{2}$ is an injective embedding of [0,1] in the interval $\left[\frac{1}{4}, \frac{3}{4}\right]$ which is a subset of (0,1).

8. (a) Show that $(n+a)^b = \Theta(n^b)$

Solution: Here we will want to find constants $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b, \forall n \ge n_0$. Note that

$$n+a \le n+|a| \le 2n$$
 when $|a| \le n$, and
 $n+a \ge n-|a| \ge \frac{1}{2}n$ when $|a| \le \frac{1}{2}n$.

Thus, when $n \ge 2|a|$, $0 \le \frac{1}{2}n \le n + a \le 2n$. Since b > 0, the inequality still holds when all parts are raised to the power of b:

$$0 \le \left(\frac{1}{2}n\right)^b \le (n+a)^b \le (2n)^b,$$

$$0 \le \left(\frac{1}{2}\right)^b n^b \le (n+a)^b \le 2^b n^b.$$

Thus, $c_1 = (1/2)^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the relation.

(b) Prove or disprove the following statement $a^{2n} = O(a^n)$.

Solution: If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists and is $\neq \infty$, then f(n) = O(g(n)). Now, we have $\lim_{n\to\infty} \frac{a^{2n}}{a^n} = \lim_{n\to\infty} \frac{a^n * a^n}{a^n} = \lim_{n\to\infty} a^n = \infty$. Hence, $a^{2n} \neq O(a^n)$.