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Chapter 1

General Introduction

In this chapter a general overview of population balances is provided. The problems with existing
numerical techniques for solving population balances are discussed. The requirements needed
for a numerical solutions are pointed out and it is found that none of the existing methods fulfill
these requirements. Then, a short summary of the new findings followed by an outline of the
thesis is given.

1.1 Overview

This thesis is concerned with the mathematical modeling of particulate systems and numerical
tools for solving the resulting models. Particulate processes are well known in various branches
of engineering including crystallization, comminution, precipitation, polymerization, aerosol and
emulsion processes. These processes are characterized by the presence of a continuous phase and
a dispersed phase composed of particles with a distribution of properties. The particles might
be crystals, grains, drops or bubbles and may have several properties like size, composition,
porosity and enthalpy etc. In many applications, the size of a particle is considered as the only
relevant particle property. It is comparatively easy to measure and therefore commonly used to
characterize a particle. It may be determined in various forms such as a typical length, area or
the volume respectively mass. It might be diameter in case of a sphere, side-length for a cube,
surface area or volume for more complicated particles.

Since particles may have different sizes and properties, a mathematical description of their
distribution or the so called particle property distribution is needed to characterize them. The
shape of particles from grinding or crystallization processes is often uniform enough that a
characteristic shape factor can be defined and the particles can be described using the one-
dimensional distribution function. However, more distributed properties are often needed to
characterize the particles in process engineering like fluidized bed agglomeration as well as in
pharmaceutical processes. Thus, a multidimensional distribution function is required.

The particles may change their properties in a system due to several mechanisms. However, the
most common mechanisms which we have considered in this work are aggregation, breakage,
nucleation and growth. A short description of these mechanisms is given below.
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CHAPTER 1. GENERAL INTRODUCTION

+

(a) Aggregation (b) Breakage

+

(c) Growth (d) Nucleation

Particle

Non-Particulte Matter

Figure 1.1: Different particle formation mechanisms.

Aggregation: Aggregation or agglomeration is a process where two or more particles com-
bine together to form a large particle. The total number of particles reduces in a aggregation
process while mass remains conserved. This process is most common in powder processing in-
dustries. Agglomeration of small particles reduces dust formation and therefore improves their
handling properties. One other advantage of the agglomerated powder is a higher dissolution
rate by reducing lump formation or flotation of the powder. A diagrammatic representation of
aggregation is given in Figure 1.1(a).

Agglomeration in the fluidized bed takes place, if, after the drying of liquid bridges, solid bridges
arise. This is accomplished through the deliberate addition of a soluble binder. The liquid binds
the particles together by a combination of capillary and viscous forces until more permanent
bonds are formed by subsequent drying or sintering. There are a large number of theoretical
models available in the literature for predicting whether or not two colliding particles will stick
together. These models involve a wide range of different assumptions about the mechanical
properties of the particles and the system characteristics.

The aggregation of liquid droplets is called coagulation. Whereas in solid particles agglomeration
the original particles stay intact, in coagulation the original droplets become an indistinguishable
part of the newly formed droplets, see Gerstlaur [25].

Breakage: In a breakage process, particles break into two or many fragments. Breakage has a
significant effect on the number of particles. The total number of particles in a breakage process
increases while the total mass remains constant. A graphical representation of breakage is shown
in Figure 1.1(b). In granule breakage, there are two separate phenomena to consider:

1. Breakage of wet granules in the granulator; and

2. Attrition or fracture of dried granules in the granulator, drier or in subsequent handling.

For a detailed description, readers are referred to Iveson et al. [41]. Breakage of wet granules will
influence and may control the final granule size distribution, especially in high shear granulators.

2



1.1. OVERVIEW

In some circumstances, breakage can be used to limit the maximum granule size or to help
distribute a viscous binder. On the other hand, attrition of dry granules leads to the generation
of dusty fines. As the aim of most granulation processes is to remove fines, this is generally a
disastrous situation to be avoided.

Growth: The particles grow when a non-particulate matter adds to the surface of a particle.
Growth has no effect on the number of particles but the total volume of particles increases. The
size of a particle increases continuously in this process. A graphical representation of growth is
provided in Figure 1.1(c).

In a fluidized bed, a liquid (suspension, solution or melt) is sprayed onto the solid particles by
an injection nozzle in the form of drops. A part of the drops is deposited on the particles and
is distributed through spreading. The intensive heat and mass transfer, due to the surrounding
gas stream, results in a rapid increase of hardness of the fluid film through drying, if the initial
product is a solution or molten mass, or through cooling, if the sprayed upon product is melted.
The solvent evaporates in the hot, unsaturated fluidization gas, and the remaining solid particles
grow bigger through multiple spraying, spreading and hardening, having an onion-like effect on
the particle surface, see for example Heinrich et al. [29]. This phenomenon is known as growth,
layering or coating.

Nucleation: The formation of a new particle by condensation of non-particulate matter is
called nucleation. The nuclei are usually treated as the smallest possible particles in the system.
A graphical representation of nucleation is given in Figure 1.1(d). Nucleation has also a signifi-
cant effect on the total number of particles but less effect on the total volume of particles.

In the literature, nucleation is often considered as the appearance of particles in the smallest size
cell. This consideration is motivated by problems in particle size measurement. Especially in
crystallization, it is not possible to distinguish between nuclei of different sizes due to insufficient
resolutions of measuring devices in this range of small particle sizes. A further problem is the
formation of nuclei in a range that is smaller than the smallest measurable range. By growth
and agglomeration these particles become visible. This process is also often called as nucleation,
see Peglow [82]. In fluidized bed agglomeration where particles are formed in a range from 50
μm up to 2000 μm, nucleation is reported in a wide range of particle sizes.

As a result of the mechanisms mentioned above particles change their properties and therefore
a mathematical model named population balance is required to describe the change of particle
property distribution. Population balances describe the dynamic evolution of the distribution
of one or more properties. Since we are dealing mainly with aggregation or breakage problems,
it is convenient to consider the volume as a measure of size. On the other hand for pure growth
processes a linear based measure i.e. length or diameter is more preferable. Until mentioned
otherwise, we have assumed that the solid density of particles is constant and the mass of a
particle can be replaced by the volume of the particle.

The first task is to identify a method of representation for processes in which discrete particles
are present and each particle can have a variety of properties. The method we adopt is to
describe the distribution of particle properties by a population density function. So if particle

3



CHAPTER 1. GENERAL INTRODUCTION

size x is the distributed property then the distribution of particle sizes would be given by n(t, x).
It follows that the number of particles per unit volume (or some other basis) in the size range
[xi−1/2, xi+1/2] is given as

Ni =
∫ xi+1/2

xi−1/2

n(t, ε) dε. (1.1)

As Hulburt and Katz [36] have shown, this method may readily be extended to situations where
the particles have multiple properties - termed by them, multiple internal coordinates. So, for
example, each particle might be characterized by its size and its moisture content. The choice of
how many internal coordinates are considered is essentially a practical one. If a system can be
described by one coordinate only, then there is no need to add further coordinates. If, however,
the drying behavior is a complex function of material properties and particles states, then a
longer list of coordinates might be desirable. In this case practical computational limits usually
mean that two or at most three coordinates are considered.

It is also possible that the distribution of properties will vary in space. In this way the population
density will be a function of spatial - or in Hulburt and Katz’s language external-coordinates. If
these are given by a vector xe, and the internal coordinates by a vector xi, the total coordinate
space, also called phase space, is given by x = (xi,xe).

The next step in the descriptions being developed here is to recognize that it is possible to write
a conservation statement - or Population Balance Equation (PBE) - that describes how the
number density varies with time and in space. Various derivations of such an equation can be
found, most famously by Hulburt and Katz [36], Randolph and Larson [95] and Ramkrishna [94].
In essence, for a small volume in space (a space comprised of internal and external coordinates),
the rate of change of the number density must be matched by the divergence in the flux of
particles as well as source and sink terms (called birth and death terms, B and D). The flux is,
of course, the local product of velocity V and number density, where

V =
dx
dt

. (1.2)

So the velocity components related to the external coordinates give the conventional speeds,
while those related to the internal coordinates give a description of, for example, the rate of
change of size, or moisture content. The population balance equation is then

∂f

∂t
+ ∇ · (Vf) = B(t,x) − D(t,x). (1.3)

Here f describes a multidimensional distribution function. In order to use the PBE it is necessary
that the velocities are known as functions of position in space and that rate laws can be found
for the birth and death terms. The birth and death terms in this equation are the rates at which
particles are born and die at a location in phase space, per unit volume of phase space. These
terms appear in the PBE due to certain discrete events which can occur at arbitrary locations in
phase space and that add or remove particles. Examples of these birth and death terms include
breakage, which results in one death and two or more birth events; aggregation which results in
one birth and two or more deaths; and nucleation which results in a single birth event. The birth
and the death terms usually include integrals which make the solution of the population balance

4



1.1. OVERVIEW

star feeder

weir pipe

distributer plate

gas outlet

gas inlet

solid inlet
X = X0

X = X(τ)
solid outlet

solid material

Figure 1.2: Schematic diagram of a continuous fluidized bed dryer.

equation more complicated. Finally, numerical techniques are almost inevitably required for
their solutions. That topic is the main subject for this thesis.

Many commercial processes in drying technology are concerned with discrete or particulate
materials. In these processes individual particles will vary in properties and as a consequence
frequently vary in drying behavior. The most obvious example is that the particles may vary
in size and, as a consequence, dry at different rates. One of the aims of this work is to explain
how problems of this type can be posed and then how they can be solved.

Before we proceed to explain problems with previously existing numerical schemes, we first
give an impression of the significance of the population balances in real applications. Here we
consider two applications in drying where the population balances can be used. The population
balances provide a better understanding of drying processes. The first application concerns the
drying of particles in a continuous fluidized bed dryer, while the second application involves the
process of simultaneous particle size enlargement and drying.

Application 1 : The first application for applying population balances is a continuous fluidized
bed dryer. The wet solid material can be conveyed into the dryer by an adequate equipment
such as a star feeder. At the same time the dried product is discharged so that the total mass
of solid in the apparatus remains constant. This process is shown schematically in Figure 1.2.

A traditional approach for modeling this process considers the disperse solids as the only phase
with average properties like particle size, moisture content and enthalpy. Certainly such kind of
models always predict a uniform moisture content for the solids in the dryer. However, Kettner
et al. [44] demonstrated that uniform properties do not appear in practice. They have measured

5
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Figure 1.3: Measured moisture distribution of single particle at the solid inlet and outlet of a
continuous fluidized bed dryer.

the moisture content of single particles in a lab scale dryer using a combination of NMR and
coulometric measurement techniques. Some typical results of these measurements are presented
in Figure 1.3.

It can be seen from the figure that the moisture of dried solids is not uniform but widely
distributed. Kettner et al. [44] claimed that different residence times or in other words the age
of the particles causes such broad distributions. One might also argue that spatial distributions
may be the reason for the distributed product properties. This is certainly the case for large
scale horizontal fluidized bed dryers, where the product is transported in horizontal direction
from the inlet to the outlet. This is not the case for lab scale apparatus. By tracer experiments
Burgschweiger and Tsotsas [14] proved that such small scale fluidized bed dryers can be treated
as a well mixed system where spatial distributions of the solid phase can be neglected. Thus,
we concentrate on the residence time or respectively the age of particles as the only additional
particle property.

As soon as the age of the particle is introduced as a new property of solids the moisture and
enthalpy need to be considered as distributed properties, because they depend directly on the
age of particles. Thus, a number of internal coordinates of the solid phase have been identified
which are required to be incorporated in a more precise drying model. They are the moisture
of solids l, the enthalpy h and the age of particles τ .

The population balance approach allows now to combine the distributed properties of the solid
phase into one equation. For a well mixed system the temporal change of the number density

6



1.1. OVERVIEW

distribution of the solid phase can be derived as

∂f

∂t
+

∂Gτ · f (τ, l, h)
∂τ

+
∂Gl · f (τ, l, h)

∂l
+

∂Gh · f (τ, l, h)
∂h

= ḟin − ḟout. (1.4)

In this equation the parameter f indicates the number density distribution of particles. The
second term on the left hand side of this equation represents the aging of particles with Gτ = 1,
the third term describes the drying of particles, where the variable Gl indicates the drying rate
of particles in kg/s. The fourth term corresponds to the change of enthalpy due to heat and
mass transfer, wherein Gh denotes the rate of change of enthalpy. The last two terms indicate
a source and a sink for particles being conveyed and discharged, respectively. The accuracy
of a drying model incorporating population balances is significantly improved. Burgschweiger
and Tsotsas [14] have shown that an extended model based on population balances predicts the
performance of a fluid bed dryer more precisely than traditional models.

Application 2 : The second application concerns the process of particle formation in fluidized
beds. Generally there are three main mechanisms, namely growth, agglomeration and breakage,
that influence the size of particles. For simplicity only the mechanism of agglomeration will
be considered in this example. The particle size enlargement by agglomeration transforms fine
sized primary particles into an easily soluble, free-flowing and dust-less product. The fluidized
bed technology offers the possibility to combine agglomeration and drying in a single apparatus.
In the literature, many attempts have been made to describe the process of particle formation in
fluidized bed in terms of population balances. But they all consider the particle size or particle
volume as the only significant property. The influence of operating conditions on the evolution
of particle size has been investigated by various authors, e.g. Adetayo et al. [2], Watano et al.
[119] and Schaafsma et al. [101]. Watano et al. [119] pointed out that the moisture content in
solids is one of the most important particle properties to control the agglomeration process. It
is obvious that such a significant particle property needs to be incorporated in a more complex
model of the solid phase.

Figure 1.4 depicts schematically, how the mechanisms of agglomeration, drying and wetting are
coupled. Let us consider two primary particles with a dry solid volume u and v − u. Both
particles contain a certain amount of liquid denoted by γ and l− γ respectively. It is clear, that
the solid volume and the amount of liquid of a newborn particle are given by v and l respectively.
Thus, the agglomeration influences not only the particle size but also the moisture distribution.
During the agglomeration process the particles get wetted with a liquid binder solution. Thus,
the moisture content in the particles increases. In addition to that the particles are dried due to
contact with the hot fluidization gas. Therefore the amount of liquid in a particle is influenced
by drying and wetting but not by the particle size.

It should be noted, that the drying and wetting rates may also depend on the size of particles.
This is due to the fact that the mass transfer coefficient depends on the particle size. The
consequence of a size dependent drying rate is a non-uniform distribution of moisture within
the disperse phase. Analogously, the enthalpy of particle can be described. Similarly to the
moisture content, the enthalpy does not only change by the agglomeration of particles but also
by the size dependent heat and enthalpy transfer rates. Then, the population balance approach
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vv − uu

γ

l − γ

l

Agglomeration

Wetting

Drying

Solid volume of particle

Liquid mass in particle

Figure 1.4: Coupled mechanisms of agglomeration, drying and wetting.

can be used to model the combined processes of agglomeration and drying as

∂f (t, v, l, h)
∂t

+
∂Gl · f (t, v, l, h)

∂l
+

∂Gh · f (t, v, l, h)
∂h

= (1.5)

1
2

v∫
0

l∫
0

h∫
0

β̂ · f (t, v − u, l − γ, h − ε) · f (t, u, γ, ε) dε dγ du (1.6)

−
∞∫
0

∞∫
0

∞∫
0

β̂ · f (t, v, l, h) · f (t, u, γ, ε) dε dγ du.

Again, f denotes the number density distribution. The advection terms on the left hand side of
this equation represent the change of mass of liquid and change of enthalpy respectively. The
parameter Gl indicates the rate of change of liquid mass. Positive and negative values of Gl

describe the wetting and drying of particles respectively. The expression on the right hand side
of this equation represents the birth and death of particles due to agglomeration. The triple
integral shows that three independent particle properties are considered. The above equation
provides the possibility to incorporate additional particle properties in the agglomeration kinetics
β̂. Thus, the function β̂ may not only depend on particle size but also on moisture content and
enthalpy, which is certainly the case in practice.

From the examples explained above it can be concluded that the population balance approach is
a very powerful tool to gain a better description of drying and to establish a better understanding
of the process. Several other applications of population balances in fluidized bed granulation
can be found in J. Kumar et al. [53] and Peglow et al. [83, 85].
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1.2 Problem and Motivation

In particle technologies population balance equations are widely used, e.g. in processes such as
crystallization, comminution and fluidized bed granulation. They appear also in mathematical
biology as well as in aerosol science. These are partial integro-differential equations of hyperbolic
or parabolic type. Included are conservation laws with integral fluxes. Independent variables
are particle properties, especially particle size, over which a particle number distribution is
considered for which the population balance is formulated. Analytical solutions are available
only for a limited number of simplified problems and therefore numerical solutions are frequently
needed to solve a population balance system.

Several numerical techniques including the method of successive approximations [94], the method
of moments [5, 71, 75], the finite elements methods [72, 78, 97], the finite volume scheme
[8, 11, 15, 21, 77, 117] and Monte Carlo simulation methods [52, 63, 68, 104] can be found in the
literature for solving population balance equations. Besides the approximation of the particle
property distribution, a correct prediction of some selected properties such as the total number of
particles and total mass etc. is mainly required in many particulate systems. These requirements
lead to the choice of sectional methods. The sectional methods approximate the continuous size
distribution by a finite number of size sections (intervals, cells). A system of ordinary differential
equations describing the change of the number of particles in each cell is usually obtained and
then using any higher order time integrator is solved. The accuracy of the method certainly
depends on the number of cells. Such methods rely on predicting some selected properties of the
distribution exactly rather than capturing all details of the distribution. Moreover, simplicity
and low computational cost of these methods make them highly practical in process engineering.

There are several sectional methods in the literature which predict the particle property dis-
tribution accurately while using a linear grid, see for example Sutugin and Fuchs [108], Tolpfo
[111], Kim and Seinfeld [46], Gelbard et al. [24], Sastry and Gaschignard [99] as well as Marchal
et al. [74]. Linear grid discretization has a great advantage especially in aggregation problems
since each aggregate finds a new position for its allocation. This discretization does however have
one problem of extremely high computational cost due to the requirement of excessively many
cells to cover the property domain. Instead, a geometric type discretization is commonly used
to reduce the computational cost. The difficulty that arises in a non-uniform grid is, where to
allocate newborn particles which do not have exactly the size of the grid point. Several authors
proposed different methods which can be used using geometric, Gillette [26], Batterham et al.
[7], Marchal et al. [74], Hounslow et al. [34], or arbitrary grid, Kim and Seinfeld [46], Gelbard et
al. [24], Sastry and Gaschignard [99], Marchal et al. [74], Kumar and Ramkrishna [57]. Batter-
ham et al. [7] produced numerical results for aggregation that correctly predicted conservation of
total particles volume but failed to predict the correct evolution of total numbers. On the other
hand, Gelbard et al. [24] predicted the rate of change of total particle number correctly but lost
total particle volume. Nonetheless, Hounslow et al. [34] have been the first in the literature to
produce a population balance scheme that correctly predicts the total number and total volume
of particles. They have considered a geometric discretization with a factor of 2 progression in
size. This has the drawback that one cannot refine the grid. Afterwards, Litster et al. [69]
have extended the technique for adjustable geometric discretizations with a progression factor
of 21/q , where q is an integer greater than or equal to 1. It has been investigated by Wynn
[120] that the extended formulation is valid only for q < 4. Since then, Wynn has corrected
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the formulation. The complex structure of the formulation and its restriction to specified grids
are the major disadvantages of this method. Wynn [121] has also presented a more simplified
form of Hounslow’s discretization to improve some computational aspects. An evaluation of the
various sectional methods can be found in [6, 48, 49, 79].

The first general formulation consistent with the first two moments has been proposed as the
so called fixed pivot technique by Kumar and Ramkrishna [57]. The formulation takes the form
of Hounslow’s formulation when applied on the geometric grid with a factor of 2 progression in
size. It uses point masses at a representative location in each section (cell). Despite the fact that
the numerically calculated moments are fairly accurate, the fixed pivot technique consistently
over-predicts the results. The technique focuses on an accurate calculation of some selected
moments instead of calculation of the whole particle property distribution. However, the fixed
pivot technique can only be applied for aggregation and breakage problems. The authors have
proposed a completely different concept for combined processes of aggregation or breakage where
additionally growth and nucleation are present.

Filbet and Laurençot [21] proposed a different approach of using a finite volume scheme for
solving aggregation PBEs. Finite volume schemes are frequently used for solving conservation
laws. In the case of the aggregation PBE, it has been applied by transforming the number
density PBE to a mass conservation law. A second order accuracy has been obtained by the finite
volume scheme. Though the scheme predicts the numerical results for particle size distribution
accurately, it is consistent with respect to the first moment only. The prediction of the zeroth
moment of the number density by the proposed scheme becomes very poor.

Some of the existing methods overestimate the numerical results while others are inconsistent
with moments. Moreover, of the existing sectional methods none can be implemented for solving
combined processes effectively. We wish to have a general, accurate, ease to use, computationally
less expensive and simple scheme. By these standards, none of the previous schemes we know
of are completely satisfactory, although some are much better than others. Furthermore, there
is a lack of numerical schemes which can be extended or applied for solving higher dimensional
problems. This leads to a clear motivation for the development of the new scheme. Thereby the
objective of this work is to develop a general and simple scheme which preserves all advantages
of the existing schemes and can be used to solve all processes simultaneously. Additionally, the
aim is to extend the scheme to multi-dimensional problems.

1.3 New Results

It is of interest to have a numerical discretization that is suitable for the differential as well
as integral parts of the partial integro-differential equations. Main challenges are the non-local
character of convolution integrals describing particle agglomeration and a large variation in
scale of the independent and dependent variables. During last decade, an intensive work on this
subject has produced many different numerical schemes. One of those, namely the fixed pivot
technique, has been by far the most widely used. In this method, all particles within a cell,
which by some researchers is called a class, section or interval, are supposed to be of the same
size. Indeed, the fixed pivot technique belongs to the class of sectional methods which are well
known for their simplicity and conservation properties. However, these methods converge slowly
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towards the exact solution and over-predicts the numerical results for particle size distribution
and higher moments. Furthermore, numerical methods that can be used to solve growth, nucle-
ation aggregation and breakage processes simultaneously are rarely available.

This work presents a new numerical scheme, the cell average technique, for solving a general
population balance equation which assigns particles within the cells more precisely. The tech-
nique follows a two step strategy: one is to calculate the average size of the newborn particles in
a cell and the other to assign them to neighboring nodes such that the properties of interest are
exactly preserved. The new technique preserves all the advantages of conventional discretized
methods and provides a significant improvement in predicting the particle size distribution and
higher moments. The technique allows the convenience of using non-homogeneous, geometric-
or equal-size cells. The effectiveness of the technique is illustrated by application to several
analytically solvable problems. The numerical results show the ability of the new technique to
predict very well the time evolution of the second moment as well as the complete particle size
distribution. Also, the computation time taken by the cell average technique is comparable to
the fixed pivot technique. More interestingly, for several aggregation problems the cell average
technique takes even less computation time than the fixed pivot technique.

Moreover, the cell average technique enjoys the major advantage of simplicity for solving com-
bined problems over other existing schemes. This is done by a special coupling of the different
processes that treats all processes in a similar fashion as it handles the individual process. It is
demonstrated that the new coupling makes the technique more useful by being not only more
accurate but also computationally less expensive. Furthermore, a new idea that considers the
growth process as aggregation of existing particle with new small nuclei is presented. In that way
the resulting discretization of the growth process becomes very simple and consistent with first
two moments. Additionally, it becomes easy to combine the growth discretization with other
processes. Furthermore, all discretizations including the growth have been made consistent with
the first two moments. The new discretization of growth is a little diffusive but it predicts the
first two moments exactly without any computational difficulties like appearance of negative
values or instability etc. The numerical scheme proposed in this work is consistent only with
the first two moments but it can easily be extended to the consistency with any two or more
than two moments.

In order to fully understand what the important features of a given scheme are and how to derive
schemes with desired properties, it is essential to perform a thorough mathematical analysis of
a scheme, investigating in particular its stability and convergence towards the exact solution.
Moreover it provides a necessary basis for further improvements of a scheme. This work provides
a mathematical analysis of the cell average method and some other schemes discussed in this
work. All investigations are carried out for pure breakage problems since they are easy to deal
with due to their linearity. At first, some basic properties of the schemes are investigated. Then
the consistency, stability and convergence are proved and they are also confirmed numerically.
It is found that the fixed pivot technique is a first order scheme while the cell average technique
provides a second order accuracy for most breakage problems. On the other hand, due to the non-
linear behavior of aggregation problems, it becomes difficult to analyze them mathematically.
Therefore, the schemes for aggregation problems are studied numerically only. It is clearly
observed that the convergence of the cell average technique is much faster than that of the fixed
pivot technique.
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The approach of Filbet and Laurençot [21] for solving aggregation PBEs is extended to solving
breakage PBEs. A mass conservation law corresponding to the breakage PBE is described and
then a fully discrete form of the finite volume scheme is formulated. A stability condition on time
step that ensures the positivity and some other properties of the solution is derived. Further, a
semi-discrete form of the scheme is introduced. It is also verified by a stability and convergence
analysis. The second order convergence is confirmed, both analytically and numerically. The
proposed scheme is then coupled with the existing finite volume scheme for solving combined
aggregation and breakage problems. Again, a stability condition with a restriction on time step
is derived in this case. Several comparisons between the numerical results obtained by the cell
average and finite volume schemes are made for pure breakage as well as for coupled problems.

Furthermore, the discretized tracer population balance equations of Hounslow et al. [33] for
aggregation problems are discussed and modified. It is shown that the original version was not
entirely consistent with the associated discretized population balance equation. These inconsis-
tencies are remedied in a new formulation that retains the advantages of the original discretized
tracer population balance equation, such as conservation of total tracer mass, prediction of
tracer-weighted mean particle volume, and so on. Furthermore, the discretized tracer popula-
tion balance equation has been extended to an adjustable discretization. Numerous comparisons
are made to demonstrate the validity of the extended and modified formulation.

Additionally, a new discretization for tracer population balance equations is developed. It is
compared to the modified discretized tracer population balance equation of Peglow et al. [86].
The new formulation provides excellent prediction of the tracer mass distribution in all test
cases. Furthermore, the new formulation is more efficient from a computational point of view.
It takes less computational effort and is able to give a very good prediction on a coarser grid.
Again, it is independent of the type of grid chosen for computation, i.e. the scheme can be im-
plemented using any type of grid. For finer grids, both formulations tend to produce the same
results. The performance of the new formulation is illustrated by the comparison with various
analytically tractable problems. Moreover, the new formulation preserves all the advantages of
the modified discretized tracer population balance equation and provides a significant improve-
ment in predicting tracer mass distribution and tracer-weighted mean particle volume during
an aggregation process.

Finally, the new discretization is extended to solving a two-dimensional population balance equa-
tion. Similar to the one-dimensional case, the scheme is based on an exact prediction of certain
moments of the population. The formulation is quite simple to implement, computationally
less expensive than previous approaches and highly accurate. Numerical diffusion is a common
problem with many numerical methods while applied on coarse grids. The presented technique
nearly eliminates numerical diffusion and predicts three moments of the population at high ac-
curacy. The technique may be implemented on any type of grid. The accuracy of the scheme
has been analyzed by comparing analytical and numerical solutions of some test problems. The
numerical results are in excellent agreement with the analytical results and show the ability to
predict higher moments very precisely. Additionally, an extension of the proposed technique to
higher dimensional problems is discussed.

12



1.4. OUTLINE OF CONTENTS

1.4 Outline of Contents

We start in Chapter 2 with a brief overview of sectional methods for solving population balance
equations. In particular we focus in Section 2.2 on the mathematical model and the existing
schemes for solving aggregation population balance equations. Hounslow’s discretization, the
first consistent method with the first two moments for aggregation problems is addressed. Next
we present the fixed pivot technique which we use as the building block for our new scheme.
Furthermore, the idea of applying a finite volume scheme to the aggregation problems is also
discussed. At this point it is shown how the number density based population balance equation
can be transformed to a mass conservation law. Section 2.3 presents the population balance
equation for breakage and some numerical schemes related to this work. Numerical treatments
for growth and nucleation problems have been summarized in Section 2.4. It has been shown
there that consistent sectional numerical schemes are oscillatory and inaccurate while finite
volume schemes are more diffusive and inconsistent with respect to certain moments.

We then proceed to construct our new scheme in Chapter 3. We are primarily concerned with
the general formulation of the scheme for one-dimensional problems followed by a detailed dis-
cussion about some advantages of the new scheme over the existing ones. Then the mathematical
formulation of the proposed scheme is derived for each case in different sections. We conclude
each section by presenting several numerical examples where analytical results are easily avail-
able. Finally, some mathematical analysis of the cell average and the fixed pivot techniques is
provided. In Section 3.4 the finite volume scheme for breakage population balance equation is
introduced. The mass conservation law for breakage is formulated in order to apply the finite
volume scheme.

In Chapter 4, the cell average technique is extended to multidimensional aggregation problems.
First the scheme is applied to a reduced problem. Then it is formulated for the complete
two-dimensional aggregation problem. We begin this chapter with the mathematical modeling
of the reduced system. Then, a short overview of Hounslow’s discretization for solving the
reduced system is given. It is shown with the help of a numerical example that the existing
discretization is not able to predict some properties of the distribution. These problems are then
overcome by modifying the existing formulation. Then the cell average technique is formulated
for solving the reduced system. It is shown there that the new scheme retains all the advantages
of the previously existing methods. Further, it has been found there that the two-dimensional
formulation is simply an extension of the one-dimensional formulation and therefore it has been
shown that the formulation can easily be extended to more than two-dimensional problems.
Detailed comparisons of numerical results obtained by the cell average and the extended fixed
pivot technique with analytical results for some simple problems are illustrated.

Chapter 5 presents some general conclusions regarding the improvements of the cell average
technique over the existing techniques. Finally, some future developments for improving the
technique are pointed out.

At the end of the thesis we put two Appendixes. Appendix A summarizes all analytical solutions
for pure and coupled processes used in this work. Some more technical mathematical derivations
are presented in Appendix B.
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Chapter 2

Population Balances

This chapter provides the mathematical models for different particulate processes and a short
overview of numerical techniques relating to this work. In particular, we consider aggregation,
breakage, growth and nucleation processes. In addition to the sectional methods, the existing
finite volume schemes to solve such models will be explored. In this survey we try to describe
all methods that appear to be practical and are more or less related to our work.

2.1 Introduction

Equation (1.3) is an micro-distributed form of the population balance equation because it refers
to a microscopic region in space. In many cases this form of the PBE is unnecessarily detailed.
Therefore it is safe to assume that particles are well mixed throughout the external coordinate
region and so the population balance may be integrated over all points in space. A general
one-dimensional PBE for a well mixed system then becomes [32, 87]

∂n(t, x)
∂t

=
Qin

Ṽ
nin(x) − Qout

Ṽ
nout(x) − ∂ [G(t, x)n(t, x)]

∂x
+ Bnuc(t, x)

+ Bagg(t, x) − Dagg(t, x) + Bbreak(t, x) − Dbreak(t, x). (2.1)

This equation must be supplemented with the appropriate initial and boundary conditions. The
parameter x represents the size of a particle. The first two terms on the right hand side represent
the flow into and out of a continuous process. The symbols Qin and Qout denote the inlet and
outlet flow rates from the system. The nucleation and growth rates are given by Bnuc(t, x) and
G(t, x) respectively. The terms nuc, agg, break have been abbreviated for nucleation, aggregation
and breakage respectively. The system volume is represented by Ṽ . A batch process has no net
inflow or outflow of particles. Therefore the first two terms on the right hand side of equation
(2.1) can be removed for a batch process. We will be concerned mainly with batch processes in
this work.

It is convenient to define moments of the particle size distribution at this time. The jth moment
of the particle size distribution n is defined as

μj =
∫ ∞

0
xjn(t, x) dx. (2.2)
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The first two moments represent some important properties of the distribution. The zeroth
(j = 0) and first (j = 1) moments are proportional to the total number and the total mass
of particles respectively. In addition to the first two moments, the second moment of the
distribution will be used to compare the numerical results. The second moment is proportional
to the light scattered by particles in the Rayleigh limit [57].

2.2 Aggregation

2.2.1 Population Balance Equation

In this section we discuss some numerical techniques for solving aggregation population bal-
ance equations. The phenomenon of aggregation appears in a wide range of applications, e.g. in
physics (aggregation of colloidal particles), meteorology (merging of drops in atmospheric clouds,
aerosol transport, minerals), chemistry (reacting polymers, soot formation, pharmaceutical in-
dustries, fertilizers). The temporal change of particle number density in a spatially homogeneous
physical system is described by the following well known population balance equation developed
by Hulburt and Katz [36]

∂n(t, x)
∂t

=
1
2

∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε − n(t, x)

∫ ∞

0
β(t, x, ε)n(t, ε) dε, (2.3)

where t ≥ 0. The first term represents the birth of the particles of size x as a result of the
coagulation of particles of sizes (x− ε) and ε. Here we shall refer to size as the particle volume.
The second term describes the merging of particles of size x with any other particles. The second
term is called the death term. The nature of the process is governed by the coagulation kernel
β representing properties of the physical medium. It is non-negative and satisfies the symmetry
condition β(t, ε, x) = β(t, x, ε). Analytical solutions of the preceding PBE can be found only in
some simplified cases and therefore we need numerical techniques to solve it. Note though, that
the known analytical solutions are very useful to asses the accuracy of numerical schemes.

2.2.2 Existing Numerical Methods

Among various numerical techniques: the method of successive approximations, the method of
Laplace transforms, the method of moments, weighted residuals, sectional methods, the finite
volume methods and Monte Carlo simulation methods, we discuss here only the sectional meth-
ods and the finite volume scheme. The sectional methods are well known in process engineering
because they are simple to implement and produce exact numerical results of some selected
properties. On the other hand the finite volume schemes are well suited for solving conservation
laws. The number density based PBE (2.3) can easily be transformed to a conservation law of
mass. Then the finite volume schemes can be implemented efficiently.

