Monday, September 25, 2006
LR Parsers
Constructing Canonical LR Parsing Tables
Construction of the sets of LR (1) items

Input: An augmented grammar G’.

Output: The sets of LR (1) items that are the set of items valid for one or more viable prefixes of G’.
Method:
Function closure (I);

Begin
 Repeat
 For each item [A(α. Bβ, a] in I,
 each production B(γin G',
 and each terminal b in FIRST (βa)

 such that [B(. γ, b] is not in I
 do
 add [B(. γ, b] to I
 until no more sets of items can be added to I
 return I
end;
function goto (I, X)

begin
 let J be the set of items [A(X. β, a] such that
 [A(X β, a] is in I
 return closure (J)
end;

procedure items (G')
begin
 C := {closure ({S'(. S, $})};
 repeat
 for each set of items I in C and each grammar symbol X
 such that goto (I, X) is not empty and not in C
 do
 add goto (I X) to C

 until no more sets of items can be added to C

end;
Consider the following augmented grammar:-

S’(S

S(CC

C(Cc | d
The initial set of items is:-

I0 : S’ (.S, $

 S(.CC, $

 C(.Cc, c | d

 C(.d, c | d
We have next set of items as:-

I1 : S’ (S., $
I2 : S (.Cc, $

 C (.Cc, $

 C (.d, $
I3 : C (c.C, $

 C (.c C, c | d

 C (.d, $
I4 : C (d. , c | d
I5 : S (CC. , $
I6 : C (c.C, $

 C (.c C, $
 C (.d, $
I7 : C (d. , $
I8 : C (c C. , c | d
I9 : C (c C. , $

Construction of the canonical LR parsing table.

Input: An augmented grammar G’.

Output: The canonical LR parsing table functions action and goto for G’

Method:
1. Construct C= {I0, I1…... In}, the collection of sets of LR (1) items for G’.

2. State I of the parser is constructed from Ii. The parsing actions for state I are determined as follows :

a) If [A (α. a β, b] is in Ii, and goto (Ii, a) = Ij, then set action [i, a] to “shift j.” Here, a is required to be a terminal.

 b) If [A (α., a] is in Ii, A ≠ S’, then set action [i, a] to “reduce A (α.”

 c) If [S’(S., $] is in Ii, then set action [i, $] to “accept.”

If a conflict results from above rules, the grammar is said not to be LR (1), and the algorithm is said to be fail.
3. The goto transition for state i are determined as follows: If goto(Ii , A)= Ij ,then goto[i,A]=j.

4. All entries not defined by rules(2) and (3) are made “error.”

5. The initial state of the parser is the one constructed from the set containing item [S’(.S, $].

Submitted by:

Tarun Chauhan

04CS1023
