INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Date 20.09.2006 FN / AN Time: 2 Hrs.Full Marks 30No. of Students: 56Autumn Semester:, 2006Department: Computer Science and EngineeringSub. No: CS 430013rd Yr. B. Tech.(Hons.)Sub. Name: Compiler Construction

Instructions : Answer **all** the questions.

- 1. (a) Write context free grammar to detect strings over the alphabet set {a,b,c}; the string following the form $\{a^m b^n c^{m+n}, n \ge 0, m \ge 0\}$.
 - (b) Write down the regular expressions to check a correct date of 21^{st} century in yyyy-mm-dd format.
 - (c) What does the regular expression $((\epsilon|0)1^*)^*$ represent.
 - (d) Write all the possible items that can be derived from the production rule $A \rightarrow BcdE$.
 - (e) What is phrase level error recovery strategy.
 - (f) Write context free grammar to detect strings over a,b which contain a different number of a's to b's.
 - (g) Represent the following set $\{\epsilon, a, b, bb, bbb, \dots\}$ as a regular expression.
 - (h) Explain the term *right sentential form*.
 - (i) State the configuration of the stack in LR parser before and after a *Reduce* operation takes place.
 - (j) Define Operator Grammar.
 - (k) What is ϵ closure of a set s in NFA.
 - (1) State 3 broad parts of a Lex program. $\frac{1}{2} \times 12$
- (a) Construct the NFA for the expression (a|b)*a(a|b)(a|b) by using Thompson's Construction methodology.
 - (b) Derive the DFA from the corresponding NFA.
- 3. (a) Eliminate the ϵ production from the following grammar
 - $\begin{array}{l} \mathbf{S} \to \mathbf{A}\mathbf{a} \mid \mathbf{b} \\ \mathbf{A} \to \mathbf{A}\mathbf{c} \mid \mathbf{S}\mathbf{d} \mid \boldsymbol{\epsilon} \end{array}$
 - (b) Consider the following grammar and test whether the grammar is LL(1) or not
 - $S \rightarrow 1AB \mid \epsilon$
 - $A \rightarrow 1AC \mid 0C$
 - $\mathbf{B} \to \mathbf{0}\mathbf{S}$
 - $C \rightarrow 1$
 - (c) Eliminate ambiguity from the following grammar $S \rightarrow iCtSeS \mid iCtS$

(2+3+3)

 (3×2)

4. (a) Given the grammar

```
exp \rightarrow exp \uparrow expexp \rightarrow exp + expexp \rightarrow exp * expexp \rightarrow id,build up the opera
```

build up the operator precedence table and parse the input string $id1 + id2 * id3 \uparrow id4 \uparrow id5$ using the operator precedence table. Show all the steps clearly.

- (b) Given the grammar
 - $\mathop{\mathrm{E}}_{-}\to\mathop{\mathrm{L}}_{-}=\mathop{\mathrm{R}}_{-}$
 - $\mathrm{E} \to \mathrm{R}$
 - $\mathrm{L} \to {}^*\!\mathrm{R}$
 - $\mathbf{L} \to \mathrm{id}$
 - $R \rightarrow id,$

form its SLR parsing table.

(5+5)