Hounslow’s technique

Hounslow et al. [34] proposed a relatively simple technique using a geometric discretization
where the width of ith cell is directly proportional to the width of (i − 1)th. It is convenient to
assume that smallest size (volume) in the ith cell is 2i and the largest size is 2i+1. There are
5 binary interaction mechanisms which are responsible for the changes of particles in the ith
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cell. The detailed descriptions of the mechanisms can be found in Hounslow et al. [34]. Here we
present them briefly.

• Mechanism 1: Aggregates are formed by collisions between particles in the (i − 1)th cells
with the particles from the first to the (i − 1)th cells. Some interactions give particles in
the ith cell and some interactions give particles smaller than the ith cell. The total birth
rate in the ith cell results to the following expression (after including volume correction
factor discussed in Hounlow et al. [34])

B
[1]
i =

i−2∑
j=1

2j−i+1βi−1,jNi−1Nj . (2.4)

• Mechanism 2: The second mechanism is a birth in the cell i by the coalescence of two
particles of the cell i−1. Any aggregate formed by two particles coming from cell the i−1
will result in a birth in the cell i. Total birth due to this mechanism is given by

B
[2]
i =

1
2
βi−1,i−1Ni−1Ni−1. (2.5)

• Mechanism 3: This mechanism represents death in the ith cell due to the coalescence of a
particle from size the cell i with a particle sufficiently large enough for the resultant granule
to be larger than the upper size limit of the ith cell. The resulting expression(including
volume correction factor) for this mechanism results in

D
[3]
i = Ni

i−1∑
j=1

2j−iβi,jNj. (2.6)

• Mechanism 4: The fourth mechanism is death in the ith cell due to coalescence of a particle
in the ith cell and a particle of that or a higher size cell. All interactions remove particles
from the ith cell.

D
[4]
i = Ni

I∑
j=i

βi,jNj . (2.7)

• Mechanism 5: Some interactions between the particles of ith cell with the particles from
first to the ith cell produce the particles that are still in the ith cell. This mechanism is
also a birth mechanism regarding mass and other higher moments but it has no effect on
number of particles. This mechanism is different from the others. Hounslow et al. [34]
did not consider this mechanism for the formulation of rate of change of the particles in
the cell i as the rate of change of particles due to this mechanism is zero. Particles are
getting larger within the cell due to this mechanism. This means that mass is increasing
in the cell while the number of particles is constant. Hounslow et al. [34] introduced a
volume correction factor to compensate for this and probably other effects. It may play
a significant role for example when formulating an expression for the mass distribution
during aggregation.
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Combining all mechanisms stated above, the net rate of change of particles in the cell i is given
by

dNi

dt
=

i−2∑
j=1

2j−i+1βi−1,jNi−1Nj +
1
2
βi−1,i−1N

2
i−1 − Ni

i−1∑
j=1

2j−iβi,jNj − Ni

I∑
j=i

βi,jNj

i = 1, 2, . . . , I. (2.8)

Here I denotes the total number of cells. Litster et al. [69] has generalized this technique to an
adjustable geometric size discretization of the form xi+1/2 = 21/qxi−1/2, where q is an integer
greater than or equal to one. The final discretized set of equations for q is given by

dNi

dt
=

i−S(q)−1∑
j=1

βi−1,jNi−1Nj
2(j−i+1)/q

21/q − 1
+

1
2
βi−q,i−qN

2
i−q +

q∑
k=2

i−S(q−k+1)−k∑
j=i−S(q−k+2)−k+1

βi−k,jNi−kNj
2(j−i+1)/q − 1 + 2−(k−1)/q

21/q − 1
+

q∑
k=2

i−S(q−k+1)−k+1∑
j=i−S(q−k+2)−k+2

βi−k+1,jNi−k+1Nj
−2(j−i)/q + 21/q − 2−(k−1)/q

21/q − 1

−
i−S(q)∑

j=1

βi,jNiNj
2(j−i)/q

21/q − 1
−

I∑
j=i−S(q)+1

βi,jNiNj, (2.9)

where S(q) =
∑q

p=1 p. Higher order moments of particle size distribution can be predicted
correctly for sufficiently large values of q. A large value of q implies that a large number of cells
are needed to cover the same size domain. Consequently more computational time is required
to solve the PBE for larger values of q.

Thereafter, Wynn [120] showed that the above adjustable discretization is not valid for all values
of q. For q > 4, the formulation (2.9) is not correct. The correct formulation according to Wynn
[120] is given as

dNi

dt
=

i−S1∑
j=1

2(j−i+1)/q

21/q − 1
βi−1,jNi−1Nj +

q∑
p=2

i−Sp∑
j=i−Sp−1

2(j−i+1)/q − 1 + 2−(p−1)/q

21/q − 1
βi−p,jNi−pNj

+
1
2
βi−q,i−qN

2
i−q +

q−1∑
p=1

i+1−Sp+1∑
j=i+1−Sp

21/q − 2(j−i)/q − 2−p/q

21/q − 1
βi−p,jNi−pNj

−
i−S1+1∑

j=1

2(j−i)/q

21/q − 1
βi,jNiNj −

I∑
j=i−S1+2

βi,jNiNj, (2.10)

where Sp = Int
[
1 − q ln(1−2−p/q)

ln 2

]
with Int[x] being the integer part of x. Wynn et al. [120]

introduced this parameter to correct the limits of the sums which were wrong in the original
work of Litster et al. [69].
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The fixed pivot technique

The discretization discussed above has the disadvantage that it can only be applied on a specified
grid. Kumar and Ramkrishna [57] developed the fixed pivot technique. This technique does not
only preserve the number and mass of the particles, but it can also be generalized for the
preservation of any two desired properties of the population. This technique divides the entire
size range into small cells. The size of a cell can be chosen arbitrarily. The size range contained
between two sizes xi−1/2 and xi+1/2 is called the ith cell. The particle population in this size
range is represented by a size xi, called grid point, such that xi−1/2 < xi < xi+1/2. A new
particle of size x in the size range [xi, xi+1], formed either due to breakup or aggregation, can
be represented by assigning fractions a1(x, xi) and a2(x, xi+1) to the populations at xi and xi+1

respectively. For the consistency with two general properties f1(x) and f2(x), these fractions
must satisfy the following equations

a1(x, xi)f1(xi) + a2(x, xi+1)f1(xi+1) =f1(x) (2.11)

a1(x, xi)f2(xi) + a2(x, xi+1)f2(xi+1) =f2(x). (2.12)

Furthermore, these equations can be generalized for the consistency with more than two prop-
erties by assigning the particle size x to more than two grid points. The population at represen-
tative volume xi gets a fractional particle for every particle that is born in size range [xi, xi+1]
or [xi−1, xi]. Integrating the continuous equation (2.3) over a cell i, we obtain

dNi(t)
dt

=
1
2

∫ xi+1/2

xi−1/2

∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε dx

−
∫ xi+1/2

xi−1/2

n(t, x)
∫ ∞

0
β(t, x, ε)n(t, ε) dε dx. (2.13)

Let us denote the first and second terms on the right hand side by Bi and Di respectively. We
now consider the birth term which has been modified according to Kumar and Ramkrishna [57]
as

BFP
i =

1
2

∫ xi+1

xi

a1(x, xi)
∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε dx

+
1
2

∫ xi

xi−1

a2(x, xi)
∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε dx. (2.14)

Kumar and Ramkrishna have considered that particles with number concentrations Ni, i =
1, 2, . . . , I are sitting at sizes xi, i = 1, 2, . . . , I respectively. Mathematically the number density
function n(t, x) can be represented in terms of Dirac-delta distribution as

n(t, x) =
I∑

i=1

Niδ(x − xi). (2.15)

Substituting the number density from (2.15) into the equation (2.14), the discrete birth term can
be obtained. For the consistency with numbers and mass, the discrete birth rate for aggregation
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2.2. AGGREGATION

is given by

BFP
i =

j≥k∑
j,k

xi−1≤x<xi+1

(
1 − 1

2
δj,k

)
η(x)βj,kNjNk, (2.16)

with η taken to be

η(x) =

⎧⎪⎪⎨
⎪⎪⎩

xi+1 − x

xi+1 − xi
, xi ≤ x < xi+1

x − xi−1

xi − xi−1
, xi−1 ≤ x < xi,

(2.17)

where x = xj + xk and βj,k = β(t, xj , xk). Similarly the death rate can be obtained by substi-
tuting the number density from equation (2.15) into the death term Di. A complete derivation
of the birth and death terms is provided in Appendix B.1. The final set of discrete equation is
given as

dNi

dt
=

j≥k∑
j,k

xi−1≤x<xi+1

(
1 − 1

2
δj,k

)
η(x)βj,kNjNk − Ni

I∑
k=1

βi,kNk, i = 1, 2, . . . , I. (2.18)

A different form of the formulation (2.18) is presented in Appendix B.2. Although the technique
possesses many features of flexibility, the authors have shown that the proposed technique has
the disadvantage of over-prediction of the number density in the large size range when applied
on coarse grids. Consequently, it highly overestimates the higher moments of the particle size
distribution. Kumar and Ramkrishna have also developed a moving pivot technique [58] to
overcome the over-prediction. The latter technique is more complex and gives difficulties to
solve the resulting set of ordinary differential equations (ODEs). The moving pivot approach of
discretizing the PBE results in a system of stiff differential equations.

It is also of interest to simplify the fixed pivot formulation for geometric grids of the type
xi+1 = 2xi. The formulation (2.18) for the grids xi+1 = 2xi takes the following form in this case

dNi

dt
=

i−2∑
j=1

2j−i−1βi−1,jNi−1Nj +
1
2
βi−1,i−1N

2
i−1 + Ni

i−1∑
j=1

(
1 − 2j−i

)
βi−1,jNj − Ni

I∑
j=1

βi,jNj .

(2.19)

The preceding equation can be simplified further to get

dNi

dt
=

i−2∑
j=1

2j−i−1βi−1,jNi−1Nj +
1
2
βi−1,i−1N

2
i−1 + Ni

i−1∑
j=1

2j−iβi−1,jNj − Ni

I∑
j=i

βi,jNj . (2.20)

This equation is exactly the same as Hounslow’s discretized population balance equation (2.8).
Note that the birth and death terms have different expressions in both discretizations but the
final form of both schemes is the same. In Hounslow’s discretization, the birth and death terms
compute the net birth and death rates while in the fixed pivot technique the total birth and
death rates are computed.
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CHAPTER 2. POPULATION BALANCES

The finite volume scheme

Now we present a completely different approach, the finite volume scheme, for solving aggre-
gation population balance equation. The finite volume schemes are frequently used for solving
conservation laws. Filbet and Laurençot [21] applied the finite volume approach to the aggrega-
tion population balance equation by modeling the aggregation process as mass conservation law,
see also Makino et al. [73]. First we present the mass conservation law for aggregation process
and then the finite volume discretization to solve the model.

Mass conservation law for aggregation: Aggregation process may be described as the mass
flow along the mass coordinate. Thus, the evolution of the mass distribution can be expressed
by the following mass conservation laws as

∂xn(x)
∂t

+
∂F (x)

∂x
= 0, (2.21)

where n(x) is the number density and F (x) is the mass flux across mass x. For the case of binary
aggregation, the outcomes of the aggregation events are trivial, i.e. two particles of masses x1

and x2 will form a new particle of mass x1 + x2. In the case of fragmentation it depends on
the mass distribution of fragments created by an impact. The aggregation frequency between
particles with masses x1 and particles with masses x2 by

βx1,x2n(x1)n(x2), (2.22)

where βx1,x2 = βx2,x1 is the aggregation rate of a particle with mass x1 against particles with
mass x2.

Consider a particle of mass x1 with 0 < x1 < x which collides with a particle of mass x2

satisfying x − x1 < x2 < ∞. As a result of this aggregation event, there is a mass flow across x
which is given by considering the following two cases.

• First, consider collision between particles of masses x1 for 0 < x1 < x and x2 for x ≤ x2 <
∞. In this case, it is readily seen that mass flux through x is x1.

• The remaining collisions where particles of masses x1 for 0 < x1 < x collide with particles
of masses x2 with x − x1 < x2 < x, the flux across x is simply x1 + x2.

Now summing all pairs of particles which gives mass flow across x, we obtain the total mass flux
across x as

F (x) =
1
2

∫ x

0

∫ x

x−x1

(x1 + x2)βx1,x2n(x1)n(x2) dx2 dx1 +
∫ x

0

∫ ∞

x
x1βx1,x2n(x1)n(x2) dx2 dx1.

(2.23)

The factor 1/2 appears due to double counting of collisions in that range. The first term can
further be simplified as follows

I =
1
2

∫ x

0

∫ x

x−x1

(x1 + x2)βx1,x2n(x1)n(x2) dx2 dx1

=
1
2

∫ x

0

∫ x

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1 +
1
2

∫ x

0

∫ x

x−x1

x2βx1,x2n(x1)n(x2) dx2 dx1. (2.24)
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Changing the order of integration of the second term and then interchanging the integration
variables x1 and x2, the first term (I) takes the following simplified form

I =
1
2

∫ x

0

∫ x

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1 +
1
2

∫ x

0

∫ x

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1

=
∫ x

0

∫ x

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1. (2.25)

Using this the flux function reduces simply to

F (x) =
∫ x

0

∫ ∞

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1. (2.26)

Substituting the flux function F (x) into equation (2.21), we get

∂xn(x)
∂t

+
∂

∂x

(∫ x

0

∫ ∞

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1

)
= 0. (2.27)

Now we show that the above mass conservation law (2.27) can easily be transformed to the
standard continuous population balance equation. By making use of the Leibnitz integration
rule, we obtain

∂xn(x)
∂t

+
∫ x

0

∂

∂x

∫ ∞

x−x1

x1βx1,x2n(x1)n(x2) dx2 dx1 +
∫ ∞

0
xβx,x2n(x)n(x2) dx2 = 0. (2.28)

Further applying Leibnitz integration rule in the first term, this equation takes the following
form

∂xn(x)
∂t

=
∫ x

0
x1βx1,x−x1n(x1)n(x − x1) dx1 −

∫ ∞

0
xβx,x2n(x)n(x2) dx2. (2.29)

The first term on the right hand side can be split into two parts

∂xn(x)
∂t

=
∫ x

0

(x

2
+ x1 − x

2

)
βx1,x−x1n(x1)n(x − x1) dx1 −

∫ ∞

0
xβx,x2n(x)n(x2) dx2

=
x

2

∫ x

0
βx1,x−x1n(x1)n(x − x1) dx1 −

∫ ∞

0
xβx,x2n(x)n(x2) dx2

+
∫ x

0

x1

2
βx1,x−x1n(x1)n(x − x1) dx1 −

∫ x

0

(x − x1)
2

βx1,x−x1n(x1)n(x − x1) dx1

=
x

2

∫ x

0
βx1,x−x1n(x1)n(x − x1) dx1 −

∫ ∞

0
xβx,x2n(x)n(x2) dx2

+
1
2

∫ x

0
x1βx1,x−x1n(x1)n(x − x1) dx1 − 1

2

∫ x

0
x1βx1,x−x1n(x1)n(x − x1) dx1

=
x

2

∫ x

0
βx1,x−x1n(x1)n(x − x1) dx1 − x

∫ ∞

0
βx,x2n(x)n(x2) dx2. (2.30)

Thus, dividing out x the equation (2.30) turns into the classical aggregation equation (2.3).
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CHAPTER 2. POPULATION BALANCES

Numerical discretization: Let us consider a finite domain [0, xI ] for the computation. We
consider finite volume scheme for the discretization of equation (2.21). We discretize time in
discrete level tm, m = 1, 2, . . ., and the space into I cells Λi = [xi−1/2, xi+1/2[, i = 1, 2, . . . , I.
Integrating the conservation law on a cell in space-time Λi × [tm, tm+1] we obtain∫ xi+1/2

xi−1/2

xn(tm+1, x) dx =
∫ xi+1/2

xi−1/2

xn(tn, x) dx −
∫ tm+1

tm

(F (t, xi+1/2) − F (t, xi−1/2)) dt. (2.31)

We can rewrite the above equation as

gm+1
i = gm

i − Δt

Δxi
(Jm

i+1/2 − Jm
i−1/2), i = 1, 2, . . . , I, (2.32)

where gm
i denotes an approximation of the cell average of g(tm, x) = xn(tm, x) on cell i at time

tm, and Jm
i+1/2 approximates the flux on the boundary of the cell. It is the so called numerical

flux. According to Filbet and Laurençot [21], the numerical flux has been approximated as
follows

Jm
i+1/2 =

i∑
k=0

Δxkg
m
k

⎡
⎣ I∑

j=αi,k

∫
Λj

β(u, xk)
u

du gm
i +

∫ xαi,k−1/2

xi+1/2−xk

β(u, xk)
u

du gm
αi,k−1

⎤
⎦ . (2.33)

The integer αi,k corresponds to the index of the cell such that xi+1/2−xk ∈ Λαi,k−1. The authors
pointed out that the formulation (2.32) provides a second order accuracy. It is important to
emphasize that unlike the fixed pivot technique the formulation (2.32) is consistent only with
the first moment.

2.3 Breakage

2.3.1 Population Balance Equation

Population balances for breakage are widely known in high shear granulation, crystallization,
atmospheric science and many other particle related engineering problems. The general form of
population balance equation for breakage is given as [124]

∂n(t, x)
∂t

=
∫ ∞

x
b(x, ε)S(ε)n(t, ε) dε − S(x)n(t, x). (2.34)

The breakage function b(v, ε) is the probability density function for the formation of particles of
size form particle of size. The selection function S(ε) describes the rate at which particles are
selected to break. The breakage function has the following properties∫ x

0
b(ε, x) dε = N(x), (2.35)

and ∫ x

0
xb(ε, x) dε = x. (2.36)
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2.3. BREAKAGE

The function N(x) represents the number of fragments obtained from the breakage of particle
of size x.

In the literature, it is common to write the above population balance equation for binary breakage
as, see Ziff and McGrady [125],

∂n(t, x)
∂t

= 2
∫ ∞

x
B̃(x, ε − x)n(t, ε) dε − n(t, x)

∫ x

0
B̃(ε, x − ε) dε, (2.37)

where B̃(x, y) = B̃(y, x), gives the rate that an (x+y)−mer breaks into an x−mer and a y−mer.
The relationships between b, S and B can be found from equation (2.34) and equation (2.37),

S(x) =
∫ x

0
B̃(ε, x − ε) dε, and b(x, ε) = 2B̃(x, ε − x)/S(ε). (2.38)

The above PBE (2.34) can only be solved analytically for very simple forms of the breakage and
selection functions, see [13, 124, 125]. This certainly leads to a discussion of numerical methods
for solving PBE. Numerical methods fall into several categories: stochastic methods, [64, 76],
finite element methods, Everson et al. [20], sectional methods, Kumar and Ramkrishna [57, 58],
and moment methods [50, 51].

The stochastic methods (Monte-Carlo) are very efficient for solving multi-dimensional population
balance equations, since other numerical techniques become computationally very expensive
in such cases. A wide varieties of finite element methods, weighted residuals, the method of
orthogonal collocation and Galerkin’s method are also used for solving breakage population
balance equations. In these methods, the solution is approximated as linear combinations of
basis functions over a finite number of sub-domain. In recent times, the sectional methods
have become computationally very attractive. A detailed review of sectional methods has been
recently given by Vanni [116]. In the moment method, the fragmentation equation is transformed
into a system of ODEs describing the evolution of the moments of the particle size distribution.

2.3.2 Existing Numerical Methods

Sectional methods are the most important alternatives for solving PBEs since they are simple
to implement and predict particle properties accurately. Several sectional methods for breakage
PBE have been recently proposed by Hill and Ng [30], Kumar and Ramkrishna [57, 58], as well
as Vanni [115]. We briefly discuss them here.

Hounslow et al. [34] proposed a numerical method for solving aggregation problems which
emerged to be the first discretized method that preserves the first two moments. Following
this Hill and Ng [30] developed a discretized method for general breakage population balance
equation. They used two correction factors in the discretized equation to preserve the first two
moments. In order to calculate the correction factors they imposed two conditions: the correct
evaluation of total mass (the first moment) and the correct evaluation of the total number (the
zeroth moment). Since the calculation of the correction factors was not possible for the general
case, they considered three different forms of the breakage function and a special form of the
selection function S(x) = S0x

α. Afterwards, Vanni [115] modified the discretized method of Hill
and Ng [30] to make it more general. Keeping the entire formulation the same, Vanni changed
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the second condition to calculate the correction factor. He considered the correct evaluation of
the death term while Hill and Ng [30] imposed the correct prediction of the total number of
particles. The method becomes more general but finally it leads to less accurate solutions.

Hounslow et al. [33] introduced a new discretization for breakage PBE. They calculated the
selection and the breakage functions by imposing the condition of correct evaluation of the total
number and the movement of granule volume from one interval to another. The formulation
predicts the total number and the total mass correctly, but the selection and the breakage
functions require the computation of many single and double integrals. Later, Tan et al. [109],
used this discretization in his work on fluidized bed melt granulation.

Kumar and Ramkrishna [57] applied the fixed pivot technique to the breakage population balance
equation. It is found that the fixed pivot technique is more general than previously existing
techniques. A Similar procedure like we have in the formulation of the discretized equations
for aggregation can be followed to get the discretized equations for the breakage. Their final
set of discretized equations for the exact preservation of number and mass in this case take the
following form

dNi(t)
dt

=
I∑

k=i

ηi,kSkNk(t) − SiNi(t), i = 1, 2, . . . , I,

=: BFP
i − DFP

i , i = 1, 2, . . . , I. (2.39)

Here, Sk is S(xk) and the function η is described by

ηi,k =
∫ xi+1

xi

a1(x, xi)b(x, xk) dx +
∫ xi

xi−1

a2(x, xi)b(x, xk) dx, (2.40)

where

a1(x, xi) =
xi+1 − x

xi+1 − xi
, a2(x, xi) =

x − xi−1

xi − xi−1
. (2.41)

Note that the following local conservation properties hold

a1(x, xi) + a2(x, xi+1) = 1, (2.42)

and

xia1(x, xi) + xi+1a2(x, xi+1) = x. (2.43)

The fundamental concept behind the fixed pivot technique can be summarized as follows. Sup-
pose a new particle of a size which is not a representative of any cell appears due to breakage
of larger particles. The particle has to be divided to neighboring representatives in such a way
that number and mass are conserved. In this process numerical diffusion is of course possible
due to the assignment of particles to the representatives to whom they do not really belong.
Nevertheless, quite satisfactory results can be obtained by this technique. However, it will be
shown later that the fixed pivot technique over-predicts the results. Since in breakage process
particles flow towards the smaller particles, the fixed pivot technique overestimates the number
density of smaller particles. Moreover, we will see in Section 3.3 that the fixed pivot technique
is a first order method for breakage problems.
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2.4 Growth

2.4.1 Population Balance Equation

A growth process is common in a wide range of particulate process including crystallization and
granulation. The population balance equation for pure growth is given as

∂n(t, x)
∂t

+
∂ [G(x)n(t, x)]

∂x
= 0. (2.44)

This is a hyperbolic type equation due to growth term. It suffers from many computational
difficulties. A detailed review of some simple numerical schemes used for solving such equations
will be presented here. A more complex methods can be found in Hundsdorfer and Verwer [37]
as well as in LeVeque [66] and references therein.

2.4.2 Existing Numerical Methods

Finite volume schemes are known to be a good approach to solve such equations, since they
automatically incorporate conservation of number in a growth process. We first briefly discuss
the finite volume schemes. Then numerical problems with these methods will be mentioned. Our
interest here is in formulating a semi-discretized form of the above equation so that the method
of lines (MOL) approach can easily be applied. The reason for the MOL approach here is the
easy coupling of various process like aggregation, breakage etc. and of course easily available
ODE integrators. We discretize the domain into equal spatial cells Ωi = [xi−1/2, xi−1/2] and
define as nodes xi = (xi−1/2 + xi−1/2)/2 the centers of the cells. Direct integration of equation
(2.44) over each cell gives the semi-discrete formulation

dNi(t)
dt

= G(xi−1/2)n(t, xi−1/2) − G(xi+1/2)n(t, xi+1/2), i = 1, 2, . . . , I. (2.45)

Various methods for the numerical solutions of equation (2.44) can be obtained from different
choices of the approximation of n(t, xi−1/2) and n(t, xi+1/2) in terms of Ni(t). The easiest
approximation n(t, xi+1/2) ≈ Ni(t)/Δx gives the first order upwind difference discretization

dNi(t)
dt

=
1

Δx

[
G(xi−1/2)Ni−1 − G(xi+1/2)Ni

]
. (2.46)

The choice
n(t, xi+1/2) ≈

1
2Δx

[
Ni(t) + Ni+1(t)

]
gives the second order central discretization

dNi(t)
dt

=
1

2Δx

[
G(xi−1/2)

{
Ni−1(t) + Ni(t)

}− G(xi+1/2)
{
Ni(t) + Ni+1(t)

}]
. (2.47)

The PBE (2.44) is solved using the first order upwind discretization and the second order central
discretization for G(v) = 1 and

n(0, x) =

{
1, 2 ≤ x ≤ 4,
0, otherwise.

(2.48)
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(a) First order upwind scheme.
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(b) Second order central scheme.

Figure 2.1: Particle size distributions for pure growth with constant growth rate at t = 6
obtained on 100 uniform fixed grid points.
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Figure 2.2: Particle size distributions for pure growth with constant growth rate at t = 6
obtained on 100 uniform fixed grid using flux limiter method.

The computation is carried out on 100 uniform fixed cells at t = 6. For the integration of both
the discrete formulations, MATLAB ODE45 solver has been used. It is a one step solver based
on an explicit Runge-Kutta (4,5) formula. The results have been plotted in Figure 2.1. The first
order upwind scheme smeared and therefore is not accurate. The second order scheme produces
oscillations and seems to be unstable. The second order scheme is expected to be more accurate
than the first order scheme. This is only true for very smooth solutions. Unfortunately most of
the higher order schemes suffer from oscillations and produce negative values that are unrealistic.
The first order upwind scheme is an alternative for non-oscillatory simple scheme but that is
very diffusive and inaccurate. Therefore the first order upwind scheme in real application is not
usually recommended.

A class of more sophisticated discretization methods that preserve positivity and attain more
accuracy than the first order upwind are the so called flux limiting methods. These methods,
also known as high resolution schemes, are obtained by modifying the fluxes of a higher order
discretization. The idea behind high resolution schemes is to apply a high order flux in smooth
regions and a low order flux near discontinuities. This is achieved by measuring the smoothness of
the data. Many high resolution methods can be found in Koren [47], LeVeque [65], Hundsdorfer
and Verwer [37] as well as Kurganov and Tadmor [60]. Here we present one example of a flux
limiting method which was introduced by Koren [47]. In this method the number density at the
boundary is approximated by

n(t, xi+1/2) ≈
1

Δx

[
Ni(t) +

1
2
φ(θi+1/2)

{
Ni(t) − Ni−1(t)

}]
. (2.49)
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Here φ is the limiter function defined as

φ(θ) = max
[
0,min

{
2θ,min

(
1
3

+
2
3
θ, 2

)}]
, (2.50)

where the parameter θ is defined as

θi+1/2 =
Ni+1 − Ni + ε

Ni − Ni−1 + ε
, (2.51)

with a very small constant ε to avoid division by zero. Using this method we computed the
solution of equation (2.44) on the test problem under the same conditions as before. The
numerical results have been shown in Figure 2.2. Clearly this scheme gives a better accuracy
than the first order upwind without producing negative values. The application of some other
high resolution schemes for growth PBE can be found in Lim et al. [67] and Gunawan et al. [27].
It is known that some of the finite volume methods for hyperbolic problems are more efficient
on a direct space-time discretization approach. Since we are interested in the MOL approach,
our choice of finite volume schemes is restricted to some extent. Also note that we used only
homogeneous grids in our computation. As we have seen for breakage and aggregation problems
non-homogeneous grids are preferred and therefore we wish to have the same here. It is of course
possible to extend these methods to non-homogeneous grids. But the extension of finite volume
scheme to non-uniform grids is not a trivial task, see Hundsdorfer and Verwer [37].

Complexity of the finite volume scheme on non-homogeneous grids and the restricted class
of methods where one can apply MOL approach motivate us to discuss a different class of
discretized methods. We will discuss some methods that rely on correct prediction of some
selected moments. Hounslow et al. [34] seem to have been the first in the literature to propose a
method which is consistent with the first three moments with respect to particle length. Their
discrete formulation for the equation (2.44) considering volume as an internal coordinate can be
obtained by the following expression, see Park and Rogak [80],

dNi

dt
=

ǎGi−1Ni−1

xi−1
+

b̌GiNi

xi
+

čGi+1Ni+1

xi+1
, (2.52)

where ǎ, b̌ and č are constants. They have been chosen so that the discretization predicts
correctly the first three moments. Their final set of equations is

dNi

dt
=

1
xi

(
r

r2 − 1
Gi−1Ni−1 + GiNi − r

r2 − 1
Gi+1Ni+1

)
, (2.53)

where r = xi+1/xi and Gi = G(xi). We have tested this discretization on our model problem
(2.48) under the same conditions as in Figures 2.1 and 2.2. As suggested by the authors, we
suppressed the negative values to zero that cause an increase of total number and mass. An
unstable behavior of the model and inaccurate particle size distribution can be seen in Figure
2.3(a). The temporal over-prediction of total number and volume due to setting of negative
values to zeros has been plotted in Figure 2.3(b).
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Figure 2.3: Numerical results for pure growth with constant growth rate at t = 6 obtained on
40 non-uniform logarithmic fixed grid points using Hounslow et al. [34].
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Following Hounslow et al. [34], an effort to overcome these difficulties has been made recently by
Park and Rogak [80]. They also started with the same formulation like (2.52) assigning different
constants in each cell. They consider the folllowing formulation

dNi

dt
=

ǎi−1Gi−1Ni−1

xi−1
+

b̌iGiNi

xi
+

či+1Gi+1Ni+1

xi+1
, (2.54)

where Gi = G(xi) and the coefficients ǎi, b̌i and či have been calculated by imposing the
conditions of correct prediction of the first two moments and the slope of the size distribution
as

b̌i =

⎧⎪⎪⎨
⎪⎪⎩
− r

r − 1
erf

(
1
4

d ln Ni

d ln xi

)
,

d ln Ni

d ln xi
≤ 0,

− 1
r − 1

erf
(

1
4

d ln Ni

d ln xi

)
,

d ln Ni

d ln xi
> 0,

(2.55)

ǎi =
r − b̌i(r − 1)

r2 − 1
, (2.56)

and

či = −(ǎi + b̌i). (2.57)

The term d ln Ni/ d ln xi in b̌i has been calculated using the second order central scheme. The
formulation (2.54) can also be rewritten in conservative form as

dNi

dt
=

ǎi−1Gi−1Ni−1 − čiGiNi/r

xi−1
− ǎiGiNi − či+1Gi+1Ni+1/r

xi
. (2.58)

We have implemented also this model on our test problem. The numerical results for the PSDs
and the moments have been plotted in Figure 2.4. Similar to the results obtained by the tech-
nique of Hounslow et al., the prediction of particle size distribution (PSD) in Figure 2.4(a) shows
oscillations. Moreover some higher overshoot in PSD is observed in this case. Nevertheless this
model improves the prediction of moments over Hounslow et al. (2.53) as shown in Figure 2.4(b).

Due to several serious difficulties like inaccuracy, diffusive nature, instability, restriction to spe-
cial grids etc., it is very difficult to recommend a best method for a general growth problem.
There are of course more sophisticated methods available in the literature but they are compli-
cated to implement and difficult to couple with other processes. However the flux limiter method
(2.49) while applied on uniform grids seems a good choice. On the other hand, as mentioned
before, for aggregation and breakage problems geometric grids are more preferable than uniform
grids.

All the difficulties in numerical solutions stated above can be overcome by the moving sectional
methods proposed by Gelbard and Seinfeld [23] as well as Kim and Seinfeld [45]. They can be
classified as Lagrangian type methods. In the moving sectional method all particles initially
within a section remain there during computation, i.e.

dNi(t)
dt

= 0, (2.59)
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Figure 2.4: Numerical results for pure growth with constant growth rate at t = 6 obtained on
40 non-uniform logarithmic fixed grid points using Park and Rogak [80].
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Figure 2.5: Particle size distributions for pure growth with constant growth rate at t = 6
obtained on 15 uniform moving grid points.

and the section boundaries move as particles grow. Therefore we have the following governing
equations for the boundaries

dxi±1/2(t)
dt

= G(xi±1/2). (2.60)

In order to have a consistent formulation with moments, the section representative has to move
as

dxi(t)
dt

= G(xi). (2.61)

It must be noted that for simple growth functions like G(x) = x or G(x) = G0 the representative
(cell center) can be calculated using xi±1/2 without setting the differential equation (2.61) as

xi(t) =
xi−1/2 + xi+1/2

2
. (2.62)

This technique is free of diffusion and instability problems independent of the type of grids chosen
for computation. The prediction of numerical results is extremely accurate and no significant
difference can be observed between numerical and analytical results. Our test problem with a
constant growth rate is a trivial case for moving sectional methods and therefore the numerical
results look the same as the analytical solution, see Figure 2.5. Only 15 uniform cells have
been used for the computation. For a detailed description of the scheme and its application to
more models and practical problems, readers are referred to Gelbard and Seinfeld[23], Kim and
Seinfeld [45], Kumar and Ramkrishna [59], Spicer et al. [106], Tsantilis et al. [113] as well as
Tsantilis and Pratsinis [114]. The moving sectional method is the easiest approach to solve pure
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growth problems. However when combined with the other processes of nucleation, aggregation
and breakage, implementation of a moving sectional method becomes complex. We will discuss
this issue in detail in next sections.

A slightly different idea of hybrid grids was formulated by Jacobson [42] as well as Jacobson
and Turko [43]. They fixed the boundaries of the sections and moved their representative sizes.
By fixing boundaries other processes like nucleation, aggregation etc. can easily be treated. If
the representative crosses the upper boundary than all the particles in the section are moved
and averaged with the particles of the next section. The numerical diffusion can significantly be
reduced and quite satisfactory results can be obtained. However there might be many difficulties
with the implementation of this approach. Consider a cell whose particles are moved to the next
cell and become empty at a particular time. In this case fluctuations in PSD are possible at
that time. To overcome this difficulty one may delete this cell by extending neighboring cells
but certainly this adds more complexity in the implementation.

