CS21001:Discrete Structures

Autumn semester 2009-10

Class test 2

Roll no.:

1. Consider the relation R on $A=\{1,2,3,4\}$ given by the matrix

$$
M_{R}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Is R a partial order? Why or why not?
2. Let R be a relation with $R \subset A \times A$ where $A=\{a, b, c, d, e\}$. Answer the following questions with justification.
(a) Give an example of a non-empty relation that is both symmetric and anti-symmetric.(2)
(b) How many relations R are symmetric?
3. You are given the following pseudocode:

```
procedure foo(n, m: natural numbers)
    if(m = 0) return 1
    else return n*foo(n, m - 1)
procedure bar(n: natural number)
    p:= 0
    for i := 0 to n
        p := p + foo(n, 3)
    return p
```

(a) Describe the output of foo as a function of the inputs n and m
(b) Describe the output of bar as a function of the input n. Give your answer as a summation and also in closed form(equation that doesn't involve summation).
(2)
4. (a) Let $A=B=\{a, b, c\}$. Consider the relation $g=\{(a, b),(b, c),(c, c)\}$. Is g one-to-one? Is g onto? Why?
(b) Is (A, \leq) a lattice? Why or why not?
5. Give the Hasse diagrams for all the non-isomorphic lattices that have five elements. (There are five of them)
6. Suppose that $a^{2}=1$ for each element a in a group G. Show that G is abelian.

