Vishwa Deepak

04cs1029

LALR -PARSER

There are three issues which arise here—
1. Whether LALR is equivalent to SLR.

2. Shift/Reduce conflict in the cases of LR(1) and LALR.

3. Reduce/Reduce conflict in the cases of LR(1) and LALR.

Let’s take an example grammar :

S’ -> S

S -> Bbb

S -> aab

S -> bBa

B -> a

First of all we work with the SLR parser.

Generating the items ->
I0 : S’ -> .S

 S -> .Bbb

 S -> .aab

 S -> .bBa

 B -> .a

I1: S’ -> S.

I2: S -> B.bb

I3: S -> a.ab

 B -> a.

 I4: S -> b.Ba
 B -> .a

I5: S-> Bb.b

I6: S -> aa.b

I7: S -> bB.a

I8: B -> a.

I9: S-> Bbb.

I10: S -> aab.

I11: S -> bBa.

In the underlined item, there is a shift/reduce conflict. To avoid this conflict, we work with LR(1) parser.

Generating the items of LR(1) parser ->

I0 : S’ -> .S , $

 S -> .Bbb ,$

 S -> .aab , $

 S -> .bBa , $

 B -> .a ,a|b

I1: S’ -> S. ,$

I2: S -> B.bb , $
I3: S -> a.ab ,$
 B -> a. , b
 I4: S -> b.Ba , $

 B -> .a ,a

I5: S-> Bb.b ,$

I6: S -> aa.b ,$

I7: S -> bB.a ,$

I8: B -> a. ,a

I9: S-> Bbb. ,$

I10: S -> aab. ,$

I11: S -> bBa. ,$

In the underlined item , we find that there is no shift / reduce conflict.

Here we see that LALR = LR(1), since no merging was required .
As well as we find that no. of states in SLR and LR(1) are same, which may not be the same in other cases.

Now, Let’s take another example.
In this example it is shown that reduce/reduce conflict may arise in LALR parser , even if it is not present in LR(1) parser.

We are given the following grammar to parse using LALR parser. First of all , this grammar will be parsed using LR(1) parser, and after that it will be fed to LALR parser.
S’-> S

S-> aAd

S-> bBd

S-> aBe

S-> bAe

A-> c

B-> c

Generating the LR (1) items for the above grammar,

I0 : S’-> .S , $

 S-> . aAd, $

 S-> . bBd, $

 S-> . aBe, $

 S-> . bAe, $

 I1: S’-> S ., $

 I2: S-> a . Ad, $

 S-> a . Be, $

 A-> .c, d

 B->.c, e

 I3: S-> b . Bd, $

 S-> b . Ae, $

 A->.c, e

 B->.c,d

 I4: S->aA.d, $

 I5: S-> aB.e,$

 I6: A->c. , d

 B->c. , e

 I7: S->bB.d, $

 I8: S->bA.e, $

 I9: B->c. , d

 A->c. , e

I10: S->aAd. , $

I11: S->aBe., $

I12: S->bBd., $

I13: S->aBe., $
The underlined items are of our interest. We see that when we make the Parsing table for LR (1), we will get something like this…
The LR (1) Parsing Table. (partly filled)
	
	a ………………
	d
	e
	

	I1

I2

.

.

.
	
	.

.

.

.

	.

.

.

.

	

	I6
	……………….
	r6
	r7
	

	..

.

.
	
	.

.

.

.
	.

.

.

.
	

	I9
	………………….
	r7
	r6
	

	.

	
	
	
	

This table on reduction to the LALR parsing table, comes up in the forms of-

 The LALR Parsing table. (partly filled)
	
	a ………………
	d
	 e
	

	I1

I2

.

.

.
	
	.

.

.

.

	.

.

.

.

	

	I69
	……………….
	r6/r7
	r7/r6
	

	..

.

.
	
	.

.

.

.
	.

.

.

.
	

	I9
	………………….
	r7
	r6
	

	.

	
	
	
	

So, we find that the LALR gains reduce-reduce conflict whereas the corresponding LR (1) counterpart was void of it. This is a proof enough that LALR is less potent than LR (1).

But, since we have already proved that the LALR is void of shift-reduce conflicts (given that the corresponding LR(1) is devoid of the same), whereas SLR (or LR (0)) is not necessarily void of shift-reduce conflict, the LALR grammar is more potent than the SLR grammar.

 SHIFT-REDUCE CONFLICT present in SLR

 (Some of them are solved in….

 LR (1)

 (All those solved are preserved in…

 LALR

So, we have answered all the queries on LALR that we raised intuitively.

PAGE
2