Next we shall explore some difficulties with the previously existing schemes for solving combined
problems. Most of the techniques discussed above can be used for solving combined problems
just by adding their individual discretizations corresponding to different processes. However, all
the difficulties discussed above above remain the same.

2.5 Combined Processes

Among all methods discussed above we conclude that the fixed pivot technique conserves the
two moments and allows a quite arbitrary grid in a very simple and straightforward way. The
fixed pivot technique, however, cannot be used to solve the growth processes. Kumar and
Ramkrishna [59] used a Lagrangian approach for the solution of growth and the fixed pivot
technique for aggregation and breakage processes. They obtained quite satisfactory results for
this combination of schemes. The problem appears when combining growth and nucleation
processes. Due to the Lagrangian treatment of growth, smallest representative size together
with its boundaries move and there may not be a cell to place subsequently placed nuclei. This
leads to several numerical difficulties. An effort in this direction was also made by Kumar
and Ramkrishna [59]. Their formulation was inconsistent with the mass of the particles due to
nucleation. It was later improved by Spicer et al. [106] by considering the effect of the mass of
new formed nuclei on the movement of cell representatives. Their final set of equations for the
consistency of the first two moments is given as

dNi

dt
= Bnucδi, (2.63)

and

dxi

dt
= G(xi) +

1
Ni

(xnuc − xi)Bnucδi. (2.64)

where

δi =

{
1, xnuc ∈ [xi−1/2, xi+1/2]
0, elsewhere.

(2.65)
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Here xnuc is the size of the nuclei. The system of differential equations (2.63) and (2.64) can
be solved to simulate a simultaneous process of growth and nucleation. The grid regeneration
principles are explained in Kumar and Ramkrishna [59].

We conclude this chapter with the observation that the existing schemes have several disadvan-
tages: many of them are designed for a specified grid type, others do not have uniform treatment
for all processes or they are very complicated to implement. The fixed pivot technique seems
good for aggregation and breakage problems but that can not be applied for growth and nucle-
ation problems. Moreover, it will be shown later that the fixed pivot technique over-predicts
the number density and gives a very poor prediction of the second moment. As mentioned,
the objective is to develop a method which provides a uniform treatment to all processes and
predicts the number density as well as higher moments with better accuracy.
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Chapter 3

New Numerical Methods:
One-Dimensional

In this chapter two different types of numerical methods for solving one-dimensional population
balances are developed. The first method approximates the number density in terms of Dirac
point masses and is based on an exact prediction of some selected moments. Furthermore, a
new perspective of treating growth of particles as an aggregation process has been presented
and then the proposed method is applied to combined aggregation and growth processes. The
second method treats aggregation and breakage as mass conservation laws and makes use of
the finite volume type scheme to solve the population balance equation. It is shown that for
a number of test problems both the schemes produce results in excellent agreement with the
analytical solutions. In assessing the effectiveness of various methods we will be concerned with
the following attributes: generality, accuracy when applied on a coarse grid, computational time,
ease of use and simplicity.

3.1 Introduction

The main objective of this chapter is to overcome the numerical problems in current discretized
population balances discussed in previous chapter. It has been identified in the last chapter
that the fixed pivot technique proposed by Kumar and Ramkrishna [57] results in a consistent
over-prediction of number density for the large particles. Moreover, a diverging behavior of
higher moments, which is of course caused by the over-prediction of the number density, is also
a serious problem. Therefore, the aim is to propose a similar scheme which preserves all the
advantages of the fixed pivot technique and improves the accuracy of the numerical results.

As mentioned in the previous chapter, Filbet and Laurençot [21] introduced an application of
the finite volume approach to solve a one-dimensional aggregation problems. Finally it has been
observed that the finite volume scheme is a good alternative to solve the population balance
equations due to its automatic mass conservation property. Since they have considered only
aggregation problems, the aim here is to develop a finite volume scheme to solve the break-
age population balance equation. Following their idea we shall derive a new form of breakage
population balance equation in order to apply the finite volume scheme effectively.

This chapter is organized as follows. First we present the new discretized method, the cell
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xi−1/2 xi+1/2

xi−1 xi+1xi
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xi+3/2
xi−3/2

Figure 3.1: A discretized size domain.

average technique, in Section 3.2. Beginning with the fundamental concept of the scheme, it
is formulated for several particular cases. The technique is tested by various comparisons of
numerical and analytical results in each case. Then the convergence studies of the cell average
and fixed pivot techniques are performed in Section 3.3. In Section 3.4, the finite volume is
successfully applied to a newly derived form of pure breakage population balance equation. It
also includes the combined formulation of simultaneous aggregation and breakage along with
different comparisons with the cell average technique. A rigorous mathematical analysis is
presented for pure and combined processes.

3.2 The Cell Average Technique

First we present a general idea of the cell average technique. The entire size domain is divided
into a finite number I of small cells. The lower and upper boundaries of the ith cell are denoted by
xi−1/2 and xi+1/2 respectively. All particles belonging to a cell are identified by a representative
size of the cell, also called grid point. The representative size of a cell can be chosen at any
position between the lower and upper boundaries of the cell. In this work the center of the cell,
the arithmetic mean of the cell boundaries, is defined as the representative size. The average
mean volume of the particles or the geometric mean could be other alternative choice for the
representative. A typical discretized size domain is shown in Figure 3.1. The representative of
the ith cell is represented by xi = (xi+1/2 + xi−1/2)/2. The width of the ith cell is denoted by
Δxi = xi+1/2 − xi−1/2. The size of a cell can be fixed arbitrarily depending upon the process of
application. In most of the application, however, geometric type grids are preferred.

We wish to transform the general continuous population balance equation into a set of I ODEs
that can be solved using any standard ODE solver. Denoting the total number in the ith cell
by Ni, we seek a set of ODEs of the following form

dNi

dt
= BCA

i︸︷︷︸
birth due to particulate events

− DCA
i︸︷︷︸

death due to particulate events

, i = 1, 2, . . . , I. (3.1)

The particulate events that may change the number concentration of particles include break-
age, aggregation, growth and nucleation. The abbreviation CA stands for cell average. Note
that this general formulation is not similar to the traditional sectional formulation where birth
terms corresponding to the each process are summed up to contribute the total birth. Here all
particulate events will be considered in a similar fashion as we treat individual processes. The
concept of combining the processes will be further elaborated in next sections.
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Figure 3.2: Appearance of particles in a cell.

The first step is to compute particle birth and death in each cell. Consideration of all possible
events that lead to the formation of new particles in a cell provides the birth term. Similarly all
possible events that lead to the loss of a particle from a cell give the death rate of particles. The
new particles in the cell may either appear at some discrete positions or they may be distributed
continuously in accordance with the distribution function. For example, in a binary aggregation
process particles appear at discrete points in the cell whereas in breakage process they are often
distributed everywhere according to a continuous breakage function. Due to non-uniform grids,
it is then possible that the size of a newborn particle in a cell does not match exactly with the
representative size of that cell. The newborn particles whose sizes do not match with any of
the representative sizes cause an inconsistency of moments in the formulation. Therefore the
aim is to remedy the inconsistency in a efficient manner. Suppose that we just substitute the
total birth and death of particles, for example, in the equation (3.1). Then the prediction of the
zeroth moment by the formulation will be predicted correctly but the formulation will become
inconsistent with respect to the first moment. In this work we propose the cell average technique
consistent with the first two moments. But the same idea can be generalized to conserve any
two moments.

Let us demonstrate the common concepts of the cell average technique by the following exam-
ple shown in Figure 3.2. Particle births B1

i , B2
i , . . . , BIi

i take place at positions y1
i , y

2
i , . . . , y

Ii
i

respectively due to some particulate processes like aggregation, breakage, birth etc. in the cell i.
Here we considered the purely discrete case but analogous steps can be performed for continuous
appearance of the particles in the cell. First we compute the total birth of particles in the ith
cell as

Bi =
Ii∑

j=1

Bj
i . (3.2)

Since we know the positions of the newborn particles inside the cell, it is easy to calculate the
average volume of newborn particles, v̄i. It is given by the following formula

v̄i =

∑Ii
j=1 yj

jB
j
i

Bi
. (3.3)

Now we may assume that Bi particles are sitting at the position v̄i ∈ [xi−1/2, x1+1/2]. It should
be noted that the averaging process still maintains consistency with the first two moments. If
the average volume v̄i matches with the representative size xi then the total birth Bi can be
assigned to the node xi. But this is rarely possible and hence the total particle birth Bi has to
be reassigned to the neighboring nodes such that the total number and mass remain conserved.
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Figure 3.3: Average volume of all newborn particles.

Considering that the average volume v̄i > xi as shown in Figure 3.3, the assignment of particles
must be performed by the following equations

a1(v̄i, xi) + a2(v̄i, xi+1) = Bi, (3.4)

and

xia1(v̄i, xi) + xi+1a2(v̄i, xi+1) = Biv̄i. (3.5)

Here a1(v̄i, xi) and a2(v̄i, xi+1) are the fractions of the birth Bi to be assigned at xi and xi+1

respectively. Solving the above equations we obtain

a1(v̄i, xi) = Bi
v̄i − xi+1

xi − xi+1
, (3.6)

and

a2(v̄i, xi+1) = Bi
v̄i − xi

xi+1 − xi
. (3.7)

It is convenient for further simplifications to define a function λ as

λ±
i (x) =

x − xi±1

xi − xi±1
. (3.8)

The fractions can be expressed in terms of λ as

a1(v̄i, xi) = Biλ
+
i (v̄i), (3.9)

and

a2(v̄i, xi+1) = Biλ
−
i+1(v̄i). (3.10)

There are 4 possible birth fractions that may add a birth contribution at the node xi: Two
from the neighboring cells and two from the ith cell. All possible birth contributions have been
shown in Figure 3.4. Collecting all the birth contributions, the birth term for the cell average
technique is given by

BCA
i =Bi−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Biλ

−
i (v̄i)H(xi − v̄i)

+ Biλ
+
i (v̄i)H(v̄i − xi) + Bi+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (3.11)
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Figure 3.4: Assignment of particles at xi from all possible cells.

The Heaviside step function is a discontinuous function also known as unit step function and is
here defined by

H(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x > 0
1
2
, x = 0

0, x < 0.

(3.12)

Before we summarize the cell average technique it should be mentioned here that the continuous
number density function n(t, x) can be represented, similarly to the fixed pivot technique, in
terms of Dirac-delta distributions as given by the equation (2.15). It is due to the fact that all
particles in a cell are assumed to be concentrated at the representative size of the cell. This
representation of the number density is useful to calculate the discrete birth and death rates
in a cell. We now summarize the main steps of the cell average technique discussed above as
follows:

1. Computation of birth and death rates: The discrete birth and death rates can be obtained
by substituting a Dirac-delta representation (2.15) of the density into the continuous form
of total birth and death rates in a cell. Thereby computations of Bi and Di are performed
in the first step.

2. Computation of the volume averages: The second step is to calculate the average volume
of the particles in each cell, i.e. v̄i. This is a central step of the cell average technique and
can easily be obtained after step 1.

3. Birth modification: The birth modification, crucial point for the sectional methods, is done
according to the equation (3.11). This modified birth rate BCA

i is consistent with the first
two moments. Note that there is no need to modify the death term since particles are just
removed from the grid points and therefore the formulation remains consistent with all
moments due to discrete death. As a result the death term in the cell average formulation
DCA

i is equal to Di.

4. Solution of the set of ODEs: Substituting the values of BCA
i and DCA

i into the equation
(3.1) we obtain a set of ordinary differential equation. It will be then solved by any higher
order ODE solver. An appropriate solver to solve such equations will be recommended at
the end of this section.
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Figure 3.5: Particle domain which may contribute a birth at the node xi.

A general procedure of the cell average technique has been explained above. Further details
and implementation of the cell average technique for particular and combined processes will be
presented later.

At this point it is important to comment on the conceptual difference between the fixed pivot
and the cell average techniques. The basic difference between the two techniques is the averaging
of the volume. The cell average technique first collects the total birth of particles in a cell and
then distributes it once to the neighboring nodes depending upon the position of the volume
average in the cell according to the strategy discussed above. On the other hand each birth which
takes place in a cell is assigned immediately to the neighboring nodes with the same strategy by
the fixed pivot technique. The another substantial difference as a consequence of the averaging
arises from the domain of particles which contributes to birth at a node. The particle domain
which may contribute a birth at the node xi is shown in Figure 3.5 for both techniques. The
cell average covers the two adjacent cells completely while the fixed pivot technique takes the
two adjacent cells only partly into consideration.

Let us consider a simple example to clarify the difference between the two techniques more
apparently. We shall observe, as an example, the contribution of birth in the ith node due to the
particle birth in (i−1)th cell. Let us assume that the two particles of sizes u (xi−3/2 < u < xi−1)
and v (xi−1 < v < xi−1/2) are formed in the (i−1)th cell as a result of some particulate processes.
The particle of size v gives a contribution in birth at xi by the fixed pivot technique, shown in
Figure 3.6(a). On the other hand, there are two possibilities with the cell average technique.
First, if the volume average v̄i−1 = (u + v)/2, lies between xi−3/2 and xi−1, there will be no
birth at xi due to these newborn particles. This has been depicted in Figure 3.6(b). The
second possibility is that the volume average v̄i−1 falls between xi−1 and xi−1/2. It gives a
birth contribution at xi from both particles. The assignment of particles has been shown in
Figure 3.6(c). Although the cell average technique considers two neighboring cells for the birth
contribution but as we have seen in this example that it may not get any contribution from the
neighboring cells if the volume average stands far beyond the representatives of the neighboring
cells. This is one of the reasons, that will be explored later, why the cell average technique
performs better by handling the variation of number density in a size range by averaging and
thus reduces the error due to the discretization.

Up to now we have presented the foundation of the cell average technique and illustrated the
difference between the two techniques. We shall now deliberate about the advantages of the
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Figure 3.6: Assignment of particles at the node xi from the newborn particles in (i − 1)th cell.
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Figure 3.7: Example showing the superiority of the cell average technique.

cell average technique over the fixed pivot technique. In order to demonstrate the idea of the
cell average and its improvements over the fixed pivot technique let us first consider a simple
example followed by a more general example. Consider the situation shown in the Figure 3.7.
Particles appear in the ith cell as a result of aggregation, breakage or any other particulate
events. We also assume here that no particle appeared in the neighboring cells. We now want
to calculate the change of the zeroth and first moment due to newborn particles in the ith cell
using both the techniques. Clearly the exact changes in the zeroth and the first moments are

Δμ0 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7, (3.13)

and

Δμ1 = 1.1 + 1.4 + 1.7 + 2.0 + 2.3 + 2.6 + 2.9 = 14. (3.14)

According to the cell average technique, we first calculate the total number of birth, i.e. 7, in
this case and then the volume average of all newborn particles which is given by

v̄i =
1.1 + 1.4 + 1.7 + 2.0 + 2.3 + 2.6 + 2.9

7
= 2. (3.15)

Since the volume average of the newborn particles is exactly matching the representative size of
the cell, all the newborn particles will be assigned to the node xi. Thus, the changes in the first
two moments at xi are the same as the exact values.

We shall now compute the assigned birth at xi according to the fixed pivot technique. Each
birth will be assigned to the neighboring nodes such that particle number and mass remain
conserved. For example, the fraction of the first particle of size 1.1 assigned at xi is given by

a1 =
1.1 − 0.5
2.0 − 0.5

= 0.4. (3.16)

Similarly the other fractions assigned at xi can be calculated. The sum of all fractions assigned
at xi, i.e. the change of the zeroth moment according to the fixed pivot (FP) technique is given
by

ΔμFP
0 = 0.4 + 0.6 + 0.8 + 1 + 0.85 + 0.70 + 0.55 = 4.9. (3.17)
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Consequently the change in the first moment is computed as

ΔμFP
1 = 4.9 × 2 = 9.8. (3.18)

The changes in both moments by the fixed pivot technique are completely different. This is
due to the fact that the fixed pivot technique distributes the particles by simple interpolation
between the representative nodes without taking the cells into account. On the other hand the
cell average technique first takes the volume average and if necessary, or in other words if the
volume average differs from the representative size, then only it distributes the total number of
particles to the neighboring nodes while making the formulation consistent with respect to the
first two moments. Nevertheless the situation considered in the example is hardly possible in a
real problem but we will see in our next example that the strategy of the cell average technique
works better in a more general problem too.

We now take a general situation as shown in the Figure 3.2. As a result of aggregation, breakage
or any other event, particle births B1

i , B2
i , . . . , BIi

i take place at the positions y1
i , y

2
i , . . . , y

Ii
i

respectively in the cell i. As shown in the figure, let us assume that yk
i < xi and yk+1

i > xi. In
order to assign them at the nodes xi−1, xi and xi+1 in such a way that particle number and mass
remain conserved, we use the fixed pivot and the cell average strategies. The particle number
assigned at xi by the fixed pivot mechanism is given as

NFP
i =

k∑
j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i +
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i . (3.19)

According to the cell average mechanism the total number of particles assigned to xi is calculated
by either

NCA
i =

(
v̄i − xi−1

xi − xi−1

) Ii∑
j=1

Bj
i , if v̄i ≤ xi, (3.20)

or

NCA
i =

(
xi+1 − v̄i

xi+1 − xi

) Ii∑
j=1

Bj
i , if v̄i ≥ xi, (3.21)

depending upon the position of v̄i in the cell which is defined as

v̄i =

∑Ii
j=1 yj

i B
j
i∑Ii

j=1 Bj
i

. (3.22)

It is easy to verify that NCA
i ≥ NFP

i , see Appendix B.3. Equality holds if all particles appear
at the same side of the representative xi, i.e. Bj

i = 0 for all j ≥ k + 1 or Bj
i = 0 for all j ≤ k.

Thus, the number of particles from the ith cell assigned at xi by the cell average technique is
larger than that of the fixed pivot technique.

From the preceding discussion it is now evident that the cell average technique retains more
information of the cell, i.e. original particles that belong to the cell, during the assignment pro-
cess. The fixed pivot technique tends to spread particles, i.e. has more numerical dissipation.
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In a special case when the average of the particles is equal to the representative size no distri-
bution to neighboring cells takes place by the cell average technique. Assignment of particles
to neighboring cells for the consistency with moments causes numerical diffusion. Since the cell
average technique maintains consistency with less particle distribution to neighboring cells, we
expect the technique to be more accurate and less diffusive.

We shall now turn our attention to a suitable ODE solver to solve the resulting set of ODEs.
When integrating the resultant system (3.1) using a standard ODE routine, for example ODE45,
ODE15S solvers in MATLAB, this may lead to negative values for the number density at large
sizes. These negative values may lead in the sequel to instabilities of the whole system. Therefore,
one should take care of the positivity of the solution by the numerical integration routine. We
force the positivity in our numerical results using an adaptive time step Runge-Kutta method.
The step-size adjustment algorithm is based on embedded Runge-Kutta formulas, originally
invented by Fehlberg. It uses a fifth-order method with six functions evaluation where another
combination of the six functions gives a fourth order method. The difference between the two
estimates is used as an estimate of the truncation error to adjust the step size. A more detailed
description of the method and information about implementation can be found in [91].

Next we present the derivation of the discrete equations of the cell average technique for several
individual and combined processes. Numerical results will be obtained for many analytically
solvable problems using the cell average technique and comparisons will be made with numerical
results obtained by the fixed pivot technique.

3.2.1 Pure Breakage

Now we derive the cell average formulation for the pure breakage. The continuous form (2.34)
of the pure breakage equation has already been presented in the previous chapter. The total
birth and death rates of particles in the ith cell is calculated by integrating the birth and death
rates from xi−1/2 to xi+1/2 as

Bbreak,i =
∫ xi+1/2

xi−1/2

∫ ∞

x
b(x, ε)S(ε)n(t, ε) dε dx, (3.23)

and

Dbreak,i =
∫ xi+1/2

xi−1/2

S(x)n(t, x) dx. (3.24)

Substituting the Dirac-delta mass representation (2.15) of the continuous number density n(t, x)
into the above birth and death rates, we obtain

Bbreak,i =
∑
k≥i

Nk(t)Sk

∫ pi
k

xi−1/2

b(x, xk) dx, (3.25)

and

Dbreak,i = SiNi(t). (3.26)
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Here the limit pi
k is defined as

pi
k =

{
xi, if k = i

xi+1/2, othewise.
(3.27)

The derivation of the discrete birth and death rates is given in Appendix B.4. The total volume
flux as a result of breakage into the cell i is given by

Vbreak,i =
∫ xi+1/2

xi−1/2

∫ ∞

x
xb(x, ε)S(ε)n(t, ε) dε dx. (3.28)

Similar to the discrete birth rate we obtain the discrete volume flux as

Vbreak,i =
∑
k≥i

Nk(t)Sk

∫ pi
k

xi−1/2

xb(x, xk) dx. (3.29)

We now compute the volume average of all newborn particles. Dividing the total volume birth
Vbreak,i by the total number birth Bbreak,i, we obtain the volume average v̄break,i in the ith cell
as

v̄break,i =
Vbreak,i

Bbreak,i
. (3.30)

Now the birth rate for the cell average technique can easily be obtained by substituting the
discrete birth rate (3.25) and the volume average (3.30) into the equation (3.11). Finally, the
resultant set of ODEs takes the following form

dNi

dt
=Bbreak,i−1λ

−
i (v̄break,i−1)H(v̄break,i−1 − xi−1)

+ Bbreak,iλ
−
i (v̄break,i)H(xi − v̄break,i) + Bbreak,iλ

+
i (v̄break,i)H(v̄break,i − xi)

+ Bbreak,i+1λ
+
i (v̄break,i+1)H(xi+1 − v̄break,i+1) − SiNi(t). (3.31)

The set of equations (3.31) is a discrete formulation for solving a general breakage problem. The
form of breakage and selection function, also the type of grids can be chosen arbitrarily.

For the case of a uniform breakage function b(x, y) = 2/y, a binary breakage, this formulation
can be further simplified. Let us consider the following expression for b(x, y) = 2/y as

xi − v̄break,i =
xi

∑
k≥i Nk(t)Sk

2
xk

(pi
k − xi−1/2) −

∑
k≥i Nk(t)Sk

2
xk

(pi
k − xi−1/2)

(pi
k+xi−1/2)

2∑
k≥i Nk(t)Sk

2
xk

(pi
k − xi−1/2)

=
xiNi(t)Si

2
xi

(xi − xi−1/2) − Ni(t)Si
2
xi

(xi − xi−1/2)
(xi+xi−1/2)

2∑
k≥i Nk(t)Sk

2
xk

(pi
k − xi−1/2)

=
Ni(t)Si

2
xi

(xi − xi−1/2)
(
xi − (xi+xi−1/2)

2

)
∑

k≥i Nk(t)Sk
2
xk

(pi
k − xi−1/2)

=
Ni(t)Si(xi − xi−1/2)2

xi
∑

k≥i Nk(t)Sk
2
xk

(pi
k − xi−1/2)

. (3.32)
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Substituting xi = (xi+1/2 + xi−1/2)/2 we get

xi − v̄break,i =
Ni(t)Si(xi+1/2 − xi−1/2)2

4xi
∑

k≥i Nk(t)Sk
2
xk

(pi
k − xi−1/2)

=
Ni(t)SiΔx2

4xi
∑

k≥i Nk(t)Sk
2
xk

(pi
k − xi−1/2)

≥ 0. (3.33)

This gives xi ≥ v̄break,i.

We now consider the case of ternary breakage. In this case we get the same relation as above.
The ternary breakage function is given by

b(x, y) =
6
y

(
1 − x

y

)
. (3.34)

The objective is to show that xi ≥ v̄break,i, ∀i. Therefore we consider the following expression

xi − v̄break,i =xi −
∑

k≥i SkNk

∫ pi
k

xi−1/2
xb(x, xk) dx∑

k≥i SkNk

∫ pi
k

xi−1/2
b(x, xk) dx

=
xi

∑
k≥i SkNk

∫ pi
k

xi−1/2
b(x, xk) dx −∑

k≥i SkNk

∫ pi
k

xi−1/2
xb(x, xk) dx∑

k≥i SkNk

∫ pi
k

xi−1/2
b(x, xk) dx

. (3.35)

For simplicity let us now consider the numerator (I) on the right hand side and substitute the
breakage function (3.34). Thus, we obtain

I =xi

∑
k≥i

SkNk

∫ pi
k

xi−1/2

6
xk

(
1 − x

xk

)
dx −

∑
k≥i

SkNk

∫ pi
k

xi−1/2

6x
xk

(
1 − x

xk

)
dx

=xiSiNi

∫ xi

xi−1/2

6
xi

(
1 − x

xi

)
dx − SiNi

∫ xi

xi−1/2

6x
xi

(
1 − x

xi

)
dx

+ xi

∑
k>i

SkNk

∫ xi+1/2

xi−1/2

6
xk

(
1 − x

xk

)
dx −

∑
k>i

SkNk

∫ xi+1/2

xi−1/2

6x
xk

(
1 − x

xk

)
dx.

The exact calculation of the integrals give

I =xiSiNi
6
xi

[
xi − xi−1/2 −

xi

2
+

x2
i−1/2

2xi

]
− SiNi

6
xi

[
x2

i

2
−

x2
i−1/2

2
− x3

i

3xi
+

x3
i−1/2

3xi

]

+ xi

∑
k>i

SkNk
6
xk

[
xi+1/2 − xi−1/2 −

x2
i+1/2

2xk
+

x2
i−1/2

2xk

]

−
∑
k>i

SkNk
6
xk

[
x2

i+1/2

2
−

x2
i−1/2

2
−

x3
i+1/2

3xk
+

x3
i−1/2

3xk

]
.
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It can be simplified by making use of (xi+1/2 + xi−1/2)/2 = xi as

I =
6SiNi

xi

[
−xixi−1/2 + x2

i−1/2 +
x2

i

3
−

x3
i−1/2

3xi

]

+
∑
k>i

6SkNk

xk
(xi+1/2 − xi−1/2)

[
xi − x2

i

xk
− xi +

x2
i+1/2

3xk
+

x2
i−1/2

3xk
+

xi−1/2xi+1/2

3xk

]
.

The above equation can be rewritten as

I =
6SiNi

xi
(xi − xi−1/2)

[
−xi−1/2 +

x2
i

3xi
+

x2
i−1/2

3xi
+

xixi−1/2

3xi

]

+
∑
k>i

6SkNk

xk
(xi+1/2 − xi−1/2)

[
−x2

i

xk
+

x2
i+1/2

3xk
+

x2
i−1/2

3xk
+

xi−1/2xi+1/2

3xk

]
. (3.36)

This can be further simplified as

I =
2SiNi

x2
i

(xi − xi−1/2)
[
−3xixi−1/2 + x2

i + x2
i−1/2 + xixi−1/2

]
+

∑
k>i

2SkNk

x2
k

(xi+1/2 − xi−1/2)
[
−3x2

i + x2
i+1/2 + x2

i−1/2 + xi−1/2xi+1/2

]

=
2SiNi

x2
i

(
xi − xi−1/2

)3 +
∑
k>i

2SkNk

x2
k

(xi+1/2 − xi−1/2)
1
4

[
x2

i+1/2 + x2
i−1/2 − 2xi−1/2xi+1/2

]

=
2SiNi

x2
i

(
xi − xi−1/2

)3 +
∑
k>i

SkNk

2x2
k

(
xi+1/2 − xi−1/2

)3
. (3.37)

Substituting xi = (xi+1/2 + xi−1/2)/2 in the first term on the right hand side, we get

I =
SiNi

4x2
i

(
xi+1/2 − xi−1/2

)3 +
∑
k>i

SkNk

2x2
k

(
xi+1/2 − xi−1/2

)3

=
SiNi

4x2
i

Δx3
i +

∑
k>i

SkNk

2x2
k

Δx3
i ≥ 0. (3.38)

This implies that I ≥ 0 and hence the equation (3.35) leads to

xi − v̄break,i ≥ 0, or xi ≥ v̄break,i. (3.39)

Thus, for the breakage functions discussed above we obtain xi ≥ v̄break,i. Consequently the
equation (3.31) for these breakage functions reduces to

dNi

dt
=Bbreak,iλ

−
i (v̄break,i) + Bbreak,i+1λ

+
i (v̄break,i+1) − SiNi(t). (3.40)

The set of equations (3.31), or in the special case (3.40) together with an initial condition can
be solved with any higher order ODE solver to obtain the number of particles in a cell Ni.
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Next section will be concerned with the numerical results. Before we present them it is worth-
while to give, for this particular case, an impression of some advantages of the cell average
technique over the fixed pivot technique by a simple example. We consider a problem using
the uniform binary breakage function taking as initial condition mono-disperse particles of size
unity n(0, x) = δ(x − 1). The choice of the selection function is arbitrary. Now we compute the
rate of change of particles in a cell i < I at time t = 0 using the fixed pivot (FP) technique and
the cell average (CA) technique calculating all the integrals appearing in the schemes exactly.
Note that I is the total number of cells and xI = 1. It is clear that the death rate of particles in
ith cell by both schemes is zero since there is no particle present in the cell at time, t = 0. So
the rate of change of particles in the ith cell according to the fixed pivot technique is given as(

dNi

dt

)
FP

= ηi,ISINI , (3.41)

where

ηi,I =
∫ xi+1

xi

xi+1 − x

xi+1 − xi

2
xI

dx +
∫ xi

xi−1

x − xi−1

xi − xi−1

2
xI

dx. (3.42)

This can be evaluated to give

ηi,I = xi+1 − xi−1. (3.43)

Finally, we obtain (
dNi

dt

)
FP

= NISI (xi+1 − xi−1) . (3.44)

Now we calculate the rate of change using the cell average technique. First we compute the
discrete birth as

Vbreak,i = 2NiSi

(
xi+1/2 − xi−1/2

)
. (3.45)

Similarly, the volume birth rate can be computed as

Vbreak,i =2NiSi

(
x2

i+1/2 − x2
i−1/2

)
2

=2xiNiSi

(
xi+1/2 − xi−1/2

)
. (3.46)

The volume average is given by

v̄break,i =
Vbreak,i

Bbreak,i
= xi. (3.47)

This is due to the fact that the volume averages lie exactly at the center in this case, i.e.
v̄break,j = xj for j = 1, 2, . . . , I − 1. There is no need to distribute the birth to neighboring cells
and therefore the cell average technique in this case gives(

dNi

dt

)
CA

= 2NISI

(
xi+1/2 − xi−1/2

)
. (3.48)
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Figure 3.8: Temporal change of the zeroth and first moments for mono-disperse initial condition
and S(x) = x and b(x, y) = 2/y, grid points 30.

It is interesting in this case to calculate the analytical birth rate at t = 0, that is(
dNi

dt

)
Ana

= 2NISI

(
xi+1/2 − xi−1/2

)
. (3.49)

It is not surprising that both the analytical solution and the numerical solution by the cell average
technique are, in this case, the same. This is because of the cell averages which lie exactly on
the pivots in this case and therefore no division is necessary in order to make the formulation
consistent with the first two moments. Though it seems logical not to divide the particles that
are already concentrated at the representative size of a cell, the fixed pivot technique always
distributes particles to the neighboring cells independently of available local information.

Numerical results

In this section, the performance of the cell average technique is evaluated by a direct comparison
of the PSD and its moments calculated by the fixed pivot technique. Four test cases that can
be solved analytically have been considered in our comparisons. The analytical solutions for
different initial conditions and other parameters have been provided by Ziff and McRedy [125].
Two different types of initial condition, mono-disperse and exponentially distributed particles,
have been taken in this work. The analytical solutions corresponding to these initial conditions
are given in Appendix A.1.

The comparison between numerical and analytical results is carried out by means of average
number density. Since the total number of particles in each cell is obtained from the numerical
techniques, it is fair to compare the average number density. It can be calculated in the following
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Figure 3.9: A comparison of particle size distributions on semi-log scale for mono-disperse initial
condition and S(x) = x and b(x, y) = 2/y.
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10
−8

10
−6

10
−4

10
−2

10
0

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Cell Average
Fixed Pivot
Analytical

volume

n
u
m

b
er

d
en

si
ty

(b) q = 3, grid points, 90.

Figure 3.10: A comparison of particle size distributions on log-log scale for mono-disperse initial
condition and S(x) = x and b(x, y) = 2/y.
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Figure 3.11: Temporal change of test moment for mono-disperse initial condition and S(x) = x
and b(x, y) = 2/y.
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way

nnum
i =

Ni

Δxi
, (3.50)

where Δxi = xi+1/2 − xi−1/2. Similarly, from the analytical results we get

nana
i =

1
Δxi

∫ xi+1/2

xi−1/2

n(t, x) dx. (3.51)

These densities have been plotted at grid points. This criterion of comparison is used in the
entire work. The integration appearing in the analytical average density is computed either
analytically if possible otherwise numerically by a low order integration routine. A geometrical
grid of the type xi−1/2 = 21/qxi−1/2 is used in our computations. All four test cases with
simulation parameters including computation time, minimum and maximum particle size are
given in Table 3.1.

Let us first assess the accuracy of the scheme for the first test case. In Figure 3.8, the analytical
solution of the first two moments is compared with the numerical one obtained by the cell
average and the fixed pivot technique using 30 geometrical grid points with q = 1. Mono-disperse
particles of size unity are taken as initial condition. The volume domain is extended from 10−9

to 1. As expected, due to their formulations both techniques predict the first two moments
exactly. Figure 3.9 compares the average number densities obtained by the two methods with
the analytical one. The figures have been plotted on a semi-log scale, log in x axis and linear in
y axis, to show the performance of the cell average technique predicting the particle distribution
at small size range. Since particles flow towards the lower size range in the breakage process, it
is important to check the performance of the scheme to predict these small particles. In Figures
3.9(a) and 3.9(b) the number of geometric grid points are taken to be 30 and 90 respectively. As
can be seen, the PSD obtained by the cell average technique is in excellent agreement with the
analytical solution even for a very coarse grid. On the other hand the fixed pivot technique over-
predicts the numerical results. The Figure 3.9(b) shows the convergence of both the numerical
results towards the analytical results as we refine the grid. It must be noted that the performance
of the cell average technique using 30 grid points seems better than the fixed pivot technique
using 90 grid points. A similar comparison on log-log scale has been performed in Figure 3.10.
In these plots the difference between the two numerical solutions is not apparent. Nevertheless,
a small over-prediction by the fixed pivot technique can be seen which decreases gradually by
refinement of the grid.

