
CS21001 Discrete Structures

Autumn 2009–10

Solutions to Tutorial on : Functions

1. Consider the following C function:

unsigned int f (unsigned int n)
{

if ((n == 0) || (n == 1)) return 0;
if ((n%2) == 0) return 1 + f(n/2);
return 1 + f(5*n+1);

}

(a) What does f(19) return ?

Solution: We have f(19) = 1 + f(96) = 2 + f(48) = 3 + f(24) = 4 + f(12) = 5 + f(6)
= 6 + f(3) = 7 + f(16) = 8 + f(8) = 9 + f(4) = 10 + f(2) = 11 + f(1) = 11 + 0 = 11.

(b) What does f(5) return ?

Solution: We have f(5) = 1 + f(26) = 2 + f(13) = 3 + f(66) = 4 + f(33) = 5 + f(166)
= · · · = 12 + f(13) = · · · = 22 + f(13) = · · · 32 + f(13) = · · · . Thus the above function does
not terminate when 5 is passed as its argument. When the recursion stack runs out of memory, it exits with
an error message (typically segmentation fault).

(c) What can you conclude about f as a function N→ N ?

Solution: The sequence of computation in Part (b) implies that f(13) = 10 + f(13) i.e., f is not well
defined as a function N→ N.

2. Let f : A→ B and g : B → C

(a) Prove that if the function g ◦ f : A→ C is injective then f is injective.
Solution: Try yourself !

(b) Provide an example in which g ◦ f is injective but g is not.
Solution: Take f(x) =

√
x, f(x) : R+ → R+ and g(x) = x2, g(x) : R→ R.

(c) Prove that if g ◦ f is surjective, then g is surjective.
Solution: Try yourself !

(d) Give an example in which g ◦ f is surjective but f is not.
Solution: Take f(x) =

√
x, f(x) : R+ → R and g(x) = x2, g(x) : R→ R.

3. Let f : N → N be a bijection not equal to the identity map. Prove that there exists n ∈ N such that n < f(n)
and n < f−1(n).

Solution: Let S = {a ∈ N|f(a) 6= a}. Since f is not the identity map, we have S 6= φ. Let n be the minimum
element in S. Thus, f(0) = 0, f(1) = 1, . . . , f(n − 1) = n − 1. Since f is injective, f(n) cannot be equal
to 0, 1, 2, . . . , n − 1. Moreover, since f(n) 6= n, we must have f(n) > n. Further, f−1(0) = 0, f−1(1) = 1,
. . . , f−1(n − 1) = n − 1, whereas f−1(n) = n (since f(n) > n and f is injective). Therefore it follows that
f−1(n) > n, too.
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4. Let f1 : R→ R be given by f1(a) = −a2 and f2 : R+ → R+ be given by f2(a) =
√
a. Compute f1 ◦ f2. Can

f2 ◦ f1 be defined ?

Solution: (f1 ◦ f2)(a) = f1(f2(a)) = f1(
√
a) = −a ∀a ∈ R+. It is possible to define the function

f1 ◦ f2 : R+ → R because the range of f2 is R+, which is a subset of R and R is the domain of f1. But,
the range of f1 is not included in the domain of f2. So, f2 ◦ f1 cannot be defined.

5. (a) Show that composition of functions is associative.

Solution: Consider three functions f : A → B, g : B → C, and h : C → D. Then we require to show
that

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Now, let us assume that b = f(a), c = g(b), and d = h(c). We have (a, b) ∈ f , (b, c) ∈ g, (c, d) ∈ h
and (a, c) ∈ g ◦ f , (b, d) ∈ h ◦ g. By the same argument we can write, (a, d) ∈ h ◦ (g ◦ f). Similarly,
(a, d) ∈ (h ◦ g) ◦ f . This being true for any a and corresponding d, proves the associativity.