Now the idea is to compare an appropriate quantity which summed up the over-prediction of the
PSD. The over-prediction of the number density at small size range of particle can be viewed by
a sum of number of particles weighted by the inverse of the size. Thus, we define a test moment
as

μnum
−1 (t) =

I∑
i=1

nnum
i Δxi

xi
. (3.52)

Similarly μana−1 (t) has been obtained by replacing nnum
i to nana

i in the above equation. Figure
3.11 includes the progress of μ−1(t)/μ−1(0) with time for the same problem considered before.
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Figure 3.12: A comparison of numerical results for mono-disperse initial condition and S(x) = x2

and b(x, y) = 2/y, grid points 30.
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(a) Particle size distribution.
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Figure 3.13: A comparison of numerical results for exponential initial condition and S(x) = x
and b(x, y) = 2/y, grid points 30.
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(a) Particle size distribution.
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Figure 3.14: A comparison of numerical results for exponential initial condition and S(x) = x2

and b(x, y) = 2/y, grid points 30.
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Table 3.1: List of test cases for the numerical solution of breakage PBE

Case n(0, x) S(x) b(x, y) Time xmin xmax

1 δ(x − L) x 2/y 1000 10−9 1

2 δ(x − L) x2 2/y 2000 10−9 1

3 exp(−x) x 2/y 10 10−9 125

4 exp(−x) x2 2/y 5 10−9 125

Table 3.2: Computation time in seconds for both techniques with mono-disperse initial condition
and b(x, y) = 2/y

Case S(x) Grid points FP technique, t1 CA technique, t2 Ratio, t2/t1

30 50 90 1.80
1 x 60 90 160 1.78

90 158 268 1.70

30 103 175 1.70
2 x2 60 205 336 1.64

90 312 423 1.36

Once again the Figure 3.11(a) and 3.11(b) correspond to the grid points 30 and 90 respectively.
For a coarse grid, it is apparent that the overall agreement of the numerical results by the fixed
pivot technique with the analytical solutions is not as good as that obtained by the cell average
technique. For a finer grid, however, both techniques predict the same results, see Figure 3.11(b).

Let us first conclude the observations from this test case. The numerical results for the first two
moments by both techniques are the same. Furthermore, for a finer grid the numerical results
obtained by both techniques become close to each others and no significant difference between
them can be observed. A significant difference between the two techniques can only be seen in
Figures 3.9(a) and 3.11(a). Therefore we compare only a semi-log scale PSD and the special
moment μ−1 using a coarse grid in our subsequent test cases.

For the second test case of a mono-disperse initial condition with quadratic selection function, the
calculated PSDs by the fixed pivot and cell average techniques together with their moments μ−1

are directly compared with the analytical solutions in Figure 3.12. The particle size distribution
is shown in Figure 3.12(a). A small over-prediction at the steep part of the PSD is obtained
by the cell average technique while the fixed pivot technique over-predicts the results of the
small size particles. Again, more accurate results can be obtained by increasing the value of
the geometric discretization parameter q. In Figure 3.12(b), the analytically and numerically
calculated moments μ−1 are plotted at different times. The fixed pivot technique consistently
overestimates the results at large times. On the other hand, the cell average technique produces
very accurate results even at large times.

In Figure 3.13, the analytically and numerically calculated results for the third case are plotted.
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Table 3.3: EOC in binary breakage and S(x) = x, t = 1000

(a) The cell average technique

Grid points, I Error, L1 EOC

61 32.8591 -
122 11.6129 1.50
244 3.4487 1.75
488 0.9378 1.88

(b) The fixed pivot technique

Grid points, I Error, L1 EOC

61 173.4532 -
122 89.7167 0.95
244 45.2410 0.99
488 22.6329 0.99

The level of difficulty has been increased in this case by taking an exponentially decreasing
particle size distribution as initial condition. The computation is made for a very short time.
As can be seen from the Figure 3.13(a), both techniques give over-prediction of the number
density at smaller volumes. In this case the over-prediction is more pronounced due to the
integration error in the initial condition and the truncation error on the both sides of the size
domain. In contrast to the previous cases, the cell average technique overestimates the numerical
results of μ−1, see Figure 3.13(b). However, the extent of over-prediction by the cell average
technique is fairly less compare to the fixed pivot technique. A similar observation is obtained
for the test case 4. The numerical results for this case are plotted in Figure 3.14.

It is of interest to examine the difference of computational time taken by the two techniques. In
Table 3.2, the computing times between the fixed pivot technique and the cell average technique
along with their ratio are reported for the first two test cases. The cell average technique requires
slightly more computing time than the fixed pivot technique for the same number of cells, but
less computing time than the fixed pivot technique with twice the number of cells. Additionally,
it has been observed that the ratio of computing times between the cell average and fixed pivot
techniques is decreasing with increasing number of cells.

Finally, to check the efficiency of the schemes we calculate the experimental order of convergence
(EOC). It measures the numerical order of convergence by comparing computations on two
meshes. For two meshes where one has cells that are half the size of the other, the EOC is
defined by:

EOC = ln(ErI
/Er2I

)/ ln(2), (3.53)

where ErI
and Er2I

are the errors defined by the L1 norm | Nana − Nnum |. The symbols I
and 2I correspond to the degrees of freedom. For the case 2I, each cell of case I was divided
into two equal parts. This doubles the number of degrees of freedom. The variable N describes
the number distribution of particles. Tables 3.3(a) and 3.3(b) contain EOC tests by both the
schemes for the first problem. The EOC for the second problem has been summarized in Tables
3.4(a) and 3.4(b) by the cell average and the fixed pivot technique respectively. Clearly this
shows that the cell average technique is of second order while the fixed pivot technique is only
first order accurate. In Section 3.3 we will present the mathematical details for the order of
convergence of these schemes.
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(a) S(x) = x and b(x, y) = 2/y.
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Figure 3.15: A comparison of particle size distributions for mono-disperse initial condition, grid
points 60.
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Table 3.4: EOC in binary breakage with S(x) = x2, t = 2000

(a) The cell average technique

Grid points, I Error, L1 EOC

61 2.5326 -
122 0.7733 1.71
244 0.2226 1.80
488 0.05954 1.90

(b) The fixed pivot technique

Grid points, I Error, L1 EOC

61 13.8570 -
122 7.0647 0.97
244 3.5574 0.98
488 1.7826 0.99

1 2 4
L

2.5

31.5

1.25 1.75 3.5 50.875

Figure 3.16: A type of discretization to demonstrate the reasons of oscillations in the numerical
solutions obtained by the fixed pivot technique.

Computation on special grids: Another important aspect of the schemes is to check flex-
ibility with the discretization of the volume domain. We have tested the first two problems
on a special grids. First we have divided the volume domain into the geometric type grids
xi+1/2 = 2xi−1/2 and then each cell is divided into two equal parts. All other computational
parameters are the same as before. In Figures 3.15(a) and 3.15(b), the PSDs calculated using
the fixed pivot and cell average techniques are compared with the analytical results. As can
be seen in the figures, the cell average technique is fairly accurate and predicts the PSD with
very high accuracy. On the other hand, the fixed pivot technique produces results with small
oscillations at small sizes. It is interesting to note that these oscillations do not destroy the
consistency of the fixed pivot scheme with the first two moments.

The reason for such fluctuations by the fixed pivot technique in a breakage problem can be
illustrated by the following simple example. We consider N0 mono-disperse particles of size L0

as initial condition together with S(x) = x and b(x, y) = 2/y. A simple discretized domain
which produces fluctuations by the fixed pivot technique is shown in the Figure 3.16. The
initial rate of change of particle birth in some cells computed by the fixed pivot and cell average
techniques along with the analytical results is presented in Table 3.5. The first two and last two

Table 3.5: Birth rates computed by the two techniques

Number Cell’s range Analytical CA technique FP technique

1 [1, 1.5] N0 N0 0.875N0

2 [1.5, 2] N0 N0 1.25N0

3 [2, 3] 2N0 2N0 1.75N0

4 [3, 4] 2N0 2N0 2.50N0
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cells shown in the table have the same size and due to the constant breakage function they get
equal number of particles as a result of breakage. Since the volume average of newborn particles
due to breakage lies exactly at the grid point, thereby all particles are assigned to the same cell
they belong and no redistribution of particles takes place. Consequently the particle birth rate
by the cell average technique is the same as the analytical one. On the other hand, this birth
rate using the fixed pivot technique depends on the position of neighboring grid points. The
two equal size cells have different sizes of the domain from where they get the particles and as a
consequence the left cell from the two equal size cells gets a lower birth rate than the right cell.

Based on the above results, one can conclude that the numerically calculated PSDs by the
two methods deviate from each other significantly. The numerical results calculated from the
cell average technique on a coarse geometric grid are very accurate. On the other hand, an
over-prediction in the PSD at lower volumes has been observed in the fixed pivot technique.
The computation time taken by the cell average technique is slightly more than for the fixed
pivot technique. Interestingly, it has been found that the fixed pivot technique produces small
oscillation at smaller volumes. It is due to the fact that the fixed pivot technique assigns the
particles to the grids depending upon the position of the neighboring grids. On the other hand,
the cell average technique first concentrates all the newborn particles at their average volumes
and then reassigns them if necessary to the neighboring nodes according to the position of the
average in the cell.

3.2.2 Pure Aggregation

In this section we derive the cell average technique for pure aggregation problems. The PBE for
aggregation is the most difficult among the PBEs of all other processes to deal with numerically
because of its nonlinear behavior. The PBE for pure aggregation is a nonlinear integro-partial
differential equation. The cell average technique is compared to the fixed pivot technique pro-
posed by Kumar and Ramkrishna [57]. The numerical results for aggregation problems by
discretized population balances are consistently overpredicting and diverge before the gelling
point in the case of a gelling kernel. The cell average technique assigns the particles within
the intervals more precisely. This is achieved by taking first the average of the newborn parti-
cles within the interval and then assigning them to the neighboring nodes such that pre-chosen
properties are exactly preserved. The cell average technique preserves all the advantages of
the conventional discretized methods and provides a significant improvement in predicting the
particle size distribution. In addition, it is found that the technique is a powerful tool for the
computation of gelling problems. The effectiveness of the technique is illustrated by application
to several aggregation problems for suitably selected aggregation kernels.

As stated in the previous chapter, Kumar and Ramkrishna [57] proposed a very efficient tech-
nique to solve population balance equations. The technique has been formulated such that the
prediction of the desired quantities is very accurate. The technique has the advantage of allow-
ing a general grid, but has the disadvantage of not being able to predict the PSDs accurately in
the large size range when applied on a coarse geometric grid for solving PBEs with aggregation.
The size distributions are consistently over-predicted in the size range where number densities
decrease steeply. In this section we first briefly look into the technique and the reasons for
over-prediction in the method proposed by Kumar and Ramkrishna. Then we formulate the cell
average technique to improve the accuracy of the numerical results.
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The finite time breakdown of mass conservation in aggregation systems is known as gelation.
Besides the new discretized scheme, the gelation phenomenon will be discussed briefly. It plays
an important role in the solution of some PBEs. We shall explore the moment form of the PBE
which is convenient for the study of gelation. The gelation point will be calculated for a special
case of product kernel and for different initial size distributions. Before we discuss the fixed
pivot and the cell average technique in detail, let us first introduce the gelation phenomenon
and some useful analytical results concerning gelation.

The gelation point

Let us consider a kernel where the frequency of aggregation increases with the particle size.
In this case new forming particles aggregate at a greater frequency than their parents. As
aggregation proceeds, the size of the aggregates, and therefore their corresponding frequencies,
increase rapidly. According to Ernst et al. [19], a phase transition occurs at the so called
gelation point where mass is lost from particles of finite size and appears in particles of infinite
size. From a macroscopic point of view the gelation effect is represented by a loss of mass in
the solution. In the direct simulation process gelation corresponds to the formation of a large
particle, comparable in size to the size of the whole system, in finite time. Mathematically, the
gelation point can be described in terms of the first moment which is proportional to mass as,
see Eibeck and Wagner [18],

tgel = inf [t ≥ 0 : μ1(t) < μ1(0)] , (3.54)

and also in terms of second moment as

tgel = sup [t ≥ 0 : μ2(t) < ∞] . (3.55)

In applications, this phenomenon can be found for the aggregation of cross-linked polymers by
Stockmayer [107], colloids by Spanhel and Anderson [105] and food-derived proteins by Fuke
et al. [22]. In many applications, such as crystallization, granulation, palletization and aerosol
coalescence, the gelation phenomenon is not common, see Smit et al. [103].

Moment form of the population balance

The moment form of population balances reduces to a set of ordinary differential equations which
is easy to solve. Moreover, in many applications we are only interested to get moments of the
population. In many situations where a full solution of the population balance is not possible,
the first three moments provide relevant facts of the solution. The jth moment of the PSD,
defined by the equation (2.2), can easily be obtained analytically by multiplying both sides of
the aggregation PBE (2.3) by xj and integrating with respect to x. This yields

dμj

dt
=

∞∫
0

xj

⎡
⎣1

2

x∫
0

β(t, u, x − u)n(t, u)n(t, x − u) du − n(t, x)

∞∫
0

β(t, u, x)n(t, u) du

⎤
⎦ dx.
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Table 3.6: Moments of the population balance for the batch mode of operation

μj(t) β = β0 β = β0 (u + v) β = β0 (u · v)

j = 0
2μ0(0)

2 + β0μ0(0)t
, for all t μ0(0) exp(−β0μ1t), for all t μ0(0) − 1

2
β0μ

2
1t, 0 ≤ t < tgel

j = 1 μ1(0), for all t μ1(0), for all t μ1(0), 0 ≤ t < tgel

j = 2 μ2(0) + β0μ
2
1t, for all t μ2(0) exp(2β0μ1t), for all t

μ2(0)
1 − β0μ2(0)t

, 0 ≤ t < tgel

Reversing the order of integration, we obtain

dμj

dt
=

1
2

∞∫
0

∞∫
u

xjβ(t, u, x − u)n(t, u)n(t, x − u) dx du −
∞∫
0

∞∫
0

xjβ(t, u, x)n(t, x)n(t, u) dx du

=
1
2

∞∫
0

∞∫
0

(x + u)jβ(t, u, x)n(t, u)n(t, x) dx du −
∞∫
0

∞∫
0

xjβ(t, u, x)n(t, x)n(t, u) dx du.

Finally, we get the following form of the PBE

dμj

dt
=

∞∫
0

∞∫
0

(
(x + u)j

2
− xj

)
β(u, x)n(x)n(u)dx du. (3.56)

Further simplification of equation (3.56) is not possible without some special forms of the co-
alescence kernel. We can solve the preceding ordinary differential equation for the cases of
size-independent, sum and product kernel analytically. The solution for these cases has been
summarized in Table 3.6.

Identification of gelation point

The prediction of mathematical gelation has been investigated by Smit et al. [103] for both
the continuous stirred tank (CST) and the batch mode of operation. The population balance
equation for CST operation is given by Randolph and Larson [96] as

n(x) − nin(x)
τ

=
1
2

∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε − n(t, x)

∫ ∞

0
β(t, x, ε)n(t, ε) dε. (3.57)

Here, nin(x) and n(x) are the number density functions of the feed and exit streams respectively,
τ is the mean residence time. For batch operation the form of the population balance equation
is given by the equation (2.3).

According to Smit et al. [103], the size-independent kernel is a non-gelling kernel for both modes
of operation, while the sum kernel is a gelling kernel for CST operation but a non-gelling kernel
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for batch operation. Further, the product kernel is a gelling kernel for both batch and CST
mode of operation. In this section we discuss the product kernel in detail for the batch mode of
operation. The definition of gelation point and the expression of second moment in Table 3.6
give the gelation time tgel as

1 − β0μ2(0)tgel = 0,

or,

tgel =
1

β0μ2(0)
. (3.58)

The degree of aggregation at tgel, denoted by Igel
agg, can be evaluated using Table 3.6 as follows

Igel
agg =1 − μ0(tgel)

μ0(0)

=
1
2

β0t
gelμ2

1

μ0(0)

=
1
2

μ2
1

μ0(0)μ2(0)
. (3.59)

We consider three types of initial conditions for which I gel
agg can easily be calculated analytically.

Mono-disperse distribution: Let us assume that initially there are N0 particles of volume
x0. In this case, the first three moments at t = 0 are easily found to be

μ0(0) =N0,

μ1(0) =N0x0,

μ2(0) =N0x
2
0.

When these moments are used in the equation (3.59), the degree of aggregation Igel
agg can be

evaluated as

Igel
agg = 0.5.

Bi-disperse distribution: We consider a bi-disperse distribution in order to increase the
level of difficulty in the computation. Let us consider that ǎN0 particles have size x1 and b̌N0

particles are of size Jx1, an integer multiple of x1, such that ǎ + b̌ = 1. Initially, first three
moments are

μ0(0) =N0,

μ1(0) =N0x1(ǎ + b̌J),

μ2(0) =N0x
2
1(ǎ + b̌J2).

The degree of aggregation in this case is given as

Igel
agg =

1
2

(ǎ + b̌J)2

ǎ + b̌J2
.
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Gaussian-like distribution: Let us consider the following Gaussian-like distribution as the
initial condition

n(0, x) =
N0ǎ

ν+1

x2Γ(ν + 1)

(
x

x2

)ν

exp(−ǎx/x2), (3.60)

where N0 and x0 = x2(ν + 1)/ǎ, are the initial number of particles and initial mean volume
respectively. The first three moments are given by

μ0(0) =N0,

μ1(0) =N0x0,

μ2(0) =
ν + 2
ν + 1

N0x
2
0.

The calculation for the second moment at t = 0 has been carried out in Appendix B.5. The
degree of aggregation, in this case, becomes

Igel
agg =

1
2

ν + 1
ν + 2

.

In numerical calculations, we consider two special cases, ν = 0 and ν = 1. For ν = 0 the
Gaussian-like distribution simply becomes the exponential distribution. In these cases, the
degree of aggregations are

Igel
agg =

⎧⎪⎪⎨
⎪⎪⎩

1
4
, ν = 0

1
3
, ν = 1.

We shall consider these values as the limit values for the extent of aggregation in our numerical
calculations. Many discretized numerical methods fail to give a good approximation of moments
as well as size distribution close to the gelation point. It will be shown in the section on numerical
results that the new method gives quite satisfactory results near gelation while the discretized
method of Kumar and Ramkrishna [57] diverges.

The new formulation

As stated earlier, Hounslow’s formulation as well as the Kumar and Ramkrishna fixed pivot
technique have problems with over-prediction of number density. Kumar and Ramkrishna [58]
discussed the reasons for this over-prediction. We will first briefly point out the source of
error that causes the over-prediction in numerical solutions and then propose a new strategy
to overcome this problem. In many cases, the particle number density can be treated as a
combination of steeply decreasing and increasing functions of size. For instance, let us consider
a Gaussian distribution as shown in the Figure 3.17(a) as a number density distribution of
particles. It has increasing behavior in the small size ranges and decreasing behavior in the
large size ranges. Moreover, some part of the distribution can be treated as nearly uniform, in
the middle and near to the end points. In order to explain over-prediction, let us approximate
the Gaussian distribution by the combination of exponentially increasing, nearly uniform and
exponentially decreasing functions.
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Similar to Kumar and Ramkrishna [57], we begin with the example of aggregation where particles
in a volume size range [xi−1/2, 2xi−1/2[ colloid with each other. They considered the number
density of particles in this size range as n(x) = 1/x0 exp(−x/x0), where x0 is a parameter. For
x0 >> xi−1/2, the number density can be considered as nearly uniform and for xi−1/2 of order x0

it decreases exponentially. We additionally take n(x) = 1/x0 exp(x/x0), for the increasing part
of the distribution, which was not considered by Kumar and Ramkrishna [57]. For a constant
aggregation kernel, the number density of new particles in the size range [2xi−1/2, 4xi−1/2[ can
be calculated analytically. It has been plotted in Figures 3.17(b, c) and (d) for each case.

If we consider the discretized version of the same event, the aggregation of Ni particles of size xi,
the representative size for size range [xi−1/2, 2xi−1/2[, forms Ni/2 particles of size xi+1(= 2xi),
the representative size for size range [2xi−1/2, 4xi−1/2[. As apparent from Figure 3.17(c), the
discrete version predicts well in the case of a uniform density. For an exponential density, as
shown in Figures 3.17(b) and 3.17(d), almost all particles lie either near the lower boundary
or near the upper boundary depending upon the initial distribution. For an exponentially
decreasing density, most particles lie near the lower boundary causing an over-prediction. Since
the problems involving pure aggregation always have an exponentially decreasing tail even if the
initial distribution does not contain it, we frequently observe over-prediction in such problems.

Furthermore, if we have an exponentially increasing part in the distribution, it is also possible to
get an under-prediction of the evaluation with these discretized methods, since most particles lie
near the upper boundary in this case. Kumar and Ramkrishna [57] observed under-prediction of
number density for moderate size particles with the sum and the product kernel. This is evident
from the preceding discussion, since the authors considered a Gaussian-like initial distribution
which has an increasing density in small size range causing the under-prediction. The under-
prediction observed by the authors was not considerably significant because of fine grids in
small size ranges. This under-prediction may become significant in a new situation where we
have coarse grids in an increasing part of the distribution.

The cell average technique is based on the averaging of particles volume within the cells. The
volume averaging controls the non-uniformity in the number density in the cell. Here we will for-
mulate discrete equations which are consistent with number and mass but the idea can easily be
generalized for any two other moments of the distribution. For the consistency of two moments,
the net birth in ith cell is calculated using the volume average of all newborn particles due to
aggregation within three cells, (i − 1)th, ith and (i + 1)th. The particles should be assigned to
the nearby representative sizes depending upon the position of the average value. If the volume
average of (i − 1)th cell lies between xi−1 and xi−1/2, then only a part of birth will appear in
ith cell. The same arguments can be made for the ith and (i+1)th cells. Similar to Kumar and
Ramkrishna [57], the total birth in a cell is given by

Bagg,i =
1
2

∫ xi+1/2

xi−1/2

∫ x

0
β(t, x − u, u)n(t, x − u)n(t, u) du dx. (3.61)

Unlike the formulation of the fixed pivot technique by Kumar and Ramkrishna [57], we first
discretize the birth to compute the total birth rate in each cell and then redistribute the total
birth to neighboring nodes to get the consistency with moments. Since the particles are assumed
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Figure 3.17: Particles initially are distributed (a) Gaussian-like, (b) exponentially decreasing,
(c) uniformly, (d) exponentially increasing.
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to be concentrated at representative sizes xi, the number density n can be replaced by its Dirac-
delta representation (2.15). Substituting the Dirac-delta representation of n(t, x) in equation
(3.61), see Appendix B.6, we obtain

Bagg,i =
j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1 − 1

2
δj,k

)
βj,kNjNk. (3.62)

Thus, Bi is the net rate of addition of particles to cell i by coagulation of particles in lower cells.
The net flux of volume Vi into cell i as a result of these coagulations is therefore given by

Vagg,i =
j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1 − 1

2
δj,k

)
βj,kNjNk(xj + xk). (3.63)

Consequently, the average volume of all newborn particles in the ith cell v̄i can be evaluated as

v̄agg,i =
Vagg,i

Bagg,i
. (3.64)

Now we assume that the newborn particles Bi are assigned temporarily at v̄i. These particles
have to be divided depending upon the value of v̄i to neighboring nodes in such a way that
the formulation is consistent with the total number and mass. The birth according to the cell
average technique followed by the equation (3.11) is given as

BCA
agg,i =Bagg,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg,iλ

−
i (v̄i)H(xi − v̄i)

+ Bagg,iλ
+
i (v̄i)H(v̄i − xi) + Bagg,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (3.65)

The death term is the same as it was in Kumar and Ramkrishna [57] and is given as (see
Appendix B.1)

Dagg,i = Ni

I∑
k=1

βi,kNk. (3.66)

Now the final set of discrete equations can be written as

dNi

dt
=Bagg,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg,iλ

−
i (v̄i)H(xi − v̄i)

+ Bagg,iλ
+
i (v̄i)H(v̄i − xi) + Bagg,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1) − Ni

I∑
k=1

βi,kNk. (3.67)

For linear grids xj + xk = xi, the equation (3.64) gives the volume average within the cells as
āi = xi and thus the equation (3.67) reduces to the same formula that Kumar and Ramkrishna’s
fixed pivot technique gives for linear grids. The reduced equation for linear grids xj + xk = xi

is also known as discrete aggregation population balance equation.

This new formulation seems, however, computationally a little more expensive, but it balances
the particles within the cell more appropriately. Furthermore, we shall later compare the com-
putational time of both schemes for many problems and will observe that the computational
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time is comparable. Surprisingly, the cell average technique takes even less computational time
for many problems, especially for the gelling-kernel problems. Nevertheless, the cell average
technique retains all the advantages of the fixed pivot technique in that it predicts correctly any
two moments of the population and can be applied to general grids.

To summarize, the cell average technique concentrates the newborn particles temporarily at
the average mean volume and then distributes them to neighboring nodes. For the consistency
with two moments, particles have been assigned to two neighboring nodes. It should be evident
that the choice of two moments is arbitrary and the formulation can easily be extended for the
consistency with any two moments. We now proceed to compare the cell average technique with
the fixed pivot technique for certain aggregation problems.

Numerical results

In order to illustrate the improvements over the fixed pivot technique provided by the cell
average technique, we compared our numerical results with the known analytical solutions and
some physical relevant problems where analytical solutions are not available. In particular, some
physically relevant kernels have been considered and results are compared with the generalized
approximation (GA) method by Piskunov and Golubev [88]. Piskunov et al. [89] compared
several methods and concluded that the GA method is more accurate. Many of the results from
this section have already been published in J. Kumar et al. [55].

All computations are carried out in the programming software MATLAB on a Pentium-4 machine
with 1.5 GHz and 512 MB RAM. The set of ordinary differential equations resulting from the
discretized techniques is solved using a Runge-Kutta fourth and fifth order method with adaptive
step-size control based on the embedded Runge-Kutta formulas. It has been observed that the
computation with MATLAB standard ODEs solvers produces the negative values at the tail of
number density at a certain time. Furthermore, due to negative values the integration becomes
unstable and yields large oscillations. In order to avoid such instabilities in our computations
we force in our code the non-negativity of the solution by continuing the time integration with
a smaller step size.

In order to know the extent of aggregation in numerical computations, it is convenient to express
the zeroth moment in dimensionless form. According to Hounslow [31] the index of aggregation,
the dimensionless form of the zeroth moment, is defined as

Iagg =

⎧⎪⎪⎨
⎪⎪⎩

1 − μ0(t)
μ0,in(t)

for continuous systems

1 − μ0(t)
μ0(0)

for batch systems,
(3.68)

where μ0(t) is the total number of particles at time t (zeroth moment) and μin
0 is the zeroth

moment of the feed. The value of aggregation mentioned in this work is reached at final time.

Analytically tractable problems

In this section we compare the cell average technique with the fixed pivot technique for the
test problems where analytical results are known. We consider three types of kernels: size-
independent, sum and product kernels. The analytical results can be found for various initial
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conditions and different kernels in Aldous [3] and Scott [102]. Moreover, all analytical results
used in our comparisons have been summarized in Appendix A.2. Most of numerical results
reported in this work are obtained for very coarse geometric grids of the type xi+1/2 = 2xi−1/2

since both schemes produce less distinct results for finer grids.

Computationally, as pointed out by Eibeck and Wagner [17], it is more difficult to handle the
gelling problems. We consider both gelling and non-gelling problems to show the effectiveness
of the cell average technique developed here. In the gelling case, we will emphasize more the
moments to show that the cell average technique is able to predict results very near to the gelling
point. For the non-gelling case, the complete evaluation of the number density along with its
moments will be analyzed. It can be perceived that the formulation of the fixed pivot as well
as the cell average technique leads to the correct total number of particles and conservation of
mass. In order to compare the accuracy of the numerical techniques, the second moment and the
complete particle size distribution are of interest. As pointed out earlier, for the gelling kernel
the first moment is not conserved and the second moment diverges in a finite time. It will be of
interest to see how the numerical schemes perform near to the gelation point. A comparison of
results by the numerical schemes with analytical results for the first and second moments have
been depicted in the case of a gelling kernel.

Size-independent kernel: In order to demonstrate the accuracy of the cell average technique,
two different types of initial distribution have been considered. First we take the initial particle
size distribution as mono-disperse with dimensionless size unity. The computation has been
performed using 14 grid points corresponding to the discretized parameter q = 1. In Figure
3.18, the complete size distribution and the corresponding second moment are shown for the
size-independent kernel. The prediction of the particle size distribution as well as the second
moment is excellent by the cell average technique. At very short times the predictions of the
second moment, shown in Figure 3.18(a), by the fixed pivot technique as well as by the cell
average technique are the same, but at later times prediction by the cell average technique is
considerably better than that predicted by the fixed pivot technique. The cell average technique
still predicts extremely accurate results. Figure 3.18(b) shows the improvement of the over-
prediction in PSD at large particle sizes by the cell average technique over the fixed pivot
technique.

A similar comparison using 52 grid points corresponding to q = 4 has been performed for the
same problem to illustrate the fact that both techniques produce nearly the same results using
fine grids. The results have been plotted in Figure 3.19. As can be seen from the figure that the
numerical results obtained by both the techniques are close to each other and converge to the
analytical results. All further comparisons are done using coarse grid corresponding to q = 1.

We now consider the following exponential initial condition

n(0, x) =
N0

x0
exp(−x/x0). (3.69)

The values N0 and x0 are the initial number of particles per unit volume and initial mean
volume of the particles. The volume of the smallest particle is considered to be 10−6. All the
numerical results have been obtained for a geometric grid xi+1/2 = 2xi−1/2. Figure 3.20(a)
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(b) Particle size distribution.

Figure 3.18: A comparison of numerical with analytical results for mono-disperse initial condition
and constant kernel, q = 1 and Iagg = 0.98.
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(b) Particle size distribution.

Figure 3.19: A comparison of numerical with analytical results for mono-disperse initial condition
and constant kernel, q = 4 and Iagg = 0.98.
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(b) Particle size distribution.

Figure 3.20: A comparison of numerical with analytical results for exponential initial condition
and constant kernel, q = 1 and Iagg = 0.98.
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shows the comparison of numerical and the analytical solutions for the variation of second
moment. The corresponding predictions for size distribution are shown in Figure 3.20(b). Like
the previous case, once again excellent prediction of numerical results can be seen by the cell
average technique. The computation has been carried out in both the cases for a very large
value of Iagg ∼ (0.98).

Sum kernel: The analytical and numerical results for the mono-disperse initial condition with
the sum kernel have been shown in Figure 3.21. The computation in this case is performed at 0.80
degree of aggregation. The numerical results for the mono-disperse and the exponential initial
conditions reflect the identical behavior. Figure 3.21(a) includes a comparison of the analytical
and numerical solutions for the variation of the second moments for the size dependent sum
kernel. Once again, the agreement is very good by the cell average technique and the same
diverging behavior is observed by the fixed pivot technique. Comparison of size distribution is
made in Figure 3.21(b). As for the case of size-independent aggregation, the prediction is poor
at large particle sizes by the fixed pivot technique. Once more the degree of fit is very high in
the case of the cell average technique.

In Figure 3.22, the analytically and numerically calculated particle size distribution and its
second moment for the exponential initial condition (3.69) with the sum kernel have been plotted.
Figure 3.22(a) includes a comparison of the analytical and numerical solutions for the variation
of the second moments. Once more, the agreement is very good by the cell average technique
and the same diverging behavior is observed by the fixed pivot technique. Comparison of size
distribution is made in Figure 3.22(b). As for the case of size-independent aggregation, the
prediction is poor at large particle sizes by the fixed pivot technique and the prediction by
the cell average technique is in good agreement with the analytical solutions. The degree of
aggregation in this case is taken to be 0.85.

The effectiveness of the cell average scheme for the case when the PSD has an increasing behavior
has been demonstrated by considering a Gaussian-like initial distribution. Let us consider the
aggregation problem of the initial condition given by the equation 3.60 with ν = 1 and the sum
kernel β(t, u, v) = β0(u + v). As mentioned earlier, the numerical results by the fixed pivot
technique are under-predicted for this problem.

In the numerical computation, the initial mean volume is taken to be 1 and the smallest particle
is of volume 10−6. The computation is carried out for a large degree of aggregation, Iagg = 0.96.
The numerical results along with the analytical results for the number density have been plotted
in Figure 3.23. The numerical results by the fixed pivot technique for the moderate size range
are under-predicted. The figure clearly shows that with the cell average technique the number
density even in this range is predicted very well. The under-prediction is not significant due
to the use of fine grids in the small size range. The fixed pivot technique may underestimate
results in some situations where an increasing part of the distribution is being discretized using
coarse grid.

The results presented so far can be summarized as follows. The numerical results for each case
indicate that taking the average within the cells leads to a powerful technique which predicts
results with great accuracy. The cell average technique assigns the particles within the cells
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(b) Particle size distribution.

Figure 3.21: A comparison of numerical with analytical results for mono-disperse initial condition
and sum kernel, q = 1 and Iagg = 0.80.
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Figure 3.22: A comparison of numerical with analytical results for exponential initial condition
and sum kernel, q = 1 and Iagg = 0.85.
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Figure 3.23: A comparison of numerically and analytically calculated particle size distribution,
showing the recovery of under-prediction, q = 1.

more accurately without increasing the complexity in numerics. This can be observed by the
accurate prediction of PSD as well as of the second moment in each case.

Product kernel: The product kernel is a gelling kernel for any arbitrary charge PSD, see Smit
et al. [103], however, Igel

agg depends on the shape of the charge PSD. The gelling time has been
provided in the preceding section for three different types of initial distribution: Mono-disperse,
bi-disperse and Gaussian-like particle size distribution.

In Figure 3.24, the numerical solution for first and second moments computed with both the
schemes is compared with the analytical solution for a mono-disperse initial distribution. Since
the degree of aggregation is more important in order to analyze the gelling behavior, moments
have been plotted with respect to the degree of aggregation instead of time. For a product
kernel, the relationship between time and degree of aggregation is linear. It is related by the
following relationship

Iagg = Čt,

where Č is a constant related to the total initial number and the mass of the system. It is easy
to get the value of Č as

Č =
β0μ

2
1

2μ0(0)
.

The degree of aggregation at the gelation point I gel
agg is 0.5 in this case. Figure 3.24(a) shows

that after a certain degree of aggregation the fixed pivot technique starts loosing mass while
the cell average technique conserves mass up to Iagg = 0.49, very close to the gelling point.
The comparison of the second moments has been plotted in Figure 3.24(b) up to the degree of
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aggregation of 0.3. The computation runs up to Iagg = 0.30, because after this point the fixed
pivot technique begins to loose mass. Moreover, the results are not comparable after this point
since the value of the moment diverges in the fixed pivot technique. The figure shows that the
numerical results predicted by the cell average technique are in excellent agreement with the
analytical results in the entire range.

Figure 3.25 shows a similar comparison for an exponential initial distribution. The volume of
the smallest particle considered in the calculation is 10−6. The initial mean volume in both
cases is taken to be 1. Once again, more or less the same features can be seen. In Figure
3.25(a) is shown again the comparison of numerical and analytical results of first moments up to
Iagg = 0.24. The first moment decays by the fixed pivot technique before the point of gelation.
The value of degree of aggregation at the gelation point in this case is 0.25. The variation of
second moment of the size distribution is compared in Figure 3.25(b). Like the previous cases,
the second moment diverges after Iagg = 0.14 for the fixed pivot technique, while the results by
the cell average technique are slightly under-predicted. The deviation from the analytical results
by the cell average technique is more pronounced at large times. It can obviously be improved
by further refinement of the grid at a higher computational cost. A similar observation, shown
in Figure 3.26, has been found for the case of Gaussian-like initial condition.

Additionally, we have plotted the prediction of PSD with the product kernel and two different
initial conditions: the exponential and the mono-disperse distribution. The results are presented
at the same extent of aggregation as above. In Figure 3.27(b), the number density versus
volume for the mono-disperse initial distribution is depicted. The situation is different here from
that in the previous cases; the deviation of the numerical results from the analytical results is
more pronounced. This is expected because of the stronger dependence of the kernel on its
argument giving a larger extent of over-prediction. The prediction by the cell average technique
is reasonably close to the analytical distribution even for large sizes. On the other hand, the
prediction of the PSD at large size ranges using the fixed pivot technique is very poor. It can be
observed that a rather much finer discretization is required for good agreement in comparison
with the case of a non-gelling kernel.

A similar exercise has been carried out for a bi-disperse particle size distribution. Initially, one
half fraction of the particles is fixed in the first class x1 = 1 and the rest is assigned to the second
class x2 = 2. As determined earlier, the degree of aggregation at gelation, in this case, is 0.45.
The computation of first moments is carried out up to Iagg = 0.44. Note that the first moment
in Figure 3.28(a) by the cell average technique is conserved even very near to the gelation point
while the conservation breaks down at Iagg = 0.30 for the fixed pivot technique. Figure 3.28(b)
shows the comparison of the second moments up to Iagg = 0.30. At small times or analogously at
small degree of aggregation, the second moment is predicted reasonably well by the fixed pivot
technique. However, as time progresses, the predictions of the moments deviate significantly
from the analytical results. At large times, after Iagg = 0.30, it is unable to predict the second
moment. On the other hand, the prediction agrees very well with the cell average technique
even for large degree of aggregation. It should be noted in this case that due to the geometric
type grid it is more difficult to predict the complete distribution. It will be shown later that the
PSD becomes oscillatory at small particle size range in this case. Nevertheless, the prediction
of moments is in very good agreement by the cell average technique.
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Figure 3.24: A comparison of numerical with analytical results for product kernel and mono-
disperse initial condition, q = 1 and Igel

agg = 0.5.
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Figure 3.25: A comparison of numerical with analytical results for product kernel and exponen-
tial initial condition, q = 1 and Igel

agg = 0.25.
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Figure 3.26: A comparison of numerical with analytical results for product kernel and Gaussian-
like initial condition, q = 1 and Igel

agg = 0.33.
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(a) Mono-disperse initial condition, final Iagg = 0.30.
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(b) Exponential initial condition, final Iagg = 0.14.

Figure 3.27: A comparison of PSDs with analytical results for product kernel, q = 1.
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Figure 3.28: A comparison of numerical with analytical results for product kernel and bi-disperse
initial condition, q = 1 and Igel

agg = 0.45.
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In summary, the cell average technique, in either case, provides an excellent prediction of the
second moment as well as conservation of the first moment. The results are obtained with a
coarse grid. A finer grid can obviously be used to improve the accuracy of the numerical results
to any desired accuracy. Later we will show that the technique presented in this work is adequate
to compute moments and PSD very near to the gelation point at a low computational cost.

Physically relevant problems

Now the remaining comparisons are analogous to Piskunov et al. [89]. They considered the
following initial condition

n(0, x) =
N0√
2πxσ

exp
(
− ln2(x/x0)

2σ2

)
, (3.70)

with N0 = 1, x0 =
√

3/2 and σ =
√

ln(4/3). The volume domain has been discretized uniformly
on a logarithmic scale. It should be mentioned here that Piskunov et al. [89] calculated second
moments by varying a set of parameters. We have chosen their best values of second moment
for the comparison.

Table 3.7: Comparison of second moments between FP, CA, and GA methods for kernel βB

I = 68 I = 277 I = 346
t FP CA FP CA FP CA GA

0 1.35 1.35 1.33 1.33 1.33 1.33 1.33
10 43.82 42.96 42.83 42.75 42.80 42.75 42.7
50 213.96 209.57 209.02 208.61 208.85 208.61 209
100 426.64 417.83 416.75 415.93 416.43 415.93 416

Brownian coagulation kernel: We consider the following coagulation kernel for Brownian
motion due to Smoluchowski [118]

βB(u, v) = (u1/3 + v1/3)(u−1/3 + v−1/3). (3.71)

We compare numerical results obtained using fixed pivot technique, cell average technique and
generalized approximation method. Table 3.7 gives the second moment obtained by three meth-
ods at different dimensionless times and for different class numbers. As can be seen from the
table, the cell average technique converges very fast and the values of the second moments are
close to the values obtained by the GA method. Moreover, we can observe that on coarse grids
the differences between the fixed pivot and cell average techniques are considerably larger at
large times. As expected both the fixed pivot and cell average techniques produce the same
results on very fine grids.

Coagulation kernel β+: We now consider the following frequently used kernel

β+(u, v) = u2/3 + v2/3. (3.72)
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Table 3.8: Comparison of second moments between FP, CA, and GA methods for kernel β+

I = 85 I = 306 I = 337
t FP CA FP CA FP CA GA

0 1.36 1.36 1.34 1.34 1.33 1.33 1.33
10 398.72 370.26 369.30 366.92 368.86 366.86 367
50 3.33E+4 3.06E+4 3.05E+4 3.03E+4 3.05E+4 3.03e+4 3.02E+4
100 2.51E+5 2.32E+5 2.30E+5 2.29E+5 2.30E+5 2.29E+5 2.29E+5

Table 3.9: Comparison of second moments between FP, CA, and GA methods for kernel βG

I = 104 I = 519 I = 628
t FP CA FP CA FP CA GA

0 1.36 1.36 1.33 1.33 1.33 1.33 1.33
10 159.43 117.20 112.68 110.52 112.05 110.51 104
50 2.89E+5 1.78E+5 1.41E+5 1.35E+5 1.39E+5 1.34E+5 1.19E+5
100 11.8E+6 7.93E+6 6.0E+6 5.7E+6 5.90E+6 5.68E+6 4.93E+6

This kernel is computationally more expensive than the Brownian kernel. The final distribution
in this case is much wider than that for Brownian kernel as can be seen from the values of
second moment. The numerical results for the second moment have been summarized in Table
3.8. Once again more or less the same observations as before have been found in this case. The
values of second moments using the cell average technique are quite close to that obtained by
GA method. Table 3.8 clearly shows the over-prediction of the fixed pivot technique.

Gravitational coagulation kernel: The gravitational kernel takes the following form

βG(u, v) = (u1/3 + v1/3)2|u1/6 − v1/6|. (3.73)

Piskunov et al. [89] mentioned that the equations become very stiff and difficult to solve, com-
putation becomes very expensive in this case. Moreover, they could not obtain results for some
sets of parameters at large times. Table 3.9 shows that the results using both fixed pivot and
cell average techniques are over-predicting at large times even for fine grids. However, the cell
average values are more accurate than the fixed pivot ones.

A kernel leading to critical phenomena: Here we consider the following coagulation kernel

βC(u, v) = (u1/3 + v1/3)2|u2/3 − v2/3|. (3.74)

Like the product kernel, certain moments of the distribution diverge at a finite time tgel for this
kernel. The value of critical time depends on the initial distribution. Similar to Piskunov et al.
[89], we consider two types of initial conditions here. First we take the same initial condition
(3.70) as before. Table 3.10 gives the values of second moment obtained using fixed pivot and
cell average techniques for different grids. The values have been compared with the values
obtained by GA method. The results are comparable only up to t = 0.4. At later times the
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Table 3.10: Comparison of second moments between FP, CA, and GA methods for kernel βC

I = 231 I = 461 I = 576
t FP CA FP CA FP CA GA

0 1.34 1.34 1.33 1.33 1.33 1.33 1.33
0.1 1.65 1.65 1.64 1.64 1.64 1.64 1.62
0.2 2.20 2.18 2.18 2.18 2.18 2.18 2.12
0.3 3.33 3.25 3.26 3.24 3.26 3.24 3.10
0.4 34.31 6.64 6.21 5.82 6.01 5.80 5.41
0.5 51948.44 4113.97 2275.64 521.81 1392.88 455.67 12.6

Table 3.11: Comparison of second moments between FP, CA, and GA methods for kernel βC

I = 177 I = 581 I = 870
t FP CA FP CA FP CA GA

0 1.50 1.50 1.50 1.50 1.50 1.50 1.50
0.1 1.70 1.70 1.70 1.70 1.70 1.70 1.70
0.2 2.05 2.04 2.04 2.04 2.04 2.04 2.04
0.3 2.73 2.72 2.71 2.71 2.71 2.71 2.70
0.4 4.27 4.19 4.18 4.17 4.17 4.17 4.11
0.5 33.26 9.26 8.23 8.17 8.18 8.16 7.91
0.6 39546.75 5195.11 228.89 133.07 112.56 73.64 23.27

second moment seems to diverge for both the fixed pivot and cell average techniques. However,
the values obtained using the fixed pivot and cell average techniques differ significantly at later
times and the fixed pivot values are much larger as usual.

As mentioned earlier the value of tgel depends on the initial condition, now we consider the same
coagulation kernel with the following initial condition

n(0, x) = 0.5δ(x − 1) + 0.25δ(x − 2). (3.75)

The values of the second moment at different times have been summarized in Table 3.11. The
variation of second moment is the same as that obtained by Piskunov et al. [89]. The values of
the second moment increase rapidly after t = 0.6, this indicates the appearance of critical time.
The overall cell average values of the second moment are slightly larger than that obtained from
the GA method but smaller than the fixed pivot values.

Finally we can conclude that the cell average technique gives better results than the fixed pivot
technique in each case. The results by the cell average technique are comparable with the GA
method. However, comparison with the GA method is not the main concern of this work.

Computational time

As mentioned earlier, the computations for both the fixed pivot and cell average techniques were
carried out in the programming software MATLAB on a Pentium-4 machine with 1.5 GHz and
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Table 3.12: Computation time in seconds for both techniques (Programming software MATLAB,
Pentium-4 machine with 1.5 GHz and 512 MB RAM)

Case Kernel Initial condition I Iagg FP technique CA technique

Mono-disperse 15 0.98 1.18 0.39
1 Constant

Exponential 45 0.98 1.24 1.28

Mono-disperse 22 0.85 0.56 0.76
2 Sum

Exponential 48 0.85 0.95 1.65

Mono-disperse 22 0.40 0.72 0.28
3 Product

Exponential 51 0.18 0.64 0.56

512 MB RAM. We have realized computations for several cases: three different kernels and two
different initial conditions. A comparison of CPU time taken for both the schemes under the
same demands on accuracy and other conditions is drawn in Table 3.12. Although the average
computation time for one step is higher for the cell average technique, the table indicates that
the total computation times are comparable. It shows the faster convergence toward the final
solution by the cell average technique in comparison to the fixed pivot technique. However,
for the sum kernel the computation time by the cell average technique is larger. On the other
hand in case of the product kernel the fixed pivot technique takes more time. The fixed pivot
technique takes more time for both initial conditions, because of the numerical problems near
mathematical gelation. Nevertheless, the difference between computational times varies less
than by a factor of 1.5. The cell average technique takes considerably more time in the case of
the exponential initial distribution with the sum kernel than for any of the other cases. But, this
is reasonable because of the highly precise prediction of the results by the cell average technique
in this case. If we take a look at the Figure 3.22, the prediction of the size distribution as well
as the second moment by the cell average technique is extremely accurate and the deviation
between the numerical results by the techniques is more pronounced.

It should be noted that due to the large over-prediction of large particles by the fixed pivot
technique we have to take a very large range of volume in order to cover all the particles and
conserve mass. The number of particles produced by the cell average technique in the large
volume range is insignificant and we may take a smaller computational domain without loosing
mass. The larger volume range of the fixed pivot technique, of course, generates more equations
and thus more computation time. The computation time that we give can therefore still be
reduced by the cell average technique by taking a smaller range of volumes, i.e. fewer equations.
Here we have not done this in order to compare results on the same computational domain.

Relative error

As pointed out before, in all previous sections we have always made computations on coarse grids
of the type xi+1/2 = 2xi−1/2. In this section we study the effect of discretizations on numerical
results. We choose a family of geometric discretizations of the type xi+1/2 = 21/qxi−1/2. By
varying the value of q we can get different discretizations of the domain. We computed the
second moment for different q using both the fixed pivot and cell average techniques. The
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Table 3.13: Comparison of relative error of second moment for mono-disperse initial distribution
and sum kernel, Iagg = 0.85

Grid points Relative error
I FP technique CA technique

20 2.16 6.42E-2
40 0.33 3.57E-2
60 0.14 4.14E-3
120 3.49E-2 1.74E-3
240 7.93E-3 7.36E-4

Table 3.14: Comparison of relative error of second moment for exponential initial distribution
and sum kernel, Iagg = 0.85

Grid points Relative error
I FP technique CA technique

40 4.23 0.28
80 0.49 1.67E-2
120 0.19 6.99E-3
240 4.51E-2 5.07E-3
400 1.75E-2 2.44E-3

relative error has been calculated by dividing the error ‖ μana
2 −μnum

2 ‖ by ‖ μana
2 ‖, where ‖ · ‖ is

the L2 norm. The L2 norm of a vector x = (x1, x2, . . . , xn) is given as (
∑n

k=0 x2
k)

1/2. The values
μana

2 and μnum
2 are the analytical and numerical values of the second moment respectively.

We calculated the relative error for the mono-disperse and the exponential initial distributions
for the case of the sum kernel. The degree of aggregation in both cases is taken to be 0.85.
Table 3.13 and 3.14 show the relative error in the second moment using different grid points for
the mono-disperse and exponential initial distributions respectively. As can be seen from both
tables, the difference between the two techniques is considerable. Moreover the tables clearly
show that both techniques produce nearly the same results for fine grids.

Experimental order of convergence

Tables 3.15(a) and 3.15(b) show the EOC (3.53) test of the cell average and fixed pivot techniques
respectively. It is computed for a test problem with an exponential initial condition and the
sum coagulation kernel. The degree of aggregation is chosen to be 0.95. As can be seen from
the tables, the convergence of the two methods differs significantly. The fixed pivot method is
only of first order whereas the cell average method is clearly of second order for this problem.

The cell average formulation presented here maintains the consistency with the zeroth and the
first moments. It should be noted that the formulation can easily be changed for the consistency
with any two moments. Since we are dealing with the number density population balance
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equation the consistency with the total number is very important. Let us consider a general
case of the exact prediction of the zeroth moment and the rth moment. In this case it is easy
to modify the equations (3.63), (3.64) in the form

Vagg,i =
j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1 − 1

2
δj,k

)
βj,kNjNk(xj + xk)r, (3.76)

v̄agg,i =
(

Vagg,i

Bagg,i

)1/r

. (3.77)

Consider the case when the average value v̄agg,i is bigger than xi, the fractions must be calculated
from the following system of equations

a1 + a2 = B̂agg,i

a1x
r
i + a2x

r
i+1 = B̂agg,iv̄

r
i . (3.78)

Solving these equations, the fractions a1 and a2 are given by

a1 = B̂agg,i
v̄r
i − xr

i+1

xr
i − xr

i+1

, and a2 = B̂agg,i
v̄r
i − xr

i

xr
i+1 − xr

i

. (3.79)

As discussed before, the λi for this case can be defined as

λ±
i (x) =

xr − xr
i±1

xr
i − xr

i±1

. (3.80)

The formulation (3.67) with the average values v̄agg,i from the equation (3.77) and the functions
λi from the equation (3.80) gives consistency with respect to the zeroth and rth moments. Up
to now we have considered the consistency with the zeroth and one extra moment. Similarly
the cell average formulation can be derived for any two moments. Nevertheless, the first two
moments are of special interest for many applications, so that we refrain here from discussion of
the exact prediction of more moments. The extension of the scheme for the consistency of more
moments is possible by distributing the birth to more nodes but it may lead to a formulation
that looses positivity of the solution. All these issues and remedies to resolve the positivity
problem will be discussed in Subsection 3.2.3.

We conclude this section with the observation that the numerical results have shown the ability
of the cell average technique to predict very well the time evolution of the second moment
as well as the complete particle size distribution. The technique follows a two step strategy-
one to calculate average size of the newborn particles in a class and the other to assign them
to neighboring nodes such that the properties of interest are exactly preserved. The main
significance from the applicational point of view of the improved efficiency is that it can be
used as a tool for the calculation up to (or near to) the gelation point, as we have already seen
that the fixed pivot technique diverges before the gelation point due to the over-prediction. A
comparison of the numerical results for the fixed pivot and the cell average technique with the
analytical results indicates that the cell average technique improves the under-prediction in the
moderate size range and the over-prediction in the large size range. Furthermore, we applied the
cell average technique to physically relevant problems and the results have been compared with
the fixed pivot and GA techniques. The numerical results for these problems are comparable to
the GA method while the fixed pivot technique gives over-prediction in each case.
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Table 3.15: EOC of the cell average and fixed pivot techniques for exponential initial distribution
and sum kernel, Iagg = 0.95

(a) The fixed pivot technique

Grid points, I Error, L1 EOC

30 2.43E-2 -
60 1.16E-2 1.06
120 6.31E-3 0.87
240 2.84E-3 1.14

(b) The cell average technique

Grid points, I Error, L1 EOC

30 2.54E-2 -
60 9.38E-3 1.44
120 2.93E-3 1.68
240 7.63E-4 1.94

Comment on choice of grid

The right choice of grids is a very important factor in the computation of population balances.
Batterham et al. [7] divided the particle size domain into intervals of equal sizes for the process
of aggregation. They pointed out that covering a modest range of particle size domains results
in a very large set of ordinary differential equations. Bleck [9] proposed a geometric grid for
the discretization of PBEs for aggregation. By using a geometric grid, the computational cost
of course can be highly reduced, but on the other hand the prediction of numerical results
becomes poorer. Moreover, the suitability of grid type also depends on the particular problem.
Nevertheless, there is a trade-off between accuracy and computational cost and one has to find
a compromise. The effect of grids on the solution can be well observed in the following example.

Let us consider a problem proposed by Boehm et al. [10] where the initial conditions are bimodal.
They have considered the following non-dimensional form of the following discrete population
balance equation

dNj

dT
=

i−1∑
j=1

NjNi−j − 2Ni

∞∑
j=1

Nj. (3.81)

The initial conditions are

N1(0) = ǎ, NJ(0) = b̌, Nj(0) =0, for J ∈ , j �= 1, J. (3.82)

where ǎ, b̌ > 0 and ǎ + b̌ = 1.

They obtained the following analytical solution of the above problem

Nj(T ) =
1

(1 + T 2)

j
J−1∑
l=0

(j − lJ − l)!
(j − lJ)!(l)!

ǎj−lJ b̌l

(
T

1 + T

)j−1−l(J−1)

. (3.83)

Boehm et al. [10] also presented a recurrence relation for the solution where j ≥ J

(1 + 1/T )Nj+1(T ) = ǎNj(T ) + b̌Nj+1−J(T ). (3.84)
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Figure 3.29: A comparison of numerical and analytical moments obtained by using linear and
geometric grids, q = 1, for bi-disperse initial condition and constant kernel.
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Figure 3.30: A comparison of numerically and analytically calculated particle size distribution
obtained by using linear and geometric grids, q = 1, for bi-disperse initial condition and constant
kernel.

We solved this problem numerically using linear grids, xi = ix1, and geometric grids, xi+1 = 2xi.
We used the fixed pivot technique and the cell average technique for the computation. As we
mentioned before that both techniques produce the same results while using on liner grid. The
results have been obtained for ǎ = 0.1, b̌ = 0.9, and T = 10. If we look at the moments, Figure
3.29, the results are in good agreement with the exact solution. As expected, the zeroth and
first moments, Figure 3.29(a), are exactly preserved in each case. While the difference of the
second moment between the numerical and analytical results is still comparable. As aggregation
proceeds, the difference of second moment between numerical results obtained by geometric grid
using the fixed pivot technique and analytical results becomes more pronounced as shown in
Figure 3.29(b). Interestingly, the prediction of the second moment by the cell average technique
is very close to the analytical results.

The corresponding prediction for size distribution is plotted in Figure 3.30. The figure shows
that the results are not accurate in the case of geometric grids. The scheme does not capture
any details of the distribution. Since the original problem is fully discrete and the linear grids
fit exactly to cover all the new particles which are formed during the process, this scheme can
capture these details. As shown in the Figure 3.30, the numerical approximation by the linear
grid clearly allows a correct tracking of the PSD in the entire range. As expected, however, the
cell average technique gives less over-prediction in the number density distribution compares to
that obtained by the fixed pivot technique. Once more, it has been demonstrated that the cell
average technique is more accurate than the fixed pivot technique.
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+

(a) Layering or growth. (b) Aggregation of nuclei with disperse.

Figure 3.31: Interaction of disperse phase with continuous phase.

The only problem with linear grids is that they take more computational time. For the linear
grid we have to solve a set of 1000 ODEs while in case of the geometric girds the set reduces
to 11 ODEs. The situation may be dealt with by choosing the linear grid in the small size
range where oscillations have been observed and the geometric in the large size range where
the distribution decays exponentially. A similar grid criterion has been chosen by Kumar and
Ramkrishna [57] in a problem of simultaneous breakup and aggregation in order to improve the
accuracy of numerical predictions.

3.2.3 Pure Growth

As we have seen in the previous chapter that most of the methods for solving growth PBEs
suffer from numerical diffusion. The finite volume schemes are good alternatives to solve growth
PBEs, but they are usually consistent only with a single moment. Moreover, the extension of the
existing finite volume schemes to arbitrary grids is extremely complicated. The moving mesh
techniques are exceptionally good but they are difficult to combine with other processes. We
have derived a two-moment consistent discrete formulation for the pure aggregation and pure
breakage PBEs and we do expect the same here. Therefore the aim is to derive a scheme which
is consistent at least with the first two moments, easy to combined with other the processes and
can be applied on general grids.

In order to accomplish the goal, a completely new perspective to treat the growth process has
been introduced. The growth of a particle can be treated as adherence of small nuclei on the
particle surface. Traditionally, growth process is described as continuous transfer of mass from
the continuous phase to the disperse phase, see Figure 3.31 (a). Here we consider this process
as a combination of two processes. At first, the continuous phase transforms into small nuclei.
Then, these nuclei aggregate discretely with the disperse phase. This is shown in Figure 3.31
(b). In this way, the numerical treatment of the growth process becomes easier.
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Thus, the process can be modeled as aggregation of existing particles with the imaginary nuclei.
The aggregation rate will of course be directly proportional to the growth rate of particles. Like
the aggregation population balance equation, the mathematical model of the growth process
then take the following form

∂n(t, x)
∂t

= β(x − x0, x0)n(x − x0)n(x0) − β(x, x0)n(x)n(x0). (3.85)

Here x0 > 0 is the size of the nuclei. In practice we assume that this is a small value. The first
term represents the birth at x due to aggregation of nuclei of size x0 with the particles of size
x − x0. Similarly the second term describes the death of particles at x due to aggregation of
particles of size x with the nuclei of size x0.

Unlike the conventional aggregation population balance equation, the equation (3.85) does not
contain any integral in the birth and death terms because we have fixed the size of the nuclei
and therefore a single possible event only is responsible to change the particles at x. Here we
assume that the mass m0 (= x0n(x0)) of the nuclei has a nonzero limit, i.e. m0 > 0 for x0 → 0.
In the limit x0 → 0 this equation leads to the classical form of growth PBE. Let us consider the
equation (3.85) in the form

∂n(t, x)
∂t

= −x0n(x0)
(

β(x, x0)n(x) − β(x − x0, x0)n(x − x0)
x0

)
, (3.86)

and take the limit x0 → 0. This gives

∂n(t, x)
∂t

= − m0
∂

∂x

(
β(x, x0)n(x)

)
= − ∂

∂x

(
m0β(x, x0)n(x)

)
. (3.87)

If we compare this equation directly with the classical PBE for growth, we get the following
relationship between the aggregation kernel β and the mass of the infinitesimally small nuclei

G(t, x) = m0β(x, x0). (3.88)

Now the cell average formulation can easily be derived for the equation (3.85). The numerical
discretization of this different form of the classical growth PBE will then become easy, consistent
with two moments and versatile to applied on any type of grids. We shall now formulate the
cell average technique for the PBE (3.85).

Numerical discretization

The cell average formulation is easy to derive for the new growth PBE. First we calculate the
total birth and death rates in the cell i as

Bgrowth,i =
∫ xi+1/2

xi−1/2

β(x − x0, x0)n(x − x0)n(x0) dx, (3.89)

and

Dgrowth,i =
∫ xi+1/2

xi−1/2

β(x, x0)n(x)n(x0) dx. (3.90)
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We make the assumption that x0 is small enough so that xi + x0 < xi+1/2 for all i = 1, 2, . . . , I.
This assumption ensures that particles just get larger inside the cells and they do not leave their
cells. Then substituting the number density n(t, x) =

∑I
j=1 Njδ(x − xj) into the above birth

and death terms gives

Bgrowth,i =
∫ xi+1/2

xi−1/2

β(x − x0, x0)
I∑

j=1

Njδ(x − x0 − xj)n(x0) dx

=β(xi, x0)Nin(x0), (3.91)

and

Dgrowth,i =
∫ xi+1/2

xi−1/2

β(x, x0)
I∑

j=1

Njδ(x − xj)n(x0) dx

=β(xi, x0)Nin(x0). (3.92)

The discrete birth and death rate terms are the same in this case. Since we assume that the
particles are concentrated only at the pivots, the mass of the particles in the cell will increase
and the total number of particles will remain the same. Similarly the volume flux into the ith
cell is calculated by

Vgrowth,i = β(xi, x0)Nin(x0) (xi + x0) . (3.93)

In order to apply the cell average technique, the volume average will simply be computed by

v̄i =
Vgrowth,i

Bgrowth,i
= xi + x0. (3.94)

Now the birth has to be modified according to the cell average strategy as

BCA
growth,i =Bgrowth,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bgrowth,iλ

−
i (v̄i)H(xi − v̄i)

+ Bgrowth,iλ
+
i (v̄i)H(v̄i − xi) + Bgrowth,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (3.95)

Since v̄i ≥ xi, the modified birth term can be simplified further

BCA
growth,i =Bgrowth,i−1λ

−
i (v̄i−1) + Bgrowth,iλ

+
i (v̄i). (3.96)

The final formulation of rate of change of number after substituting the expressions of λ and
Bgrowth,i in equation (3.96) takes the following form

dNi

dt
=β(xi−1, x0)Ni−1n(x0)

(
v̄i−1 − xi−1

xi − xi−1

)

+ β(xi, x0)Nin(x0)
(

xi+1 − v̄i

xi+1 − xi

)
− β(xi, x0)Nin(x0). (3.97)

The aggregation kernel is given by the relationship given in equation (3.88). The parameter
m0 in equation (3.88)can be adjusted equal to 1 by fixing a small value of the size of nuclei
x0 and choosing n(x0) = 1/x0. Consequently, the relationship in equation (3.88) changes to
G(t, x) = β(x, x0).
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The formulation (3.97) can also be rewritten as

dNi

dt
= β(xi−1, x0)Ni−1n(x0)

(
v̄i−1 − xi−1

xi − xi−1

)
+ β(xi, x0)Nin(x0)

(
xi − v̄i

xi+1 − xi

)
. (3.98)

Substituting the value of average volume from equation (3.94), it further simplifies to

dNi

dt
= β(xi−1, x0)Ni−1n(x0)x0

(
1

xi − xi−1

)
− β(xi, x0)Nin(x0)x0

(
1

xi+1 − xi

)
. (3.99)

Using the definition of growth rate G, we obtain the following two point formula

dNi

dt
= G(xi−1)

Ni−1

xi − xi−1
− G(xi)

Ni

xi+1 − xi
. (3.100)

This formula looks similar to the first order upwind discretization discussed in Chapter 2. The
discretization (3.100) and the first order upwind discretization are exactly the same for the case
of equidistant grids and a constant growth rate. This discretization is always consistent with
the first two moments independently of type of grids used in the computation. On the other
hand the first order upwind discretization looses the first moment consistency while applied
on non-homogeneous grids or with a non-constant growth rate. For a constant growth rate
G(x) = G0 and equidistant grids the formulation (3.100) reduces to the upwind discretization
in the following form

dNi

dt
=

G0

Δx
(Ni−1 − Ni) , (3.101)

where Δx is the distance between the grids.

To conclude, the new form of PBE (3.85) treats the growth process as aggregation of existing
particle with new small nuclei. The resulting numerical discretization of the growth process
becomes very simple and consistent with first two moments. Additionally, it will be shown later
that the new numerical formulation makes it easy to combine the growth process with other
processes. Next we will observe that the new discretization of the growth is a little diffusive but
it predicts the first two moments exactly without any computational difficulties like appearance
of negative values or any other instabilities.

It should be noted that the objective of this work is not to provide a numerical scheme for
pure growth problems but to propose a rather simple and general scheme which can be used
to solve combined processes effectively. Several finite volume and finite element schemes can
be found in the literature, also mentioned in the previous chapter, which may be used to solve
the growth PBEs but all of them either have problems with consistency of moments or they are
not easy to combine with other particulate processes. In the next section we will show that the
coupling of the growth process with other particulate processes using the cell average technique
becomes trivial and considerably better results for combined processes can be obtained without
extra much computational effort. Nevertheless it is necessary first to check the accuracy of the
derived scheme for some analytically solvable pure growth problems.
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Figure 3.32: A comparison analytical and numerical results for pure growth using exponentially
distributed initial particle size distribution and linear growth rate, grid points 130.
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Figure 3.33: A comparison analytical and numerical results for pure growth using step function
as initial particle size distribution and constant growth rate, grid points 95.
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Numerical results

We have considered two test cases to access the ability of the scheme to handle pure growth
problems. In the first test case we take exponentially distributed particle size distribution
(3.69) with a linear growth rate G(x) = x. The second test case considers the step function as
initial condition with a constant growth rate. The analytical results for the number density and
different moments for a initial condition n0(x) are given in Appendix A.3. The volume domain
is discretized geometrically into small cells by the rule xi+1/2 = 21/qxi−1/2. The parameter q
adjusts the coarseness of the mesh.

Figure 3.32(a) shows numerical results for the first two moments calculated using the cell average
technique and the first order upwind discretization. Since the cell average formulation is consis-
tent with the first two moments, the prediction of the first two moments using the cell average
technique is exact. On the other hand the upwind discretization shows a diverging behavior of
the first moment. The prediction of the zeroth moment by the upwind discretization is excellent
due to automatic conserving property of the upwind discretization. The corresponding particle
size distribution at the final time is plotted in Figure 3.33(b). The prediction of the particle
size distribution by the two techniques is quite similar. A small over-prediction of the results
by the cell average technique has been observed at the small as well as at large volumes. The
number density at the small volumes by the upwind discretization is pretty good whereas it is
consistency over-predicting at the large volumes.

The numerical results for the second test case have been presented in Figure 3.33. For the
constant growth rate numerical results obtained using both techniques are quite similar. Nev-
ertheless, once more, the prediction of the first moment by the upwind discretization, shown in
Figure 3.33(a), is slightly over-estimated. Whereby both the moments calculated using the cell
average technique are exactly matching with the analytical results. Figure 3.33(b) shows that
the numerical results for the particle size distribution are highly diffusive. It is due to the fact
that we have chosen a discontinuous initial condition. Most of the numerical schemes smear out
near discontinuities and higher gradients. Very fine grids near discontinuities are often required
to capture the complete details of the distribution.

As we have seen that the numerical results of the particle size distribution for pure growth
problems by the cell average technique as well as by the upwind discretization are not very
accurate. A better accuracy may be obtained by making the formulation consistent with the
first three moments. Next we establish the cell average technique consistent with the first three
moments and observe the computational difficulties with the formulation.

Consistency with the first three moments: Consistency with three moments may be
achieved by assigning newborn particles to three nodes. The most appropriate choice could be
the node of the cell particles belong to and two nodes of the adjoining cells. Consider that some
newborn particles appear in ith cell at v̄i, see Figure 3.34. Now the objective is to assign these
particles to the nodes xi−1, xi and xi+1 in such a way that the first three moments are exactly
conserved. Assuming that fractions a1, a2 and a3 are assigned to the nodes xi−1, xi and xi+1
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respectively. Then these fractions must satisfy the following equalities

a1 + a2 + a3 = 1,
xi−1a1 + xia2 + xi+1a3 = v̄i,

x2
i−1a1 + x2

i a2 + x2
i+1a3 = v̄2

i .