(b) Let f1(x) = x+ 4, f2(x) = x− 4, and f3 = 4x for x ∈ R. Find f1 ◦ f2, f2 ◦ f1, f1 ◦ f1, f2 ◦ f2, f1 ◦ f3,
f3 ◦ f2, f3 ◦ f1 and f1 ◦ f3 ◦ f2.
Solution:

f1 ◦ f2 = {(x, x)|x ∈ R}
f2 ◦ f1 = {(x, x)|x ∈ R}
f1 ◦ f1 = {(x, x+ 8)|x ∈ R}
f2 ◦ f2 = {(x, x− 8)|x ∈ R}
f1 ◦ f3 = {(x, 4x+ 4)|x ∈ R}
f3 ◦ f2 = {(x, 4x− 16)|x ∈ R}
f3 ◦ f1 = {(x, 4x+ 16)|x ∈ R}

(f1 ◦ f3) ◦ f2 = {(x, 4x− 12)|x ∈ R}

6. (a) Let f : A → B and g : B → A be functions such that g ◦ f = 1A and f ◦ g = 1B . Then show that, f is
a one-to-one correspondence between A and B, g is a one-to-one correspondence between B and A, and
each is the inverse of the other.

Solution: The assumption means that

g(f(a)) = a and f(g(b)) = b,∀a ∈ A, b ∈ B.

This shows that Ran(f) = B and Ran(g) = A, so each function is onto. If f(a1) = f(a2), then
a1 = g(f(a1)) = g(f(a2)) = a2. Thus f is injective. In a similar way, we see that g is injective, so both
f and g are invertible. Note f−1 is everywhere defined since Dom(f−1) = Ran(f) = B. Now, if b is
any element in B,

f−1(b) = f−1(f(g(b))) = (f−1 ◦ f)g(b) = 1A(g(b)) = g(b).

Thus g = f−1, so also f = (f−1)−1 = g−1. Then, since g and f are onto, f−1 and g−1 are onto, so f
and g must be everywhere defined.

(b) Let f : A→ B and g : B → C be invertible. Then g ◦ f is invertible, and (g ◦ f)−1 = f−1 ◦ g−1.

Solution: We know that (g ◦ f)−1 = f−1 ◦ g−1, since this is true for any two relations. Since g−1 and
f−1 are functions by assumption, so is their composition, and then (g ◦ f)−1 is a function. So g ◦ f is
invertible.
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(c) Let A = B = R. Let f : A→ B be given by the formula f(x) = 2x3 − 1 and let g : B → A be given by

g(y) = 3

√
1
2
y +

1
2
.

Show that both f and g are bijective functions.

Solution: Let x ∈ A and y = f(x) = 2x3 − 1. Then
1
2

(y + 1) = x3; therefore,

x = 3

√
1
2
y +

1
2

= g(y) = g(f(x)) = (g ◦ f)(x).

Thus g ◦ f = 1A. Similarly, f ◦ g = 1B , so by the previous proof both f and g are bijections.

7. For real numbers a, bwith a < b, we define the closed interval [a, b] = {x ∈ R|a ≤ x ≤ b} and the open interval
(a, b) = {x ∈ R|a < x < b}. Prove that the closed interval [0, 1] is equinumerous with the open interval (0, 1).

Solution: The inclusion map f : (0, 1) → [0, 1] taking x 7→ x is injective. Also the map g : [0, 1] → (0, 1)
taking x 7→ 1

4 + x
2 is an injective embedding of [0, 1] in the interval

[
1
4 ,

3
4

]
which is a subset of (0, 1).

8. (a) Show that (n+ a)b = Θ(nb)

Solution: Here we will want to find constants c1, c2, n0 > 0 such that 0 ≤ c1nb ≤ (n+a)b ≤ c2nb, ∀ n ≥
n0. Note that

n+ a ≤ n+ |a| ≤ 2n when |a| ≤ n, and

n+ a ≥ n− |a| ≥ 1
2
n when |a| ≤ 1

2
n.

Thus, when n ≥ 2|a|, 0 ≤ 1
2
n ≤ n + a ≤ 2n. Since b > 0, the inequality still holds when all parts are

raised to the power of b :

0 ≤
(

1
2
n

)b

≤ (n+ a)b ≤ (2n)b,

0 ≤
(

1
2

)b

nb ≤ (n+ a)b ≤ 2bnb.

Thus, c1 = (1/2)b, c2 = 2b, and n0 = 2|a| satisfy the relation.

(b) Prove or disprove the following statement a2n = O(an).

Solution: If limn→∞
f(n)
g(n) exists and is 6= ∞, then f(n) = O(g(n)). Now, we have limn→∞

a2n

an =

limn→∞
an∗an

an = limn→∞ an =∞. Hence, a2n 6= O(an).
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