The above set of equations results in

a1 =
(v̄i − xi)(v̄i − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
, (3.102)

a2 =
(v̄i − xi+1)(v̄i − xi−1)
(xi − xi+1)(xi − xi−1)

, (3.103)

and

a3 =
(v̄i − xi−1)(v̄i − xi)

(xi+1 − xi−1)(xi+1 − xi)
. (3.104)

These fractions seem unrealistic since either a1 is negative in case of v̄i > xi or a3 is negative
for v̄i < xi. In the pure growth case, the volume average v̄i is always bigger than xi, i.e. v̄i > xi

and therefore a1 < 0. Let us first obtain the formulation for the rate of change of numbers in a
cell with these fractions. Similar to the previous case of two moment consistency we obtain

dNi

dt
=

(v̄i−1 − xi−2)(v̄i−1 − xi−1)
(xi − xi−2)(xi − xi−1)

Bgrowth,i−1 +
(v̄i − xi+1)(v̄i − xi−1)
(xi − xi+1)(xi − xi−1)

Bgrowth,i

+
(v̄i+1 − xi+1)(v̄i+1 − xi+2)

(xi − xi+1)(xi − xi+2)
Bgrowth,i+1 − β(xi, x0)Nin(x0). (3.105)

All parameters appearing the above formulation have already been defined earlier. The above-
mentioned three-point method is unstable due to the appearance of negative values of particle
numbers. It is due to the fact that the reassignment process makes the formulation consistent
with respect to the first three moments by removing some particles from one node and assigning
them to others. In other words, the assignment process takes negative growth at some nodes
and that, in some situations, is responsible for appearance of negative values. Setting negative
Ni to zero causes an increase of total particle number and other higher moments as well as
fluctuations in particle size distribution. We have tested the new formulation for the same
problem considered in Figure 3.33. As can be seen in Figure 3.35(a) that the prediction of the
first two moments is very poor by the three moments consistent strategy. Figure 3.35(b) shows
the fluctuations of the particle size distribution. As mentioned before, it should be pointed
out that these fluctuations and negative values are not produced by the ODE solver but the
formulation itself produces negative values which causes instability in the solution.

The positivity in the formulation can be preserved by using a combination of the two strategies,
consistency with two and three moments, to distribute the particles. This may be accomplished
in different ways. We have used a simple criterion to switch between the two strategies. A
particle birth distribution from ith cell using a three moment consistent strategy together with
possible birth at (i− 1)node is indicated in Figure 3.36. It is shown in the figure that the three
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� � ��

xi−1 xi xi+1

v̄i

���

� Cell representative (node)
� Position of newborn particles

Figure 3.34: Assignment of particles for the consistency of the first three moments.

moment consistent strategy of particles in the ith cell results in a negative birth rate at the
(i − 1) node. If the total positive birth at the (i − 1)th node which is contributed from the
(i − 1)th cell and (i − 2)th cell is not large enough then this redistribution strategy results in
negative values of number density at (i − 1)th node. A simple remedy to avoid negative values
is to redistribute particles using a two moment consistent strategy. We summarize the schemes
used in this work in following steps.

1. Choose a small number ε (≈ 10−3).

2. Calculate the birth and death rates Bgrowth,i and Dgrowth,i for all i.

3. If Ni−1 and Ni−2 are smaller than ε, reassigned birth Bgrowth,i by two moment consistent
strategy otherwise by three moment consistent strategy. Do it for all i to get net birth at
each node, i.e. Bmod

growth,i.

4. Compute dNi
dt = Bmod

growth,i − Dgrowth,i.

We have used the above switching strategy in our computations. The value of the parameter ε
in different problems can be adjusted accordingly to avoid negative values. It should be pointed
out that this switching criterion is by no means the best possible. The approach used here is
one of the simplest switching criteria. A more sophisticated criterion can be adapted to achieve
the positivity of the solution.

We now present some results to illustrate the above concept of switching the two strategies of
consistency. We applied the above algorithm on the same test case as before. The value of the
parameter ε is taken to be 10−3. The results have been plotted in Figure 3.37. These figures
reveal that using a simple criterion of combination of two distribution mechanisms has improved
the accuracy considerably without any extra efforts. The prediction of the first three moments
by the new strategy is extremely accurate while a small over-prediction in the second moment
by the two moment consistent formulation is observed. The numerical results for the particle
size distribution by the new formulation are considerably better than two moment consistent
formulation. The prediction of the particle size distribution is highly accurate without any
fluctuations or appearance of negative values.

We can conclude that the strategy to use two formulations comes out as a good alternative to
solve a growth population balance equation. As we have seen in the previous chapter that all
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Figure 3.35: A comparison analytical and numerical results for pure growth using step function
as initial particle size distribution and constant growth rate, grid points 95.
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Figure 3.36: Reasons for negative values in a three moment consistent formulation.

numerical schemes which are theoretically consistent with respect to the first three moments
produce much more fluctuations as well as negative values and consequently loose consistency
with respect to all moments. Moreover, the fundamental concept of the scheme, the coupling
with other processes, is an extra advantage of the scheme. In a following section we will demon-
strate the coupling efficiency and accuracy of the numerical results for growth combined with
other processes. Now we proceed to apply the cell average technique for different combinations
of processes where analytical results are easily available.

3.2.4 Simultaneous Aggregation and Breakage

This subsection is devoted to the numerical treatment of combined aggregation and breakage
processes. When both aggregation and breakage processes take place together, the discrete birth
and death rates for combined processes in most of the numerical schemes are generally considered
by algebraically summing the individual birth and death rates. In other words, conventionally
the easiest way to couple the two processes is to just add the corresponding discretizations in
the following way.

dNi

dt
= BCA

agg,i + BCA
break,i − Dagg,i − Dbreak,i, (3.106)

where the abbreviations CA, agg, and break stands for cell average, aggregation and breakage
respectively. In this formulation birth and death rates have been added to get a formulation for
combined processes.

The preceding formulation is of course consistent with the first two moments if this holds for
breakage and aggregation separately. In order to couple the two discretizations more efficiently
we take advantage of the cell average technique. The accuracy can further be improved by using
the idea of cell average for the combined problem simply by considering the total birth and death
rates from combined processes. Thereby, we shall treat both processes together in a similar way
as we have treated the individual processes. First we collect all the newborn particles in a cell
independently of the events that make them appear in the cell. In our case here the events are
aggregation and breakage processes. Then we take the volume average of all newborn particles
in the cell. The remaining steps are the same we used for the individual processes of aggregation
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Figure 3.37: A comparison analytical and numerical results for pure growth using step function
as initial particle size distribution and constant growth rate, grid points 95.
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or breakage. Mathematically, we construct the discrete formulation for the coupled problem as

dNi

dt
= BCA

agg+break,i − Dagg+break,i. (3.107)

Here the terms BCA
agg+break,i and Dagg+break,i represent the birth and death rates of particles in

the cell i due to aggregation and breakage respectively. The total birth and death rates in ith
cell is given by

Bagg+break,i = Bagg,i + Bbreak,i, (3.108)

and

Dagg+break,i = Dagg,i + Dbreak,i. (3.109)

Now the birth rate Bagg+break,i has to be modified to make the formulation consistent with
respect to the first two moments. Thus, the modified birth term or the cell average birth term
will be then computed as

BCA
agg+break,i =Bagg+break,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg+break,iλ

−
i (v̄i)H(xi − v̄i)

+ Bagg+break,iλ
+
i (v̄i)H(v̄i − xi) + Bagg+break,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (3.110)

The truly new ingredient is that the average value v̄i will be computed as

v̄i =
Vagg,i + Vbreak,i

Bagg,i + Bbreak,i
. (3.111)

The terms Bagg,i, Bbreak,i, Dagg,i, Dbreak,i, Vagg,i, Vbreak,i and also the λi are the same as given
in the previous sections. Next we will test the coupled formulation on two test problems. The
modified birth term (3.110) and the death term (3.109) can be substituted in equation (3.107) to
get the final formulation. We will see that the new way of coupling is not only more accurate but
also computationally less expensive. This is evident since in the latter case we are distributing
particles once while in the conventional approach particles are distributed twice; once due to
aggregation and then due to breakage.

Numerical results

We compared the fixed pivot technique [57] and the cell average technique with analytically
solvable problems proposed by Patil and Andrews [81]. Later these solutions were slightly
simplified by Lage [61] to the form we use here. A list of analytical solutions used here has
been included in Appendix A.4. They considered a special case of simultaneous aggregation
and breakage where the number of particles stays constant with a uniform binary breakage
b(x, y) = 2/y, linear selection function S(x) = S0x and constant aggregation kernel β(x, y) = β0.
They used the following two types of initial conditions

n(0, x) = N0

[
2
N0

x0

]2

x exp
(
−2

N0

x0
x

)
, (3.112)

and

n(0, x) = N0
N0

x0
exp

(
−N0

x0
x

)
. (3.113)

105



CHAPTER 3. NEW NUMERICAL METHODS: ONE-DIMENSIONAL

Note that next to conservation of mass these problems have the special properties that the
processes of aggregation and breakage balance to conserve total number also. The data (3.113)
are a steady state solution.

We have discretized the volume domain geometrically using the rule xi+1/2 = 2xi−1/2. Figures
3.38(a) and 3.38(b) show a comparison of the particle size distributions for the initial condition
(3.112) at time t = 0.4 and t = 6 respectively. As can be seen from the figures, the cell average
technique is able to approximate the PSD to a very high degree of accuracy. On the other hand
a small over-prediction is observed at the smaller volumes by the fixed pivot technique.

Let us now consider the steady state data (3.113). The results for this case are presented in
Figure 3.39. The prediction by the cell average technique is again excellent in this case while
a similar over-prediction by the fixed pivot technique can be observed. Actually this over-
prediction grows with time, i.e. the fixed pivot technique is not stable with respect to steady
states. Furthermore, the same numerical results for both the initial conditions at the final
time have been plotted on a log-log scale in Figure 3.40. Once again we can see here that the
prediction of PSD by the cell average technique is superior to the prediction with the fixed pivot
technique.

We shall now demonstrate the difference between conventional coupling (3.106) of the cell average
technique applied separately to aggregation and breakage and the new cell average coupling
(3.107). Note that we are not considering the fixed pivot technique in this comparison. Since
the numerical results are indistinguishable from the analytical results for the steady state initial
condition (3.113), we have only compared the numerical results for the unsteady initial condition
(3.112). The numerical results have been plotted in Figure 3.41. The L1 error between the
numerical and analytical results of PSD has also been reported in the figure. Due to the simplicity
of the problem, uniform binary breakage, the difference between the two types of coupling is
not so significant. Nevertheless, the cell average type coupling (3.107) gives better results which
can be observed at the steep part of the PSD as well as from the L1 error. Another difference
has been observed in computational time. The cell average type coupling (3.107) takes about
38 seconds CPU time while conventional coupling (3.106) takes 52 seconds CPU time on a
Pentium-4 machine with 1.5 GHz and 512 MB RAM.

To summarize, the cell average technique provides highly accurate results already on a very
coarse grid. The accuracy can of course be further increased by making the grid finer. The
cell average technique with the new coupling makes the technique even more useful for com-
bined aggregation and breakage by being not only more accurate but also computationally less
expensive.

3.2.5 Simultaneous Aggregation and Nucleation

As in the previous section we have just considered that the particles are appearing in cells
independently of the event that make them appear and presented a cell average formulation for
combined aggregation and breakage processes. A similar approach has to be applied here for the
case of simultaneous aggregation and nucleation. The process of nucleation may be introduced
into the modeling in two ways. A common approach is via a boundary condition at particle
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Figure 3.38: A comparison of particle size distributions for binary breakage and aggregation
with initial condition (3.112), grid points 38.
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Figure 3.39: A comparison of particle size distributions for binary breakage and aggregation
with initial condition (3.113), grid points 38.
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(a) Initial condition (3.112).
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Figure 3.40: A comparison of particle size distributions at t = 6 for binary breakage and
aggregation plotted on log-log scale, grid points 38.
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Figure 3.41: A comparison of particle size distributions for binary breakage and aggregation
showing the difference between conventional coupling and cell average coupling, grid points 38.

size 0 if the nucleation is mono-disperse. Here we want to consider the alternative of a source
located near particle size 0. In a continuum theory both are valid approaches.

Before we proceed to the final form of the cell average technique, we want to comment on the
conventional coupling of these processes. Let us discuss the case of discretization of Kumar and
Ramkrishna [59] for simultaneous aggregation and nucleation, they considered

dNi

dt
= discretization due to aggregation +

∫ xi+1/2

xi−1/2

Bnuc(t, x) dx. (3.114)

Note that in above formulation we may gain or loose mass if the nucleation does not take
place exactly at the representative sizes xi. It is possible that the particles could again be
distributed to neighboring cells for the consistency of moments in the fixed pivot technique. We
are not interested here to explore more about this issue. We now present how to deal with these
problems with the cell average techniques efficiently. Similar to previous section, we wish to
have the following discretization

dNi

dt
= BCA

agg+nuc,i − Dagg,i. (3.115)

Since nucleation is the birth of the particles, there is no nucleation term to be considered in
the death term. An analogous contribution to the death term would come if we considered
harvesting of certain particle sizes. The numerical treatment would be analogous. Now the
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birth by nucleation and aggregation can be described as follows

BCA
agg+nuc,i =Bagg+nuc,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg+nuc,iλ

−
i (v̄i)H(xi − v̄i)

+ Bagg+nuc,iλ
+
i (v̄i)H(v̄i − xi) + Bagg+nuc,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (3.116)

where

Bagg+nuc,i = Bagg,i +
∫ xi+1/2

xi−1/2

Bnuc(t, x) dx. (3.117)

The average values are computed as

v̄i =
Vagg,i +

∫ xi+1/2

xi−1/2
xBnuc(t, x) dx

Bagg,i +
∫ xi+1/2

xi−1/2
Bnuc(t, x) dx

. (3.118)

All other notations appearing in the formulation are already defined in previous sections. So
treating nucleation and aggregation as particle birth in cells in a similar fashion we have gained
the consistency with the first two moments. It should be noted that if the nucleation is mono-
disperse, usually the appearance of smallest particle, and the smallest representative is chosen
such that it matches exactly with the size of the the mono-disperse particles, then the above
formulation can be rewritten as

dN1

dt
= BCA

agg,1 − DCA
agg,1 + Bnuc(t, x1),

and (3.119)
dNi

dt
= BCA

agg,i − DCA
agg,i, i = 2, 3, . . . , I.

The formulation (3.115) may be used for a general poly-disperse nucleation and the formulation
(3.119), a particular case of (3.115), is used for mono-disperse nucleation.

Numerical results

We have tested the formulation for simultaneous nucleation and aggregation. A simple case of
zero initial population with constant aggregation kernel and mono-disperse nucleation is consid-
ered. Such systems with zero initial population usually lead to oscillations in the particle size
distribution. But we will see by numerical results that the cell average technique is completely
free of oscillations. Analytical solutions for the first two moments of this problem reported by
Alexopoulos and Kiparissides [4] have been included in Appendix A.5. The formulation (3.119)
is used for the computation in this particular case.

In Figure 3.42(a), a comparison is made between the exact solutions of the first two moments
and the numerical solution calculated using the cell average formulation (3.119) for the case
β0 = 1 and Bnuc(t, x1) = 1. The volume domain is discretized geometrically into 30 cells
starting with 10−6. As can be seen from the figure that the numerical results are in excellent
agreement with the analytical results. It should be mentioned that after a certain time, the
total number of particles in the system is invariant. A dynamic equilibrium with respect to
the total number has been reached at that time. In other words the particle nucleation rate
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Figure 3.42: Numerical results for simultaneous nucleation and aggregation, grid points 30.
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becomes equal to the total particle aggregation rate. On the other hand, the total mass of the
particles which is proportional to the first moment increases linearly with respect to the process
time. Unfortunately an analytical solution for the complete PSD is not easily available, only
numerical results at different times have been depicted in Figure 3.42(b). A quite complicated
but systematic behavior of the results has been observed. Clearly the particle size distribution
is free from oscillations.

3.2.6 Simultaneous Growth and Aggregation

This section is devoted to the numerical treatment of the simultaneous growth and aggregation
processes. As we have seen that the cell average technique can be applied to solve a pure
growth problem by the application of a different form of growth PBE. Similar to other combined
processes, in this case we like to have the following form of the cell average formulation

dNi

dt
= BCA

agg+growth,i − Dagg+growth,i. (3.120)

Here the birth and death terms in above equation are given as

BCA
agg+growth,i =Bagg+growth,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg+growth,iλ

−
i (v̄i)H(xi − v̄i)

+Bagg+growth,iλ
+
i (v̄i)H(v̄i − xi) + Bagg+growth,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1),

(3.121)

and

Dagg+growth,i = Dagg,i + Dgrowth,i, (3.122)

where

Bagg+growth,i = Bagg,i + Bgrowth,i. (3.123)

The volume average of particles appearing due to growth and aggregation in the cell i is calcu-
lated as

v̄i =
Vagg,i + Vgrowth,i

Bagg,i + Bgrowth,i
. (3.124)

The discrete equation (3.120) has been used in our simulations to calculate the evolution of
particle size distribution and its moments.

For comparison we describe an alternative by which the two processes can be coupled in a
different manner which is more accurate but more expensive. For the simultaneous aggregation
and growth, one may use cell average technique for the aggregation and a Lagrangian approach
for the growth to obtain a better accuracy of the numerical results. Finally, we solve the following
set of ordinary differential equations for the simultaneous growth and aggregation

dNi

dt
= BCA

agg,i − Dagg,i, (3.125)

together with

dxi

dt
= G(xi), (3.126)
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and

dxi+1/2

dt
= G(xi+1/2). (3.127)

The first equation is for the rate of change of particle due to aggregation while the last two
equations describe the motion of the representatives and boundaries respectively. A similar ap-
proach can be used to coupled growth process with other processes like breakage or simultaneous
breakage and aggregation. In this work we only presented numerical results for the cell average
technique where analytical solutions are easily available but it can be formulated in a similar
fashion for other combinations of processes.

Numerical results

In order to demonstrate the effectiveness of the cell average technique we have applied it to
two test problems with a linear growth rate G(x) = G0x. The constant kernel β(x, y) = β0

and the sum kernel β(x, y) = β0(x + y) for aggregation are used in the first and second test
problems respectively. An exponentially decreasing particle size distribution has been used as
initial condition. The initial condition and analytical solutions for the particle size distribution
as well as its moments are given in Appendix A.6. The particle volume domain was partitioned
into 60 non-homogeneous cells with the rule xi+1/2 = 21/qxi−1/2.

Numerical results for the first test problems have been plotted in Figure 3.43. The variation of
the first two moments with time is presented in Figure 3.43(a). The numerical and analytical
solutions for moments are in excellent agreement. On the other hand numerical results for the
particle size distribution at final time, shown in Figure 3.43(b), are slightly over-estimated. A
better accuracy, of course, can be achieved by refining the grids.

A similar computation has been performed for the second test case of size-dependent aggregation
kernel. Once more the numerical solution of the first two moments overlaps the analytical
solutions excellently, see Figure 3.44(a). The number density distribution at final time together
with the initial condition is plotted in Figure 3.44(b). As can be seen from the figure that a
very good agreement between the analytical and numerical solutions has been obtained.

We can conclude that the cell average technique can be used for coupled processes effectively.
The coupling of growth processes with aggregation and breakage has been a big issue in areas
related to particulate systems. Different authors proposed different coupling techniques but all of
them either are complicated Kumar and Ramkrishna [59], less accurate and unstable Hounslow
et al. [34] or applicable to limited problems Hu et al. [35], Prakash et al. [90]. The application
of the cell average technique to combined different processes is easy as well as consistent and
produces comparatively good results.

As mentioned before that growth processes can be coupled with other processes by computing
growth using Lagrangian approach and aggregation or breakage using the cell average technique.
In this way numerical diffusion by the growth can significantly be reduced and considerably
better results can be obtained. In order to illustrate this coupling we have considered the
same test cases as before. Since the prediction of the first two moments in this case is similar
to the previous case, we omitted them to present here. Only the particle size distributions
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Figure 3.43: Simultaneous growth and aggregation using the cell average technique, β(x, y) = β0

and G(x) = G0x, grid points 65.
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Figure 3.44: Simultaneous growth and aggregation using the cell average technique, β(x, y) =
β0(x + y) and G(x) = G0x, grid points 65.
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(b) Particle size distribution with β(x, y) = β0(x + y) and G(x) = G0x.

Figure 3.45: Simultaneous growth and aggregation using the cell average technique for aggrega-
tion and Lagrangian approach for growth, grid points 65.
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corresponding to Figures 3.43(b) and 3.44(b) have been plotted in Figures 3.45(a) and 3.45(b).
Clearly, it can be seen from the figures that the accuracy of the numerical results has been
improved in both cases.

3.2.7 Simultaneous Growth and Nucleation

Similar to the case of simultaneous aggregation and nucleation, see Subsection 3.2.5, it is easy
to couple the growth and nucleation processes. The cell average formulation in this case is given
as

dNi

dt
= BCA

growth+nuc,i − Dgrowth,i. (3.128)

Now the birth by nucleation and growth can be described as follows

BCA
growth+nuc,i =Bgrowth+nuc,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bgrowth+nuc,iλ

−
i (v̄i)H(xi − v̄i)

+Bgrowth+nuc,iλ
+
i (v̄i)H(v̄i − xi) + Bgrowth+nuc,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1),

(3.129)

where

Bgrowth+nuc,i = Bgrowth,i +
∫ xi+1/2

xi−1/2

Bnuc(t, x) dx. (3.130)

The average values are computed as

v̄i =
Vgrowth,i +

∫ xi+1/2

xi−1/2
xBnuc(t, x) dx

Bgrowth,i +
∫ xi+1/2

xi−1/2
Bnuc(t, x) dx

. (3.131)

We now proceed to test the formulation by comparing the numerical results with the analytical
solution for a selected problem.

Numerical results

Nucleation with no particles initially present is difficult to simulate. The analytical solution
together with the initial condition is included in Appendix A.7. The volume domain has been
partitioned into 100 geometrically spaced cells. A comparison between the analytical and nu-
merical solution is shown in Figure 3.46. As can be seen from the figure the numerical results
are slightly diffusive. Very fine grids are needed to capture the details near discontinuity. Some
improvements using a three-point formula discussed in Subsection 3.2.3 can be obtained, but no
attempts have been made here in that direction.

As we have seen in previous sections that the coupling of growth with other processes using a
Lagrangian approach produces excellent results. An attempt in this direction has been made by
Kumar and Ramkrishna [59]. Numerical treatment of simultaneous growth and nucleation using
the Lagrangian approach is not trivial because smallest representative sizes together with their
boundaries will move and there may not be a cell to place subsequently formed nuclei. This
definitely forces us to add more cells as the PSD moves to the right and therefore it leads to
serious difficulties in numerics. As mentioned in the previous chapter the formulation of Kumar
and Ramkrishna [59] was inconsistent with the mass of the particles due to nucleation. It was
later improved by Spicer et al. [106] by considering the effect of the mass of new formed nuclei
on the movement of cell representatives.
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Figure 3.46: A comparison of particle size distributions with no particles initially present in the
system, grid points 120.

3.2.8 Choice of Representative Sizes

Now we shall divert our attention to the concept of choosing representative sizes and find out
some similarities of the fixed pivot and cell average schemes. In practice, the representative size
of a cell may be chosen arbitrarily. The center of the cell, an easy choice, is a common choice
for the representative size. On the basis of the position of the representative sizes we have the
following lemma which tells us about the similarity of two techniques.

Lemma 3.2.1. If we choose the representative sizes xi as a boundary of cells then both the cell
average and fixed pivot schemes become the same, i.e.

(
dNi

dt

)CA

=
(

dNi

dt

)FP

if xi = xi±1/2. (3.132)

Proof. Consider some particles n1, n2, . . . , nm of respective sizes x1, x2, . . . , xm appear in the ith
cell due to aggregation, breakage or any other event. Let us suppose that the representative size
xi of this cell lies at the left boundary xi−1/2. In order to make particles appearance consistent
with their number and mass, only a fraction of them has to be assigned at xi. We calculate
the fraction assigned at xi using the cell average and the fixed pivot techniques. It is evident
that the particles have to be distributed between xi and xi+1 according to both techniques. The
assigned fraction of particles at xi according to the fixed pivot technique is given as

aFP =
(

xi+1 − x1

xi+1 − xi

)
n1 +

(
xi+1 − x2

xi+1 − xi

)
n2 + . . . +

(
xi+1 − xm

xi+1 − xi

)
nm. (3.133)
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According to the cell average technique, the fraction is given by

aCA =
(

xi+1 − v̄i

xi+1 − xi

)
(n1 + n2 + . . . + nn), (3.134)

where the average value v̄i is computed as

v̄i =
x1n1 + x2n2 + . . . xmnm

n1 + n2 + . . . + nm
. (3.135)

Clearly substitution of the average v̄i from equation (3.135) into equation (3.134) gives the
required result (3.133), i.e. aFP = aCA. To summarize, if the representative size of a cell lies
at one of the boundaries then taking average and assigning a fraction of all particles to the
neighboring representatives is the same as assigning particles of each size separately without
taking average of them.

3.3 Mathematical Analysis

In this section we study the consistency, stability and convergence of the cell average technique.
Non-uniform grids are usually very complicated for analyzing these features and therefore we
consider here uniform grids only. Furthermore the cell average formulation for aggregation
problems is highly non-linear and therefore we restrict ourselves to study thoroughly the breakage
problems. Moreover, convergence analysis of the fixed pivot technique will be investigated and
comparisons will be made with the cell average technique. In order to make the analysis more
transparent, the same study has been performed for a simple approach of solving the population
balance equation.

Before we proceed to analyze the schemes, it is convenient to review some theorems and defi-
nitions at this time. The cell average as well as the fixed pivot formulations take the following
form

dN̂(t)
dt

= B
(
N̂(t)

)
− D

(
N̂(t)

)
. (3.136)

Here N̂(t) is a continuous time grid function on computation volume domain Ω with components
N̂i(t), j = 1, 2, . . . , I. The component N̂i(t) is a numerical approximation of the total number
in ith cell Ni(t). The function B and D are vectors of birth and death rates in each cell. Unless
stated otherwise, the notation Δx is used for the width of a cell of a uniform grid. The R

m

norm is denoted by ‖.‖ in the entire work.

Definition 3.3.1. The spatial truncation error is defined by the residual left by substituting
the exact solution N(t) into equation (3.136) as

σ(t) =
dN(t)

dt
− (B (N(t)) − D (N(t))) . (3.137)

The scheme (3.136) is called consistent of order p if, for Δx → 0,

‖σ(t)‖ = O(Δxp), uniformly for all t. (3.138)
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Definition 3.3.2. The global discretization error is defined by ε(t) = N(t) − N̂(t). The
scheme (3.136) is called convergent of order p if, for Δx → 0,

‖ε(t)‖ = O(Δxp), uniformly for all t. (3.139)

Definition 3.3.3. The logarithmic norm of a matrix A in R
m×m is defined as, see Hunds-

dorfer and Verwer [37],

μ̃(A) = lim
τ→0

‖I + τA‖ − 1
τ

. (3.140)

The logarithmic norms of a matrix A corresponding to certain p norms on R
m are given by

μ̃1(A) = max
j

⎛
⎝Re(ajj) +

∑
i�=j

|aij |
⎞
⎠ , p = 1, (3.141)

We denote the real part of a complex number z by Re(z).

μ̃2(A) = max {λ : λ ∈ σ ((A + A∗)/2)} , p = 2, (3.142)

μ̃∞(A) = max
i

⎛
⎝Re(aii) +

∑
j �=i

|aij |
⎞
⎠ , p = ∞. (3.143)

The following theorem is useful for calculating the norm of the exponential of a matrix. The
proof can be found in Hundsdorfer and Verwer [37].

Theorem 3.3.4. If A ∈ R
m×m and ω ∈ R then we have

μ̃(A) ≤ ω ⇐⇒ ‖etA‖ ≤ etω, for all t ≥ 0. (3.144)

Proof. See Hundsdorfer and Verwer [37], Chapter 1, Theorem 2.4.

Now we include a useful definition and theorem for stability and convergence from Hundsdorfer
and Verwer [37]. In case of pure breakage problem the equation (3.136) takes the following linear
semi-discrete form

dN̂

dt
= AN̂(t). (3.145)

Definition 3.3.5. The semi-discrete system (3.145) is called stable if we have on all grids

‖etA‖ ≤ Keωt for 0 ≤ t ≤ T, (3.146)

with constant K ≥ 1 and ω ∈ R both independent of Δx.

Theorem 3.3.6. (Hundsdorfer and Verwer [37]). Consider the linear semi-discrete system
(3.145) and assume the stability condition (3.146) is valid. Suppose further that ‖σ(t)‖ ≤ CΔxq

for 0 ≤ t ≤ T (consistency of order q) and ‖ε(0)‖ ≤ C0Δxq with constant C,C0 > 0. Then we
have convergence of order p = q with the error bounds

‖ε(t)‖ ≤ KC0e
ωtΔxq +

KC

ω

(
eωt − 1

)
Δxq if ω �= 0, 0 ≤ t ≤ T, (3.147)

and

‖ε(t)‖ ≤ KC0Δxq + KCtΔxq if ω = 0, 0 ≤ t ≤ T. (3.148)

Proof. See Hundsdorfer and Verwer [37], Chapter 1, Theorem 4.1.
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Quadrature error for non-uniform grids

Let us begin with the following integration formula

I =
∫ b̌

ǎ
f(x) dx. (3.149)

Let ǎ = x1−1/2 < x1+1/2 < x2+1/2 < . . . < xi−1/2 < xi+1/2 . . . < xn+1/2 = b̌ be a partition of the
interval [ǎ, b̌] with Δxi = xi+1/2 − xi−1/2. Here the partition does not have to be equidistant.
We assume that f ∈ Cp([ǎ, b̌]) and that on [xi−1/2, xi+1/2] we have a quadrature rule of order p∫ xi+1/2

xi−1/2

f(x) dx = Qi
pf + čf (p)(ξi)Δxp+1

i . (3.150)

Now summing the equation (3.150) over the interval [ǎ, b̌] to give

I =
n∑

i=1

Qi
pf + Rnf, (3.151)

where Rnf is the quadrature error defined by

Rnf =č
n∑

i=1

f (p)(ξi)Δxp+1
i

=č

(
n∑

i=1

Δxp+1
i

)(
n∑

i=1

f (p)(ξi)Δxp+1
i

/ n∑
i=1

Δxp+1
i

)
. (3.152)

The last term in parentheses is a convex combination. Therefore, application of the intermediate
value theorem gives for some ξ ∈ [ǎ, b̌]

Rnf = č

n∑
i=1

Δxp+1
i f (p)(ξ). (3.153)

Setting Δxmax = max(Δx1,Δx2, . . . ,Δxn), error bounds can be estimated by

|Rnf | ≤ max
x∈[ǎ,b̌]

|f (p)(x)|
n∑

i=1

Δxp+1
i

≤ max
x∈[ǎ,b̌]

|f (p)(x)|nΔxp+1
max. (3.154)

For the convergence analysis it is reasonable to put the following condition on Δxmax and n

n · Δxmax ≤ C,

for some fixed constant C > 0. In terms of Δxmax, the error bounds are given by

|Rnf | ≤ čCΔxp
max max

x∈[ǎ,b̌]
|f (p)(x)|

Also in terms of degree of freedom, error is estimated by

|Rnf | ≤ čCp+1n−p max
x∈[ǎ,b̌]

|f (p)(x)|
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Special cases: Error bounds can easily be obtained for different quadrature rules for example,
rectangle rule, midpoint rule, trapezoidal rule, Simpson’s rule etc. For detailed information for
uniform grids readers are referred to Hämmerlin and Hoffmann [28]. Substituting values of c
and p in the preceding error formula, we can obtain the error estimates for various cases given
below:

• Rectangle rule: č = 1
2 , p = 1,

• Midpoint rule: č = 1
24 , p = 2,

• Trapezoidal rule: č = 1
12 , p = 2,

• Simpson’s rule: č = 1
180 , p = 4.

The cell average and the fixed pivot techniques were derived by approximating the number den-
sity by Dirac-delta distributions and the integrals appearing in the population balance equations
were transformed into sums. Since quadrature rules are easy to analyze, we construct here the
same cell average and the fixed pivot formulations using the quadrature rules.

3.3.1 The Fixed Pivot Technique

In this section we study the consistency, convergence and stability of the fixed pivot technique.
For mathematical convenience, we have assumed that the first grid point x1 can be chosen in
such a way that it remains always smaller or equal to the size of the smallest particle that
can appear during the breakage process. In practice this may be performed by designing the
breakage function accordingly. Furthermore, we have used N̂i for the numerical approximation
of the number of particles in a cell Ni in order to distinguish between exact and numerical values.
Let us first discuss some basic facts of the technique by the following proposition.

Proposition 3.3.7. Assuming that x1 is the smallest particle size that can appear during the
breakage, then the fixed pivot formulation (2.39) conserves the total volume with time; that is,

d

dt

I∑
i=1

(
xiN̂i

)
= 0. (3.155)

Proof. Multiplying the formulation (2.39) by xi and summing over all i we get

d

dt

I∑
i=1

(
xiN̂i

)
=xi

I∑
k=i

ηi,kSk(t)Nk(t) − xiSi(t)Ni(t), (3.156)

with η from (2.40). Substituting the value of η, the above equation takes the following form

d

dt

I∑
i=1

(
xiN̂i

)
=

I∑
i=1

xi

I∑
k=i

SkNk

∫ xi+1

xi

a1(x, xi)b(x, xk) dx

+
I∑

i=1

xi

I∑
k=i

SkNk

∫ xi

xi−1

a2(x, xi)b(x, xk) dx −
I∑

i=1

xiSiNi. (3.157)
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It is evident that for k = i,

SiNi

∫ xi+1

xi

a1(x, xi)b(x, xi) dx = 0, since b(x, xi) = 0 for x > xi. (3.158)

We shall use this value of integral to simplify the equation (3.157). Also x1 and xI are the
smallest and the largest sizes of particles in the system, the equation (3.157) can be simplified
further to get

d

dt

I∑
i=1

(
xiN̂i

)
=

I−1∑
i=1

xi

I∑
k=i+1

SkNk

∫ xi+1

xi

a1(x, xi)b(x, xk) dx

+
I∑

i=2

xi

I∑
k=i

SkNk

∫ xi

xi−1

a2(x, xi)b(x, xk) dx −
I∑

i=2

xiSiNi. (3.159)

It can be rewritten as

d

dt

I∑
i=1

(
xiN̂i

)
=

I−1∑
i=1

xi

I∑
k=i+1

SkNk

∫ xi+1

xi

a1(x, xi)b(x, xk) dx

+
I−1∑
i=1

xi+1

I∑
k=i+1

SkNk

∫ xi+1

xi

a2(x, xi+1)b(x, xk) dx −
I∑

i=2

xiSiNi. (3.160)

Using the local conservation property (2.43), we obtain

d

dt

I∑
i=1

(
xiN̂i

)
=

I−1∑
i=1

I∑
k=i+1

SkNk

∫ xi+1

xi

xb(x, xk) dx −
I∑

i=2

xiSiNi

=
I∑

i=2

SiNi

∫ xi

x1

xb(x, xi) dx −
I∑

i=2

xiSiNi. (3.161)

The application of the property of the breakage function (2.36) provides

d

dt

I∑
i=1

(
xiN̂i

)
=

I∑
i=2

SiNixi −
I∑

i=2

xiSiNi = 0. (3.162)

This proves the conservation property (3.155).

Remark 3.3.8. It should be noted from the proof of Proposition 3.3.7 that the integrals∫ xi+1

xi

xb(x, xk) dx,

and respectively ∫ xi+1

xi

b(x, xk) dx,

in the fixed pivot formulation must be computed exactly or at least approximated by a higher
order scheme in order to ensure mass conservation.
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Proposition 3.3.9. Assuming that x1 is the smallest particle size that can appear during the
breakage, then for the fixed pivot formulation (2.39) the total number is a increasing function of
time; that is,

d

dt

I∑
i=1

(
N̂i

)
> 0. (3.163)

Proof. Proceeding as before in Proposition 3.3.7 and using the property (2.35) as well as the
equality constraint (2.42), it is easy to obtain

d

dt

I∑
i=1

(
N̂i

)
=

I∑
i=2

SiNi

∫ xi

x1

b(x, xi) dx −
I∑

i=2

xiSiNi

=
I∑

i=2

SiNi

(
N(xi) − 1

)
. (3.164)

The physical restriction that a particle breaks into at least two particles requires that N(xi) ≥ 2
and thus inequality (3.163) holds. This proves that the total number of particles in a breakage
process always increases.

Remark 3.3.10. If we calculate the analytical expression for the rate of change of total number
of particles then we get exactly the continuous analog of the discrete expression (3.164). Thus,
we begin with the following equation

d

dt

∫ ∞

0
n(t, x) dx =

∫ ∞

0

∫ ∞

x
b(x, ε)n(t, ε)S(ε) dε dx −

∫ ∞

0
S(x)n(t, x) dx. (3.165)

Changing the order of integration we obtain by
∫ ε
0 b(x, ε) dx = N(ε), see equation (2.35),

d

dt

∫ ∞

0
n(t, x) dx =

∫ ∞

0

∫ ε

0
b(x, ε)n(t, ε)S(ε) dx dε −

∫ ∞

0
S(x)n(t, x) dx

=
∫ ∞

0
n(t, ε)S(ε)N (ε) dε −

∫ ∞

0
S(ε)n(t, ε) dε

=
∫ ∞

0
S(ε)n(t, ε)

(
N(ε) − 1

)
dε. (3.166)

We now consider a fundamental lemma useful for analyzing the scheme.

Lemma 3.3.11. Let f(x) be a continuously differentiable function in [xi−Δx, xi+Δx]. If λ1(x)
and λ2(y) are continuously differentiable functions in [xi, xi + Δx] and [xi −Δx, xi] respectively
such that

λ1(xi) + λ2(xi) �= 1,

then ∫ xi+Δx/2

xi−Δx/2
f(x) dx =

∫ xi+Δx

xi

λ1(x)f(x) dx +
∫ xi

xi−Δx
λ2(x)f(x) dx + O(Δx).
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Proof. The application of Taylor series expansion about xi gives∫ xi+Δx/2

xi−Δx/2
f(x) dx−

∫ xi+Δx

xi

λ1(x)f(x) dx −
∫ xi

xi−Δx
λ2(x)f(x) dx

=Δxf(xi) + O(Δx3) − Δxλ1(xi)f(xi) − Δxλ2(xi)f(xi) + O(Δx2)

=Δxf(xi)
(
1 − λ1(xi) − λ2(xi)

)
+ O(Δx2)

=O(Δx).

Hence the lemma is proved.

Consistency

The analytical expressions for the birth and death rates on truncated domains are given by

Bi =
∫ xi+1/2

xi−1/2

∫ xI+1/2

x
b(x, ε)S(ε)n(t, ε) dε dx, (3.167)

and

Di =
∫ xi+1/2

xi−1/2

S(x)n(t, x) dx. (3.168)

According to Kumar and Ramkrishna [57], the birth term of the fixed pivot technique is defined
as

Bmod
i =

∫ xi+1

xi

a1(x)
∫ xI+1/2

x
b(x, ε)S(ε)n(t, ε) dε dx

+
∫ xi

xi−1

a2(x)
∫ xI+1/2

x
b(x, ε)S(ε)n(t, ε) dε dx. (3.169)

Here the function a1 and a2 are given as

a1(x) =
xi+1 − x

xi+1 − xi
, a2(x) =

x − xi−1

xi − xi−1
.

and therefore

a1(xi) + a2(xi) = 2 �= 1.

Using Lemma 3.3.11, the following relation between (3.167) and (3.169) holds

Bi = Bmod
i + O(Δx). (3.170)

Changing the order of integration in equation (3.169), the equation (3.170) follows

Bi =
∫ xi+1

xi

∫ ε

xi

a1(x)b(x, ε)S(ε)n(t, ε) dx dε +
I∑

k=i+1

∫ xk+1

xk

∫ xi+1

xi

a1(x)b(x, ε)S(ε)n(t, ε) dx dε

+
∫ xi

xi−1

∫ ε

xi−1

a2(x)b(x, ε)S(ε)n(t, ε) dx dε

+
I∑

k=i

∫ xk+1

xk

∫ xi

xi−1

a2(x)b(x, ε)S(ε)n(t, ε) dx dε + O(Δx). (3.171)
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We now make an assumption of constant density within the cell, i.e. Ni(t) = n(t, xi)Δx. The
left rectangular rule for the outer integral gives first order accuracy and therefore we get the
following simplified formulation

Bi =S(xi)Ni

∫ xi

xi

a1(x)b(x, xi) dx +
I∑

k=i+1

S(xk)Nk

∫ xi+1

xi

a1(x)b(x, xk) dx

+ S(xi−1)Ni−1

∫ xi−1

xi−1

a2(x)b(x, xi−1) dx +
I∑

k=i

S(xk)Nk

∫ xi

xi−1

a2(x)b(x, xk) dx + O(Δx)

=
I∑

k=i+1

S(xk)Nk

∫ xi+1

xi

a1(x)b(x, xk) dx +
I∑

k=i

S(xk)Nk

∫ xi

xi−1

a2(x)b(x, xk) dx + O(Δx)

=BFP
i + O(Δx). (3.172)

The death term can be discretized using the midpoint rule as

Di = S(xi)Ni + O(Δx3) = DFP
i + O(Δx3). (3.173)

Combining the birth and death terms we obtain the first order consistency. Then we have

‖σ(t)‖ = O(Δx), uniformly for all t. (3.174)

Remark 3.3.12. Note that if we distribute particles immediately after breakage (the fixed pivot
technique) then the formulation provides us at the most 1st order accuracy. This motivates us
to distribute particles in a different way by taking first the average volume and then distributing
them only once (the cell average technique).

Stability and convergence

The fixed pivot technique (2.39) can be rewritten in a matrix form (3.145) by defining the matrix
A as

A =

⎡
⎢⎢⎢⎢⎣

η11S1 − S1 η12S2 . . . η1ISI

0 η22S2 − S2 . . . η2ISI

. .

. .
0 0 . . . ηIISI − SI

⎤
⎥⎥⎥⎥⎦ .

Let us define a diagonal matrix D with the representative points as

D =

⎡
⎢⎢⎢⎢⎣

x1 0 . . . 0
0 x2 . . . 0
. .
. .
0 0 . . . xI

⎤
⎥⎥⎥⎥⎦ .
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Note that xi > 0, for all i. We now consider the matrix M = DAD−1 given by

M =

⎡
⎢⎢⎢⎢⎣

η11S1 − S1
x1
x2

η12S2 . . . x1
xI

η1ISI

0 η22S2 − S2 . . . x2
xI

η2ISI

. .

. .
0 0 . . . ηIISI − SI

⎤
⎥⎥⎥⎥⎦ .

Now we evaluate the logarithmic norm of the matrix M = (mij)I×I as

μ̃1(M) = max
j

⎛
⎝Re(mjj) +

∑
i�=j

|mij |
⎞
⎠ . (3.175)

Since all elements of the matrix M are real and all non-diagonal elements are non-negative, the
logarithmic norm can again be rewritten as

μ̃1(M) = max
j

⎛
⎝ ∑

1≤i≤I

mij

⎞
⎠ . (3.176)

Using the assumption that the flux through the boundary of the domain is zero, the sum of all
column elements of matrix M is given by

I∑
i=1

mij =
j∑

i=1

xi

xj
ηijSj − Sj

=
Sj

xj

j∑
i=1

xiηij − Sj. (3.177)

The sum appearing in the above equation can be calculated as

j∑
i=1

xiηij =
j∑

i=1

xi

(∫ xi+1

xi

a1(x, xi)b(x, xj) dx +
∫ xi

xi−1

a2(x, xi)b(x, xj) dx

)

=
j−1∑
i=1

∫ xi+1

xi

xia1(x, xi)b(x, xj) dx +
j∑

i=2

∫ xi

xi−1

xia2(x, xi)b(x, xj) dx

=
j−1∑
i=1

∫ xi+1

xi

xia1(x, xi)b(x, xj) dx +
j−1∑
i=1

∫ xi+1

xi

xi+1a2(x, xi+1)b(x, xj) dx. (3.178)

Using the properties of fractions xia1(x, xi) + xi+1a2(x, xi+1) = x and breakage function (2.36),
we get

j∑
i=1

xiηij =
j−1∑
i=1

∫ xi+1

xi

xb(x, xj) dx

=
∫ xj

x1

xb(x, xj) dx

=xj . (3.179)

128



3.3. MATHEMATICAL ANALYSIS

Substituting the above sum into the equation (3.177), we obtain

∑
i

mij =
Sj

xj
xj − Sj = 0. (3.180)

Consequently, we obtain

μ̃1(M) = 0. (3.181)

Application of Theorem 3.3.4 provides

‖etM‖1 ≤ 1. (3.182)

We now establish the stability of the scheme as follows

‖eAt‖1 =‖D−1DeAtD−1D‖1

≤‖D−1‖1 · ‖DeAtD−1‖1 · ‖D‖1

=‖D−1‖1 · ‖etM‖1 · ‖D‖1

≤‖D−1‖1 · ‖D‖1

=
xI

x1
:= K ≥ 1. (3.183)

Here we calculated the matrix norm as follows

‖D‖1 = max
1≤j≤I

I∑
i=1

|dij |. (3.184)

Since D and D−1 are diagonal matrices with positive values, thus the norm of matrices D and
D−1 are simply given by

‖D‖1 = max {x1, x2, . . . , xI} = xI , (3.185)

and

‖D−1‖1 = max
{

1
x1

,
1
x2

, . . . ,
1
xI

}
=

1
x1

. (3.186)

Finally from (3.183), we have

‖eAt‖1 ≤ K. (3.187)

This shows the stability of the fixed pivot technique with the stability constant ω = 0. This
predicts linear growth of the global discretization error ε(t). Thus, from Theorem 3.3.6 we have
convergence of order 1 with error bounds

‖ε(t)‖1 ≤ Kc0Δx + KCtΔx, (3.188)

with constants C,C0 > 0. Computational evidence indicates that the first order in Δx cannot
be improved.
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xi+1/2

xi−1/2

x

εxi−1/2 xi+1/2

Figure 3.47: Integration limits.

3.3.2 Direct Approach

Although the fixed pivot technique is only first order accurate, it is consistent with the first
two moments. The consistency with respect to moments has been guaranteed by imposing the
conservation properties during the formulation. It is also of interest to investigate the scheme
if we just replace integrals appearing in the population balance equation by quadrature rules
without applying any conservation properties. We call this the direct approach. We shall begin
with the birth and death rates (3.167) and (3.168).

Let us first consider the birth term Bi. Changing the order of integration, see Figure 3.47, gives

Bi =
∫ xi+1/2

xi−1/2

S(ε)n(t, ε)
∫ ε

xi−1/2

b(x, ε) dx dε +
∫ xI+1/2

xi+1/2

S(ε)n(t, ε)
∫ xi+1/2

xi−1/2

b(x, ε) dx dε. (3.189)

Applying the midpoint rule for the outer integral, we obtain

Bi =S(xi)Ni

∫ xi

xi−1/2

b(x, xi) dx +
I∑

k=i+1

S(xk)Nk

∫ xi+1/2

xi−1/2

b(x, xk) dx + O(Δx3)

=
I∑

k=i

S(xk)Nk

∫ pi
k

xi−1/2

b(x, xk) dx + O(Δx2) =: B̂i + O(Δx2), (3.190)

where pi
k = xi for k = i and pi

k = xi+1/2 elsewhere. The death term Di after applying the
midpoint rule becomes

Di = S(xi)Ni + O(Δx3) =: D̂i + O(Δx3). (3.191)

More precisely, the final formulation for direct approach is given by

dN̂i

dt
=

I∑
k=i

S(xk)N̂k

∫ pi
k

xi−1/2

b(x, xk) dx − S(xi)N̂i. (3.192)

Next we will show that the direct formulation (3.192) is not mass conserving. Unless mentioned
otherwise, the assumption that x1 is the smallest particle size that can appear during the
breakage has been pre-assumed in our analysis.
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Proposition 3.3.13. The direct formulation (3.192) does not conserve the total volume in
general; that is,

d

dt

I∑
i=1

(
xiN̂i

)
�= 0. (3.193)

Proof. Multiplying the formulation (3.192) by xi and summing over i we obtain

d

dt

I∑
i=1

(
N̂ixi

)
=

I∑
i=1

xi

I∑
k=i

SkN̂k

∫ pi
k

xi−1/2

b(x, xk) dx −
I∑

i=1

xiSiN̂i. (3.194)

Changing the order of sums and using the fact
∫ xk

x1/2
xb(x, xk) dx = xk we get

d

dt

I∑
i=1

(
N̂ixi

)
=

I∑
k=1

SkN̂k

k∑
i=1

xi

∫ pk
i

xi−1/2

b(x, xk) dx −
I∑

i=1

xiSiN̂i

=
I∑

k=1

SkN̂k

[
k∑

i=1

xi

∫ pk
i

xi−1/2

b(x, xk) dx − xk

]

=
I∑

k=1

SkN̂k

[
k∑

i=1

xi

∫ pk
i

xi−1/2

b(x, xk) dx −
k∑

i=1

∫ pk
i

xi−1/2

xb(x, xk) dx

]

=
I∑

k=1

SkN̂k

[
k∑

i=1

∫ pk
i

xi−1/2

b(x, xk)(xi − x) dx

]
�= 0. (3.195)

This proves (3.193).

Proposition 3.3.14. Assuming that x1 is the smallest particle size that can appear during the
breakage, then for the direct approach (3.192) the total number is a increasing function of time;
that is,

d

dt

I∑
i=1

(
N̂i

)
> 0. (3.196)

Proof. It follows analogously as the preceding proof using the property of the breakage function
(2.42) that

d

dt

I∑
i=1

(
N̂i

)
=

I∑
k=1

SkN̂k

[
k∑

i=1

∫ pk
i

xi−1/2

b(x, xk) dx − 1

]

=
I∑

k=1

SkN̂k

[
N(xk) − 1

] ≥ 0. (3.197)

This proves the required result.
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Consistency, stability and convergence

Clearly the consistency order of the scheme is 2 which can directly be perceived from equations
(3.190) and (3.191). Thus

‖σ(t)‖ = O(Δx2), uniformly for all t. (3.198)

The direct scheme (3.192) can be transformed into a matrix form (3.145) with

A =

⎡
⎢⎢⎢⎢⎢⎣

S1

∫ x1

x1−1/2
b(x, x1) dx − S1 S2

∫ x1+1/2

x1−1/2
b(x, x2) dx . . . SI

∫ x1+1/2

x1−1/2
b(x, xI) dx

0 S2

∫ x2

x2−1/2
b(x, x2) dx − S2 . . . SI

∫ x2+1/2

x2−1/2
b(x, xI) dx

. .

. .
0 0 . . . SI

∫ xI

xI−1/2
b(x, xI) dx − SI

⎤
⎥⎥⎥⎥⎥⎦ .

The logarithmic matrix norm of A = (aij)I×I is given by

μ̃1(A) = max
1≤j≤I

⎛
⎝Re(ajj) +

∑
i�=j

|aij |
⎞
⎠

= max
1≤j≤I

(
Sj

(∫ xj

x1−1/2

b(x, xj) dx − 1

))

= max
1≤j≤I

(
Sj

(
N(xj) − 1

))
≤ max

1≤j≤I

(
SjN(xj)

)
:= ω. (3.199)

Using the properties of logarithmic norm we get

‖etA‖1 ≤ etω. (3.200)

It proves the stability of the scheme and therefore using Theorem 3.3.6 we get the second order
convergence. The error bounds are given by

‖ε(t)‖1 = C0e
ωtΔx2 +

C

ω

(
eωt − 1

)
Δx2, 0 ≤ t ≤ T, (3.201)

with constants C and C0.

3.3.3 The Cell Average Technique

Finally we will investigate the convergence analysis of the cell average scheme. The cell average
technique takes the following form

dN̂i

dt
= B̂CA

i − D̂i. (3.202)

where

B̂CA
i =B̂i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + B̂i

(
λ−

i (v̄i)H(xi − v̄i) + λ+
i (v̄i)H(v̄i − xi)

)
+ B̂i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (3.203)

The terms B̂i and D̂i have been described in the previous section by equations (3.190) and
(3.191) respectively.
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Proposition 3.3.15. The formulation (3.202) provides the total volume as a constant function
of time. In other words the total volume remains constant with time. So we obtain conservation
of mass

d

dt

I∑
i=1

(
xiN̂i

)
= 0.

Proof. Multiplying xi to equation (3.202) and summing over i, we obtain

d

dt

I∑
i=1

(
N̂ixi

)
=

I∑
i=1

xiB̂i−1λ
−
i (v̄i−1)H(v̄i−1 − xi−1) +

I∑
i=1

xiB̂i

[
λ−

i (v̄i)H(xi − v̄i)+

λ+
i (v̄i)H(v̄i − xi)

]
+

I∑
i=1

xiB̂i+1λ
+
i (v̄i+1)H(xi+1 − v̄i+1) −

I∑
i=1

xiSiN̂i

=
I∑

i=1

B̂iv̄i −
I∑

i=1

xiSiN̂i

=
I∑

i=1

I∑
k=i

SkN̂k

∫ pi
k

xi−1/2

xb(x, xk) dx −
I∑

i=1

xiSiN̂i

=
I∑

k=1

SkN̂k

k∑
i=1

∫ pk
i

xi−1/2

xb(x, xk) dx −
I∑

i=1

xiSiN̂i.

Using the property of the breakage function (2.36) we obtain

d

dt

I∑
i=1

(
N̂ixi

)
=

I∑
k=1

SkN̂kxk −
I∑

i=1

xiSiN̂i = 0.

This implies that the mass or total volume is conserved during the process.

Proposition 3.3.16. Assuming that x1 is the smallest particle size that can appear during the
breakage, then for the cell average formulation (3.202) the total number is a increasing function
of time; that is,

d

dt

I∑
i=1

(
N̂i

)
> 0. (3.204)

Proof. The proof is analogous to the proof of the above proposition. It also follows from the
proof of the Proposition 3.3.9. Finally we obtain the following expression

d

dt

I∑
i=1

(
N̂i

)
=

I∑
i=2

SiNi

(
N(xi) − 1

)
> 0. (3.205)

This is the required result.

Remark 3.3.17. Once again, it should be emphasized that the integrals
∫ pi

k
xi−1/2

xb(x, xk) dx and

respectively
∫ pi

k
xi−1/2

b(x, xk) dx in the formulation (3.202) must be computed exactly or approxi-
mated by a higher order scheme in order to ensure mass conservation.
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Now we consider an important lemma useful for further analysis.

Lemma 3.3.18. Let Ω := [0, xmax] and R+. =]0,+∞]. If S(x), n(t, x) and b(x, y) are con-
tinuously differentiable functions in Ω, R+ × Ω and Ω × Ω respectively. Then the following
hold

(a) Si±1 = Si + O(Δx).

(b) Ni±1 = Ni + O(Δx2).

(c) b(xi±1, yi±1) = b(xi, yi) + O(Δx).

Moreover,
Si±1Ni±1b(xi±1, yi±1) = SiNib(xi, yi) + O(Δx).

Proof. Note that Si is S(xi) and Ni is given by (1.1). The results (a) and (c) are trivial and can
be proved simply by Taylor series expansion of S(xi ±Δx) and b(xi ±Δx, yi ±Δx). For (b), we
have

Ni±1 − Ni =
∫ xi±1+Δx/2

xi±1−Δx/2
n(t, x) dx −

∫ xi+Δx/2

xi−Δx/2
n(t, x) dx.

Again Taylor series expansion and the midpoint rule produces

Ni±1 − Ni =n(t, xi)Δx + n′(t, xi)
∫ xi±1+Δx/2

xi±1−Δx/2
(x − xi) dx + O(Δx3) − n(t, xi)Δx + O(Δx3)

= ± n′(t, xi)Δx2 + O(Δx3).

Clearly, it gives

Ni±1 = Ni + O(Δx2).

Finally, it follows that

Si±1Ni±1b(xi±1, yi±1) = SiNib(xi, yi) + O(Δx).

This completes the proof.

Consistency

Clearly from the equation (3.191), the approximation of the death term in the cell average
formulation (3.202) is third order accurate. We have to check the consistency order of the birth
term. We simplify the birth term (3.203) by taking each term separately. Consider the first
term without the Heaviside function H(x) and substitute the λ from (3.8), we get

λ−
i (v̄i−1)B̂i−1 =

v̄i−1 − xi−1

xi − xi−1
B̂i−1 =

1
Δx

[
v̄i−1B̂i−1 − xi−1B̂i−1

]
. (3.206)

Note that, for notational convenience we are not using the subscript break in all formulations.
Substituting the values of B̂i−1 from (3.190) and v̄i−1 from (3.30) into the preceding equation
to get

λ−
i (v̄i−1)B̂i−1 =

1
Δx

[
I∑

k=i−1

SkNk

∫ pi−1
k

xi−3/2

xb(x, xk) dx − xi−1

I∑
k=i−1

SkNk

∫ pi−1
k

xi−3/2

b(x, xk) dx

]
.
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As stated before, pi−1
k takes the value xi−1 for k = i− 1 and xi−1/2 for k > i− 1. Now using the

midpoint rule we obtain

λ−
i (v̄i−1)B̂i−1 =

1
Δx

[
Si−1Ni−1 (xi−1 − Δx/4) b (xi−1 − Δx/4, xi−1) (Δx/2)

+

(
I∑

k=i

SkNkxi−1b (xi−1, xk) Δx

)
− xi−1Si−1Ni−1b (xi−1 − Δx/4, xi−1) (Δx/2)

+ xi−1

I∑
k=i

SkNkb (xi−1, xk)Δx + O(Δx3)

]
.

After some simplifications, this gives

λ−
i (v̄i−1)B̂i−1 = − Δx

8
Si−1Ni−1b (xi−1 − Δx/4, xi−1) + O(Δx2). (3.207)

We now consider the third term

B̂iλ
+
i (v̄i) =

v̄i − xi+1

xi − xi+1
B̂i

=
1

Δx

[
xi+1

I∑
k=i

SkNk

∫ p

xi−1/2

b(x, xk) dx −
I∑

k=i

SkNk

∫ p

xi−1/2

xb(x, xk) dx

]
.

Again, making use of the midpoint rule we obtain

B̂iλ
+
i (v̄i) =

1
Δx

[
xi+1SiNib (xi − Δx/4, xi) (Δx/2) + xi+1

I∑
k=i+1

SkNkb (xi, xk) Δx

−SiNi (xi − Δx/4) b (xi − Δx/4, xi) (Δx/2) +
I∑

k=i+1

SkNkxib (xi, xk)Δx + O(Δx3)

]
.

This gives

B̂iλ
+
i (v̄i) =

1
Δx

[
hBi +

Δx2

8
SiNib (xi − Δx/4, xi)

]
+ O(Δx2)

=B̂i +
Δx

8
SiNib (xi − Δx/4, xi) + O(Δx2). (3.208)

Similarly, the remaining two terms can be approximated as

B̂iλ
−
i (v̄i) = B̂i − Δx

8
SiNib (xi − Δx/4, xi) + O(Δx2), (3.209)

and

λ+
i (v̄i+1)B̂i+1 =

Δx

8
Si+1Ni+1b (xi+1 − Δx/4, xi+1) + O(Δx2). (3.210)

Now we simplify the birth term (3.203) for some particular values of v̄i. The definition (3.12) of
H(x) gives a total of 33 = 27 different possibilities, depending on x > 0, x = 0, x < 0, in which
the equation (3.203) can be further simplified. Now we consider some special cases which will
give second order accuracy due to cancellation.
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• Cases 1-8. If v̄i−1 ≥ xi−1, v̄i ≥ xi and v̄i+1 ≥ xi+1.
In these cases the birth term reduces to

B̂CA
i =B̂i−1λ

−
i (v̄i−1) + B̂iλ

+
i (v̄i). (3.211)

After substituting the values on the right hand side from the equations (3.207) and (3.208),
we obtain

B̂CA
i = B̂i +

Δx

8
[− Si−1Ni−1b (xi−1 − Δx/4, xi−1) + SiNib (xi − Δx/4, xi)

]
+ O(Δx2).

Now the application of the Lemma 3.3.18 provides

B̂CA
i =B̂i +

Δx

8
[− SiNib (xi − Δx/4, xi) + O(Δx) + SiNib (xi − Δx/4, xi)

]
+ O(Δx2)

=B̂i + O(Δx2).

• Cases 9-16. If v̄i−1 ≤ xi−1, v̄i ≤ xi and v̄i+1 ≤ xi+1.

In these cases clearly from equation (3.203) we have

B̂CA
i = B̂iλ

−
i (v̄i) + B̂i+1λ

+
i (v̄i+1). (3.212)

Again substitution from the equations (3.209) and (3.210) gives

B̂CA
i = B̂i +

Δx

8
[
Si+1Ni+1b (xi+1 − Δx/4, xi+1) − SiNib (xi − Δx/4, xi)

]
+ O(Δx2).

Now Lemma 3.3.18 leads to

B̂CA
i =B̂i +

Δx

8
[
SiNib (xi − Δx/4, xi) − SiNib (xi − Δx/4, xi) + O(Δx)

]
+ O(Δx2)

=B̂i + O(Δx2).

• Cases 17-20. If v̄i−1 ≤ xi−1, v̄i = xi and v̄i+1 ≥ xi+1.
These cases give

B̂CA
i =

1
2

(
B̂i − Δx

8
SiNib (xi − Δx/4, xi)

)

+
1
2

(
B̂i +

Δx

8
SiNib (xi − Δx/4, xi)

)
+ O(Δx2)

=B̂i + O(Δx2).

• Case 21. If v̄i−1 > xi−1, v̄i = xi and v̄i+1 < xi+1.
Proceeding as before we get

B̂CA
i =B̂i +

Δx

8
[− Si−1Ni−1b (xi−1 − Δx/4, xi−1)

+ Si+1Ni+1b (xi+1 − Δx/4, xi+1)
]
+ O(Δx2)

=B̂i + O(Δx2).
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Table 3.16: Cases which give second order convergence

Cases Cell, (i − 1) Cell, i Cell, (i + 1) Order

1 − 8 v̄i−1 ≥ xi−1 v̄i ≥ xi v̄i+1 ≥ xi+1 O(Δx2)

9 − 16 v̄i−1 ≤ xi−1 v̄i ≤ xi v̄i+1 ≤ xi+1 O(Δx2)

17 − 20 v̄i−1 ≤ xi−1 v̄i = xi v̄i+1 ≥ xi+1 O(Δx2)

21 v̄i−1 > xi−1 v̄i = xi v̄i+1 < xi+1 O(Δx2)

Table 3.17: Cases which give first order convergence

Cases Cell, (i − 1) Cell, i Cell, (i + 1) Order

22 v̄i−1 < xi−1 v̄i < xi v̄i+1 > xi+1 O(Δx)

23 v̄i−1 < xi−1 v̄i > xi v̄i+1 > xi+1 O(Δx)

24 v̄i−1 < xi−1 v̄i > xi v̄i+1 < xi+1 O(Δx)

25 v̄i−1 > xi−1 v̄i < xi v̄i+1 > xi+1 O(Δx)

26 v̄i−1 > xi−1 v̄i < xi v̄i+1 < xi+1 O(Δx)

27 v̄i−1 > xi−1 v̄i > xi v̄i+1 < xi+1 O(Δx)

In all other cases one has first order accuracy only, i.e.,

B̂CA
i =B̂i + O(Δx). (3.213)

All the cases have been summarized in Tables 3.16 and 3.17. The consistency order depends
upon the problem. However, it has been found that in many relevant breakage problems it gives
second order accuracy, see for example the test cases discussed in this chapter. Thus, we have

‖σ(t)‖ = O(Δxp), uniformly for all t. (3.214)

where p is either 1 or 2.

Remark 3.3.19. For the case of a uniform breakage function b(x, y) = 2/y (binary breakage)
and a ternary breakage problem with breakage function b(x, y) = 6

y

(
1 − x

y

)
, we have proved that

v̄i ≤ xi, see equations (3.33) and (3.39). Due to the cases 9 − 16, we get second order accuracy
for these problems.
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Stability and convergence

The cell average formulation (3.202) can be rewritten in a simplified form as

dN̂i

dt
=λ−

i (v̄i−1)H(v̄i−1 − xi−1)
I∑

k=i−1

SkN̂k

∫ pi−1
k

xi−3/2

b(x, xk) dx

+
[
λ−

i (v̄i)H(xi − v̄i) + λ+
i (v̄i)H(v̄i − xi)

] I∑
k=i

SkN̂k

∫ pi
k

xi−1/2

b(x, xk) dx

+ λ+
i (v̄i+1)H(xi+1 − v̄i+1)

I∑
k=i+1

SkN̂k

∫ pi+1
k

xi+1/2

b(x, xk) dx − SiN̂i. (3.215)

For notational convenience, it can be rewritten in a more simplified form as

dN̂i

dt
= a1

i−1

I∑
k=i−1

bi−1,kN̂k + a2
i

I∑
k=i

bi,kN̂k + a3
i+1

I∑
k=i+1

bi+1,kN̂k − SiN̂i. (3.216)

Here for simplification we use the notation

bi,k = Sk

∫ pi
k

xi−1/2

b(x, xk) dx, (3.217)

and the aj
i are the coefficients of the respective terms in (3.215) given as

a1
i−1 = λ−

i (v̄i−1)H(v̄i−1 − xi−1)

a2
i = λ−

i (v̄i)H(xi − v̄i) + λ+
i (v̄i)H(v̄i − xi)

a3
i+1 = λ+

i (v̄i+1)H(xi+1 − v̄i+1).

We can also write the above system (3.216) in a matrix form (3.145) given below

dN̂

dt
= AN̂, with N̂ = [N̂1, N̂2, . . . , N̂I ]T . (3.218)

Here the matrix A is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a2
1b1,1 − S1 a2

1b1,2 + a3
2b2,2 . . . a2

1b1,I + a3
2b2,I

a1
1b1,1 a1

1b1,2 + a2
2b2,2 − S2 . . . a1

1b1,I + a2
2b2,I + a3

3b3,I

0 a1
2b2,2 . . . a1

2b2,I + a2
3b3,I + a3

4b4,I

. .

. .
0 0 . . . a1

I−1bI−1,I + a2
IbI,I − SI

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Similar to the previous cases, the logarithmic norm (3.141) of the matrix A = (aij)I×I is com-
puted as

μ̃1(A) = max
1≤j≤I

(
I∑

i=1

aij

)
. (3.219)
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It is easy to show that the sum of column elements of the matrix A is given by

I∑
i=1

aij =
(
a1

1 + a2
1

)︸ ︷︷ ︸
=1

b1,j +
(
a1

2 + a2
2 + a3

2

)︸ ︷︷ ︸
=1

b2,j + . . . +
(
a1

j + a2
j + a3

j

)︸ ︷︷ ︸
=1

bj,j − Sj. (3.220)

It can be further simplified as

I∑
i=1

aij =
j∑

i=1

bi,j − Sj

=Sj

∫ xj

x1

b(x, xj) dx − Sj. (3.221)

Now using the property (2.42) we get

I∑
i=1

aij = SjN(xj) − Sj. (3.222)

Consequently, we obtain the following bounds from equations (3.219) and (3.222)

μ̃1(A) = max
1≤j≤I

(
N(xj) − 1

)
Sj

≤ max
1≤j≤I

(
N(xj)Sj

)
:= ω. (3.223)

Clearly from Theorem 3.3.4 we obtain the stability condition as

‖etA‖1 ≤ eωt. (3.224)

This shows that the cell average technique is stable and hence from Theorem 3.3.6 we have
convergence of order p, with p = 1 or p = 2 according to our discussion above. The error bound
followed by Theorem 3.3.6 is given as

‖ε(t)‖1 = C0e
ωtΔxp +

C

ω

(
eωt − 1

)
Δxp, 0 ≤ t ≤ T, (3.225)

with constants C,C0 > 0.

Remark 3.3.20. Note that all formulations considered in this section are positivity preserving.
If Ni(t) is zero then dNi/ dt is always positive due to the presence of the birth term only. If
Ni(t) �= 0 then a positive solution can always be obtained by choosing an appropriate time step.

In summary, the fixed pivot technique being consistent with respect to the first two moments is
clearly a first order scheme for breakage problems. On the other hand a direct approach which is
consistent only with the zeroth moment gives second order convergence. It must be noted that
the choice of representatives as midpoints of the cells leads to second order accuracy in the cell
average method as well as in the direct approach. This is due to the fact that the application
of the midpoint rule in both methods provides second order accuracy. Additionally, all schemes
discussed here produce the same numerical results for the zeroth moment. The cell average
technique, also consistent with the first two moments, provides second order accuracy in most
of the cases.
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3.4 The Finite Volume Scheme

We have seen in the previous chapter that Filbet and Laurençot [21] developed a finite volume
scheme for the numerical solution of pure aggregation problems. For the application of the
finite volume scheme they used a different form, a mass conservation law, of the population
balance equation. They obtained remarkably good results. Therefore the objective here is to
develop a similar approach for the numerical treatment of the pure breakage population balance
equation. Furthermore, the aim is to apply the finite volume scheme for combined aggregation
and breakage problems.

Here we present a new approach of solving the population balance equation using a finite vol-
ume method. A new form of breakage population balance equation is derived in order to apply
the finite volume scheme effectively. Furthermore, a detailed comparison between discretized
methods and finite volume methods has been made. The discretized methods predict certain
moments of the population exactly independence of grid size while the accuracy of complete
particle size distribution as well as its moments depends on grid size in finite volume scheme.
The effectiveness of the methods have been demonstrated by several test problems where ana-
lytical solutions are available. Finally, it is concluded that the finite volume methods are good
alternative for solving such problems. However, discretized methods are easy to implement and
faster than the finite volume method

3.4.1 Pure Breakage

As mentioned before, a finite volume approach for solving population balance equations has
been introduced by Filbet and Laurençot [21]. They took the advantage of conservative form
of aggregation equation which was first introduced by Tanaka et al. [110]. We will follow Filbet
and Laurençot [21] in order to introduced finite volume scheme for breakage equations.

A typical conservation law is given by the following equation

∂n

∂t
+

∂F (n)
∂x

= 0, (3.226)

where n(x, t) ∈ R is the unknown conservative variable and the function F : R → R is called
flux function. Finite volume methods are a class of discretization schemes used to solve mainly
conservation laws, see LeVeque [66]. Conservation laws describe many physical processes. It
has been observed that many differential equations which we would like to solve come from
conservation laws which are integrals over volumes. We discretize the space into small cells
Λj = [xj−1/2, xj+1/2], and time in discrete level tm. The finite volume idea has been carried over
to the discretization of such equations by instead of interpreting nm

j as an approximation to a
point value in a cell, i.g. n(tm, xj), rather taking an approximation of the cell average of the
solution on cell j and time tm

nm
j ∼ 1

Δx

∫ xj+1/2

xj−1/2

n(tm, x)dx. (3.227)
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Integrating the conservation law on a cell in space-time Λj × [tn, tm+1] we obtain

nm+1
j = nm

j − Δt

Δx

(
Fj+1/2 − Fj−1/2

)
, (3.228)

where Fj+1/2, called numerical flux, is an approximation of the flux function. We will apply this
idea of finite volume scheme in the next section. Next we derive a new form of the breakage PBE
and a finite volume scheme for solving the equation. Besides the derivation of the scheme we
will investigate some properties of the solution. At the end numerical results will be validated
with some analytically solvable test cases.

Breakage PBE as a mass conservation law

In a batch system the breakage process can be defined as the flow of mass from bigger particles
to smaller particles and can be modeled by the following mass conservation law

∂xn(x)
∂t

+
∂F (x)

∂x
= 0, (3.229)

where n(x) is the number density and F (x) is the mass flux across mass x. Now the objective is
to model the flux function F and to solve the preceding equation using the idea of finite volume
schemes.

Furthermore, the kinetics of breakage are governed by two functions, the selection function
S(t, ε), which describes the rate at which particles are selected to break and the breakage func-
tion, b(t, ε, u), which describes the sizes into which the selected particle breaks. The breakage
function b(t, ε, u) is the probability density function for the formation of particles of size u from
particle of size ε. The selection function S(t, ε) gives the death rate of particles of size ε as
n(t, ε)S(t, ε). Clearly this death results to the flow of mass towards smaller particles. So the
total mass flux at x for x < ε, resulting from this death is

−
∫ x

0
ub(ε, u)S(ε)n(ε) du. (3.230)

The negative sign appears due to the negative direction of mass flow. Considering all the
breakage events which produce a flux at x, we obtain the mass flux F (x) as

F (x) = −
∫ ∞

x

∫ x

0
ub(ε, u)S(ε)n(ε) du dε. (3.231)

The equation (3.229) together with equation (3.231) is a mass conservation law for breakage
process. It is easy to transform the equation (3.229) to standard for of number density population
balance equation. The following steps show the transformation of this conservation laws to the
standard population balance equation for breakage. Putting the value of F (x) into equation
(3.229), we get

∂xn(x)
∂t

=
∂

∂x

∫ ∞

x

∫ x

0
ub(ε, u)S(ε)n(ε) du dε. (3.232)
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Applying the Leibnitz integration rule, this gives

∂xn(x)
∂t

=
∫ ∞

x

∂

∂x

∫ x

0
ub(ε, u)S(ε)n(ε) du dε −

∫ x

0
ub(x, u)S(x)n(x) du

=
∫ ∞

x
xb(ε, x)S(ε)n(ε) dε − S(x)n(x)

∫ x

0
ub(x, u) du. (3.233)

The last integral
∫ x
0 ub(x, u) du, the total volume of fragments formed, must be equal to the

volume of the selected particle x i.e. x =
∫ x
0 ub(x, u) du. Now the equation (3.233) turns into

the following well known breakage equation

∂n(x)
∂t

=
∫ ∞

x
b(ε, x)S(ε)n(ε) dε − S(x)n(x). (3.234)

Numerical discretization

Similar to the finite volume discretization for aggregation discussed in Chapter 2 we get the
following formulation

gm+1
i = gm

i − Δt

Δxi
(Jm

i+1/2 − Jm
i−1/2), (3.235)

where gm
i denotes an approximation of the cell average of g(tm, x) = xn(tm, x) on cell i at time

tm, and Jm
i+1/2 approximates the flux at the boundary of the cell. It is the so called numerical

flux. The numerical flux may be approximated as follows

F (x) = −
∫ xI

xi+1/2

∫ xi+1/2

0
ub(ε, u)S(ε)n(ε) du dε

= −
I∑

k=i+1

∫
Λk

S(ε)n(ε)
∫ xi+1/2

0
ub(ε, u) du dε

= −
I∑

k=i+1

gm
k

∫
Λk

S(ε)
ε

dε

∫ xi+1/2

0
ub(xk, u) du + O(Δx2)

=: Jm
i+1/2 + O(Δx2). (3.236)

The formulation (3.235) is used to calculate the particle mass density gm
i at time tm. The

particle number density in our comparisons will then easily be calculated as

nm
i =

gm
i

xi
. (3.237)

Before we proceed to test the formulation we do some stability analysis.

Stability condition

It is necessary to investigate the stability of the proposed numerical formulation. The funda-
mental concept behind the stability is the preservation of the positivity and conservation of the
mass. The formulation should preserve the positivity of the solution and conserve the mass. For
the stability we have the following proposition.
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Proposition 3.4.1. Assuming that x1/2 is the smallest particle that can appear during breakage
i.e. the value of the integral

∫ x1/2

0 ub(xk, u) du, for all k is zero. Then, under the following CFL
condition on the time step

Δt sup
i

(
1

Δxi

∫
Λi

S(ε)
ε

dε

∫ xi+1/2

0
ub(xi, u) du

)
≤ 1 (3.238)

the function g is nonnegative i.e. gm
i ≥ 0 for all i and m. Furthermore, it satisfies the following

conservative property

I∑
i=1

Δxig
m+1
i =

I∑
i=1

Δxig
m
i . (3.239)

Since we have gm
i ≥ 0 this is l1-stability.

Moreover, if φ : [0,+∞[→ [0,+∞[ is a non-increasing function, then we have

I∑
i=1

Δxiφ(xi)gm+1
i ≥

I∑
i=1

Δxiφ(xi)gm
i . (3.240)

For instance, this implies increase of total number when taking φ(x) = 1/x, which is an obvious
property of pure breakage processes.

Proof. Let us assume that gm
i is nonnegative and we will show that gm+1

i is nonnegative. We
consider the following equality

Jm
i+1/2 = −

I∑
k=i+1

gm
k AiBi,k, (3.241)

where

Ai =
∫

Λk

S(ε)
ε

dε, Bi,k =
∫ xi+1/2

0
ub(xk, u) du. (3.242)

We can rewrite the equation (3.241) as follow

Jm
i+1/2 = −

I∑
k=i

gm
k AiBi,k + gm

i AiBi,i

=Jm
i−1/2 + gm

i AiBi,i. (3.243)

Here we make use of the stability condition (3.238), that is

AiBi,i ≤ Δxi

Δt
. (3.244)

Combining equations (3.243) and (3.244), we obtain

Jm
i+1/2 − Jm

i−1/2 ≤ gm
i

Δxi

Δt
. (3.245)
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Now from equation (3.235) we have

gm+1
i ≥ gm

i − gm
i

Δt

Δxi

Δxi

Δt
. (3.246)

It gives

gm+1
i ≥ 0. (3.247)

Multiplying Δxi to equation (3.235) and summing over i gives

I∑
i=1

Δxig
m+1
i =

I∑
i=1

Δxig
m
i − Δt

I∑
i=1

(Jm
i+1/2 − Jm

i−1/2). (3.248)

As a consequence of
∫ x1/2

0 ub(xk, u) du = 0, clearly the flux through the lower boundary of the
first cell is zero i.e. J1/2 = 0. The preceding equation turns into the conservation property, the
required result (3.239).

Furthermore, multiplying the equation (3.235) by a non-increasing function φ(xi) as well as by
Δxi and summing over i, we get

I∑
i=1

Δxiφ(xi)gm+1
i =

I∑
i=1

Δxiφ(xi)gm
i −

I∑
i=1

Δxiφ(xi)
Δt

Δxi
(Jm

i+1/2 − Jm
i−1/2). (3.249)

Again using the assumption that J1/2 = 0 and negativity of J , we obtain

I∑
i=1

Δxiφ(xi)gm+1
i =

I∑
i=1

Δxiφ(xi)gm
i − Δt

I∑
i=2

Jm
i−1/2 (φ(xi−1) − φ(xi))

≥
I∑

i=1

Δxiφ(xi)gm
i , (3.250)

and hence (3.240).

Remark 3.4.2. To fix the size of smallest particle during the breakage is physically relevant and
it can be forced by the breakage function that particles smaller than the fixed smallest particle
size do not appear during the process. If this is not the case then the numerical flux through the
first boundary x1/2 will not be zero and we may loose particles at the boundary of the first cell.
Then the conservation property (3.239) takes the following form

I∑
i=1

Δxig
m+1
i ≤

I∑
i=1

Δxig
m
i , (3.251)

and the inequality (3.240) may not hold in that case.

The integral appearing in the numerical flux function, i.e. the coefficients Ai and Bi,k can be
evaluated analytically in some simple cases otherwise a second order quadrature formula can be
used to maintain second order accuracy of the numerical formulation.
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We now start with the derivation of the semi-discrete form of the finite volume scheme (3.235).
Using the fully discrete scheme (3.235), the semi-discrete approximation can be directly written
as

dgi(t)
dt

= − 1
Δxi

(Ji+1/2 − Ji−1/2), i = 1, 2, . . . , I. (3.252)

where

Ji+1/2 = −
I∑

k=i+1

gk(t)
∫

Λk

S(ε)
ε

dε

∫ xi+1/2

0
ub(xk, u) du. (3.253)

The equation (3.252) can be rewritten in matrix form as

dg(t)
dt

= Ag(t), (3.254)

with g = [g1, g2, . . . , gI ] and

A =

⎡
⎢⎢⎢⎢⎣

1
Δx1

(
d1,1−1/2

)
1

Δx1

(
d2,1−1/2 − d2,1+1/2

)
. . . 1

Δx1

(
dI,1−1/2 − dI,1+1/2

)
0 1

Δx2

(
d2,2−1/2

)
. . . 1

Δx2

(
dI,2−1/2 − dI,2+1/2

)
. .
. .
0 0 . . . 1

ΔxI

(
dI,I−1/2

)

⎤
⎥⎥⎥⎥⎦ .

For convenience we use

dk,i+1/2 = −
∫

Λk

S(ε)
ε

dε

∫ xi+1/2

0
ub(xk, u) du.

In order to retain the overall high accuracy, the semi-discrete scheme (3.252) can be combined
with any higher order time integration method. We have used the fourth order Runge-Kutta
scheme, ODE45 in MATLAB. Before proceeding further to establish the consistency, stability
and convergence of the scheme, we have the following proposition to show some characteristic
features of the numerical solution.

Proposition 3.4.3. The semi-discrete formulation (3.252) is mass conserving. Thus, we have
d

dt

∑
i

(Δxigi(t)) = 0. (3.255)

Furthermore, if φ : [0,+∞[→ [0,+∞[ is a non-increasing function, then

d

dt

∑
i

(φ(xi)Δxigi(t)) ≥ 0. (3.256)

Proof. The volume conservation property (3.255) can easily be proved directly from the equation
(3.252) by multiplying Δxi and summing over i. Similarly, for the property (3.256), we multiply
the equation (3.252) by φ(xi)Δxi and summing over i to get

d

dt

∑
i

(φ(xi)Δxigi(t)) = −
∑

i

φ(xi)(Ji+1/2 − Ji−1/2)

= −
∑

i

Ji−1/2︸ ︷︷ ︸
≤0

(φ(xi−1) − φ(xi))︸ ︷︷ ︸
≥0

≥ 0. (3.257)

This proves the inequality (3.256).
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Consistency, stability and convergence

The consistency of the semi-discrete scheme (3.252) can easily be confirmed from the equation
(3.236). It comes out from there that the numerical flux is second order accurate. Subsequently,
we obtain for the spatial truncation error (3.137)

‖σ(t)‖ = O(Δx2), uniformly for all t. (3.258)

In order to establish the stability of the scheme we now compute the logarithmic norm (3.141)
of the matrix A as

μ̃1(A) = max
j

⎛
⎝Re(ajj) +

∑
i�=j

|aij |
⎞
⎠ . (3.259)

Since all elements of the matrix A are real and all non-diagonal elements are non-negative, the
above logarithmic norm takes the following form

μ̃1(A) =max
j

(∑
i

aij

)
. (3.260)

Using the assumption that x1 is the smallest size of particles that can appear in the breakage
process, we can set ak,1−1/2 = 0 for all k. Then, it is easy to show that

∑
i

aij =
j∑

i=2

dj,i−1/2

(
1

Δxj
− 1

Δxj−1

)
. (3.261)

We make an assumption that Δx1 ≤ Δx2 ≤ . . . ≤ ΔxI . Then it follows that

∑
i

aij ≤ 0, (3.262)

and hence

μ̃1(A) ≤ 0. (3.263)

Consequently, Theorem (3.3.4) can be used to get

‖etA‖ ≤ 1, (3.264)

which ensures the stability of the scheme. The error bound can be obtained by the application
of Theorem 3.3.6 as

‖ε(t)‖ = C0Δx2 + CtΔx2, 0 ≤ t ≤ T, (3.265)

with constants C0 and C.
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Table 3.18: EOC (3.53) of the finite volume scheme for binary breakage problems

(a) S(x) = x, t = 1000

Grid points, I Error, L1 EOC

61 33.8559 -
122 8.8548 1.93
244 2.2363 1.98
488 0.5612 1.99

(b) S(x) = x2, t = 2000

Grid points, I Error, L1 EOC

61 0.8526 -
122 0.2200 1.95
244 0.0551 2.00
488 0.0138 2.00

Comparison with exact solutions

In this section we compare our results obtained by the finite volume scheme with analytical
results. We calculate the absolute error by the following expression

L1 =
∑

i

|(nana
i − nnum

i ) · Δxi| . (3.266)

Similar to Subsection 3.2.1, for the computation mono-disperse initial condition with size unity
has been taken. Two types of problems have been considered:

1. Binary breakage, b(x, y) = 2/y with selection function, S(x) = x; and

2. Binary breakage, b(x, y) = 2/y with selection function, S(x) = x2.

The analytical solutions for both problems have been given in Appendix A.1. Figures 3.48(a)
and 3.48(b) present the absolute error for the first and the second problems respectively. We
have computed different numerical solutions using different number of grid points I = 122, 244
and 448. Figures show that the prediction by the numerical technique is in good agreement with
the analytical results. The corresponding analysis for order of convergence has been summarized
in Tables 3.18(a) and 3.18(b). Moreover, it can be seen from the figures and the tables that the
numerical technique converges to the analytical results as the number of cells tends to a large
value. Furthermore, the tables show that the scheme is second order accurate.

Discussion and comparison with the cell average technique

In this section we compare the numerical results obtained by discretized method and the finite
volume method. The discretized methods are well known and widely used due to their simplicity
and preserving properties. In this work we consider the cell average technique which predicts
the zeroth and the first moments of the PSD exactly irrespective of the number of grid points
chosen for the discretization.

We investigate the same test cases as above. The numerical results reflect the same behavior
for each case and therefore we show here the comparisons for the first case only. We consider
the binary breakage with mono-disperse particles of size unity as an initial condition and linear
selection function. Figure 3.49 shows the absolute error in PSD with respect to grid points. The

147



CHAPTER 3. NEW NUMERICAL METHODS: ONE-DIMENSIONAL

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9
I =122
I =244
I =488

time

er
ro

r,
L

1

(a) S(x) = x, t = 1000.

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25
I =122
I =244
I =488

time

er
ro

r,
L

1

(b) S(x) = x2, t = 2000.

Figure 3.48: Evolution of absolute error in binary breakage using the finite volume scheme.
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Figure 3.49: Evolution of absolute error with number of grid points chosen for computation,
S(x) = x, t = 1000.
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Figure 3.50: A comparison of numerical results, grid points = 31, S(x) = x, t = 1000.
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Figure 3.51: A comparison of numerical results, grid points = 91, S(x) = x, t = 1000.
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grid refinement has been performed by dividing each section into two equal parts. As evident
from the figure, the error is larger with the finite volume scheme at small number of grid points
than the error with the cell average technique. But as we increase the number of grid points
the prediction of PSD by the finite volume method becomes more accurate than the cell average
technique.

Further comparison concerning the accuracy has been achieved by direct comparison of total
number and particle number density in Figures 3.50(a) and 3.50(b) respectively. The computa-
tion has been performed by dividing the volume domain into 31 cells by the rule xi+1/2 = 2xi+1/2.
As expected, due to the preserving properties of the cell average technique, the prediction of the
total number by the cell average technique is highly accurate while the prediction by the finite
volume technique is poor. Figure 3.50(b) shows the under-prediction of the number density by
the finite volume scheme for small volumes. It must be noted that the absolute error in PSD
by the finite volume scheme was comparable or even less to the cell average technique, but
the predictions of total number differ considerably. Figures 3.51(a) and 3.51(b) show the same
results for the refined volume domain, I = 91. Even with such fine grids the prediction for the
total number is poor with the finite volume scheme.

We conclude this section with the observation that the new numerical solution of a general
breakage equation has been studied. For further treatment the population balance equation is
first transformed to a mass conservation law which has a straightforward numerical solution using
the finite volume scheme. It has been tested for two analytically solvable breakage problems.
The numerical results obtained by the finite volume scheme have been compared with the cell
average technique. It has been shown that the finite volume scheme predicts the PSD more
accurately but the prediction of total number is quite poor.

3.4.2 Simultaneous Aggregation and Breakage

We have seen that the finite volume method can be applied to the numerical solution of pure
breakage as well as pure aggregation problems. The detailed description of the scheme for
pure aggregation problems can be found in Filbet and Laurençot [21]. A short overview has
already been presented in the previous chapter. The finite volume scheme for simultaneous
aggregation and breakage can obtained easily by adding the corresponding numerical fluxes of
the two processes. Analogous to pure breakage and pure aggregation cases, we get the following
formulation in this case

gm+1
i = gm

i − Δt

Δxi

(
Jm

i+1/2 − Jm
i−1/2

)
. (3.267)

Here the numerical flux J is given by the algebraical sum of both individual fluxes as

Jm
i+1/2 =

i∑
k=1

Δxkg
m
k

⎛
⎝ I∑

j=αi,k

∫
Λj

β(u, xk)
u

du gn
j +

∫ xαi,k−1/2

xi+1/2−xk

a(u, xk)
u

du gm
αi,k−1

⎞
⎠

−
I∑

k=i+1

gm
k

∫
Λk

S(ε)
ε

dε

∫ xi+1/2

0
ub(xk, u) du. (3.268)
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The first and the second terms on the right hand side are the numerical flux corresponding
to the aggregation and the breakage respectively. Before we proceed to test the scheme for
analytically solvable problems, it is necessary to get a stability condition on the time step. Let
us first summarize the stability condition for the pure aggregation problem derived by Filbet
and Laurençot [21] by the following proposition.

Proposition 3.4.4. Pure aggregation (Filbet and Laurençot [21]): Under the stability condition
on the time step

Δt sup
i,m

(∫ xI

δ

β(xi, u)
u

g(tm, u) du

)
≤ 1, (3.269)

where δ = min(Δxi/2; i = 1, . . . , I), the function g is nonnegative and its total volume is a
non-increasing function of time; that is,

I∑
i=1

Δxig
m+1
i ≤

I∑
i=1

Δxig
m
i , ∀m. (3.270)

Proof. See Filbet and Laurençot [21], Proposition 2.1.

Note that the inequality (3.270) is only due to the loss of particles that are too large for our
particle domain. By fixing the maximum size of the computational domain so that it does not
loose any particles during the aggregation process we get the following corollary.

Corollary 3.4.5. If we fix the computational domain bigger than or equal to the largest particle
size that can appear during the aggregation process, then under the same stability condition
(3.269) the monotonicity condition (3.270) becomes an equality. that is, we obtain conservation
of mass

I∑
i=1

Δxig
m+1
i =

I∑
i=1

Δxig
m
i , ∀m. (3.271)

Proof. It easily follows from Proposition 3.4.1. The basic fact about the mass conservation
equality (3.271) is that by fixing the computational domain to be big enough so that it contains
all particles during the aggregation process without loosing mass. The numerical flux JI+1/2

through the end boundary xI+1/2 then becomes zero and therefore mass remains constant.

Remark 3.4.6. Theoretically, the biggest size of the particle during the batch aggregation process
can easily be fixed from the initial condition. It cannot be bigger than the total volume of particles.
In a limit case we may get a single particle of total volume at the end of the aggregation process.

As a consequence of Propositions 3.4.1 and 3.4.4 we can derive the following proposition for the
combined aggregation and breakage problem.

Proposition 3.4.7. Simultaneous aggregation and breakage: Under the stability condition on
the time step

Δt sup
i,m

(∫ xI

δ

β(xi, u)
u

g(tm, u) du +
1

Δxi

∫
Λi

S(ε)
ε

dε

∫ xi+1/2

0
ub(xi, u) du

)
≤ 1, (3.272)
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Figure 3.52: A comparison of the first moment for simultaneous breakage and aggregation, grid
points 38.

and the assumption that the flux through the boundaries of the domain is zero, the function g is
nonnegative and its total volume remains constant with time; that is,

I∑
i=1

Δxig
m+1
i =

I∑
i=1

Δxig
m
i , ∀m. (3.273)

Proof. See Appendix B.7.

Numerical results

In order to test the numerical formulation derived above we take the same test cases with similar
computational parameters as considered in Subsection 3.2.4. The initial conditions are (3.112)
and (3.113). Here we have compared the zeroth moment additionally to check the consistency
with respect to moments of the finite volume scheme. It must be noted that the first two moments
remain constant in both test cases. The prediction of the first moment by both techniques is
the same and it stays constant during the process.

The first test case is an unsteady state problem. The numerical results for the zeroth moments in
this case are shown in Figure 3.52. As expected the zeroth moment by the cell average technique
remains nearly constant. Due to numerical error in the initial condition, a little increase of the
zeroth moment at the beginning by the cell average technique is observed and then it stays
constant. On the other hand, the prediction of the zeroth moment by the finite volume scheme
is extremely poor. The first moment is increasing with time. The prediction of the complete
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Figure 3.53: A comparison of particle size distributions for simultaneous breakage and aggrega-
tion, grid points 38.

155



CHAPTER 3. NEW NUMERICAL METHODS: ONE-DIMENSIONAL

10
−6

10
−4

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cell Average
Finite Volume
Analytical: Steady State

volume

n
u
m

b
er

d
en

si
ty

(a) Semi-log scale.

10
−4

10
−2

10
0

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Cell Average
Finite Volume
Analytical: Steady State

volume

n
u
m

b
er

d
en

si
ty

(b) Log-log scale.

Figure 3.54: A comparison of particle size distributions for simultaneous breakage and aggrega-
tion, grid points 38.
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particle size distribution is plotted in Figure 3.53. The numerical results by the finite volume
scheme are overestimating at the smaller volumes while the cell average predicts them with
high accuracy. The prediction of the number density at the larger volumes by both techniques
is matching, see Figure 3.53(b). The computation has been performed for a very short time
because after that it becomes a steady state solution and the numerical results are similar to
the second test case shown in Figure 3.54.

The second test case is a steady state solution corresponding to the initial condition (3.113).
The numerical results for the zeroth moment are exactly similar to the previous case presented
in Figure 3.52. Once again, the prediction of the zeroth moment by the finite volume scheme
is very poor. The complete particle size distribution calculated by both techniques together
with the steady state solution is shown in Figure 3.54. Once again the numerical results for the
number density by the finite volume scheme are over predicting while the prediction by the cell
average technique is extremely accurate. The accuracy of the numerical results can of course be
improved by refining the grid.

We conclude this section with the observation that the consistency of the cell average technique
dominates over the finite volume scheme. Moreover the numerical results of the particle size
distribution by the cell average technique using a coarse grid are more accurate than the finite
volume scheme. More precisely, numerical results of the particle size distribution using a fine
grid are comparable to that obtained by the cell average technique but the prediction of the
total number by the finite volume scheme is quite poor. A more sophisticated finite volume
formulation is needed to predict more moments of distribution accurately.
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Chapter 4

New Numerical Methods:
Multi-Dimensional

4.1 Introduction

In this chapter, we provide a general perspective of multi-dimensional population balances for
pure aggregation problems and discretized methods to solve them. There are two reasons to con-
sider the pure aggregation process. First, numerical methods for multi-dimensional aggregation
problems are highly demanding and secondly that derivation of a numerical scheme for solving
multi-dimensional aggregation problems is most difficult. The solution of a multi-dimensional
problem is computationally highly expensive and therefore we will derive a numerical scheme
for a two-dimensional PBE. Nevertheless, the idea of the numerical scheme could easily be
extended to n-dimensional problems. Moreover, the same idea can be used to model a multi-
dimensional problem for breakage. Furthermore there are two different approaches to deal with
an n-dimensional PBE: computation on a reduced model and on a complete model. In contrast
to the complete model we perform computations on a set of n one-dimensional PBEs in the
reduced model approach. The computational time reduces drastically in the reduced model
approach but it is not possible to capture the complete information of the particle property
distribution (PPD). We will discuss both the approaches in detail.

Frequently the state of a dispersed phase is described in terms of extensive properties. Extensive
properties, such as mass, mole number or enthalpy are defined as the properties which depend
directly on the size of a thermodynamic system. If such a system is divided into several parts,
the extensive property changes according to the size of these parts. It is often useful to give an
extensive property in a form which is not directly proportional to the size of system, in other
words to convert an extensive property into an intensive property. For certain applications
it might be necessary to determine intensive properties of the disperse phase such as density,
concentration or temperature. For example, to model the mass transfer between disperse and
gas phase, the temperature of the disperse phase it is necessary to calculate the equilibrium
state at the phase boundary. In general an intensive property is defined as the quotient of some
extensive property with respect to another extensive property.

The traditional one-dimensional population balance models assume that granule size, usually
volume, is the only independent granule property that influences the granule growth process. A
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one-dimensional PBE for growth, agglomeration and breakage has been applied to numerous pro-
cesses in chemical engineering such as crystallization, granulation and agglomeration, see Bram-
ley et al. [12], Ding et al. [16]. However several other independent granule properties can strongly
influence granulation behavior. Such properties include porosity, binder content, enthalpy and
compositions etc. For a more general case of liquid spray granulation, one-dimensional popula-
tion balance models can be found, see e.g. Saleh et al. [98]. As mentioned before, the impact
of operating conditions on the particle property distribution has been investigated by various
authors, Adetayo et al. [2], Watano et al. [119], Schaafsma [100]. Watano et al. [119] observed
that the moisture content in solids is one of the most important particle properties to control
the agglomeration process. This again leads to the conclusion that properties such as particle
size and moisture content have to be considered simultaneously in a population balance model.

An application of a multi-dimensional PBE appears from simultaneous agglomeration and drying
in fluidized bed granulation, see Peglow et al. [84]. Since the kinetics for heat and mass transfer
require the temperature and moisture content of particles, one needs to extend the vector of
internal coordinates. The concept of population balance cannot be applied to any intensive
property of the solid phase. Thus, the intensive properties of solid phase have been expressed in
terms of adequate extensive properties: the enthalpy of particles and the liquid mass of particles.

Iveson [40] presented a four dimensional population balance model for wet granulation which
includes size, porosity, binder content and compositions as four independent granule properties.
He also mentioned the limitations of spatially uniform conditions of a one-dimensional population
balance model. Segregation is a common problem in many commercial granulators. It may
alter the frequency and velocity of collisions between granules of different sizes. Therefore
this effect needs to be modeled either by spatially dependent PBEs or by calculating a global
average collision frequency between different sized granules. In addition to wet granulation, two-
dimensional PBEs have been applied in various other areas including modeling the coagulation
and structural rearrangement of sintering aerosol particles, Xiong and Pratsinis [123] as well as
tracking the growth of crystals with anisotropic growth rates of different faces, Puel et al. [92].

An n-dimensional particle property distribution is defined by f(x1, x2, . . . , xn), where n indepen-
dent granule characteristics are denoted by x1, x2, . . . , xn. Assuming spatially uniform conditions
throughout the system, an n-dimensional PBE for binary aggregation can be formulated as

∂f(x1, x2, . . . , xn)
∂t

= Bagg(x1, x2, . . . , xn) − Dagg(x1, x2, . . . , xn). (4.1)

The first term on the right hand side is corresponding to the birth of particles of property
(x1, x2, . . . , xn) due to aggregation of smaller particles. The last term describes the death of
particles of property (x1, x2, . . . , xn) due to collision and adhesion to other particles in the
system. These are given by

Bagg =
1
2

∫ m1

ε1=0
. . .

∫ mn

εn=0
β̂(ε1, η1, . . . , εn, ηn)f(ε1, . . . , εn)f(η1, . . . , ηn) dε1 . . . dεn, (4.2)

with

ηi = ηi(ε1, x1, . . . , εn, xn), i = 1, 2, . . . , n, (4.3)
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and

Dagg = f(x1, . . . , xn)
∫ w1

ε1=0
. . .

∫ wn

εn=0
β̂(ε1, x1, . . . , εn, xn)f(ε1, . . . , εn) dε1 . . . dεn. (4.4)

The aggregation kernel of a multi-dimensional PBE is denoted by β̂. The birth term describes
all the possible aggregation events that form a particle with properties x1, x2, . . . , xn. Simi-
larly death term represents all possible collisions that form an aggregate with particles of size
x1, x2, . . . , xn. In the preceding multi-dimensional balance equation limits of integration will
change according to the particles properties and the way of defining them in a particular model.
Before we propose a numerical scheme to solve such equations we mention some examples of
multi-dimensional PBE.

Application 1: Wet granulation of a binary mixture of two solids

Iveson [40] modeled a four-dimensional PBE for wet granulation of a binary mixture of solids
”a” and ”b”. As mentioned above he considered four independent granule characteristics: The
granule solid phase mass m, the binder to solid mass ratio w, the granule porosity ε, the solid
mass phase fraction of component ”a” x. The birth term takes the following form

Bagg(m, ε,w, x) =
1
2

∫ m

m1=0

∫ ∞

w1=0

∫ 1

ε1=0

∫ 1

x1=0
β̂(m1,m2, w1, w2, ε1, ε2, x1, x2)

× f(m1, w1, ε1, x1)f(m2, w2, ε2, x2) dm1 dw1 dε1 dx1, (4.5)

with the following additional conservation equations

m2 = m − m1,

w2 =
wm − w1m1

m2
,

x2 =
xm − x1m1

m2
,

and (
ε

1 − ε

)(
mx

ρa
+

m(1 − x)
ρb

)

=
(

ε1

1 − ε1

)(
m1x1

ρa
+

m1(1 − x1)
ρb

)
+

(
ε2

1 − ε2

)(
m2x2

ρa
+

m2(1 − x2)
ρb

)
.

The death rate is given by

Dagg(m, ε,w, x) = f(m,w, ε, x)
∫ ∞

m1=0

∫ ∞

w1=0

∫ 1

ε1=0

∫ 1

x1=0
β̂(m1,m,w1, w, ε1, ε, x1, x)

×f(m1, w1, ε1, x1) dm1 dw1 dε1 dx1. (4.6)

The PBE associated with these four dimensional birth and death terms becomes very complex
to solve numerically.
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Application 2: Simultaneous agglomeration and drying in fluidized beds

A multidimensional PBE used for modeling of simultaneous agglomeration and drying in flu-
idized beds is now presented. For such processes, the enthalpy, moisture content and size are
of special interest. For a detailed description readers are refereed to Peglow et al. [84] as well
as Peglow [82]. In this case particle property density f depends on mass of granule v, mois-
ture content within granule c ∈]0, v[ and enthalpy of granule h. A three-dimensional PBE with
aggregation only has been derived. The birth and death terms are given as

Bagg(v, c, h) =
1
2

∫ v

ε=0

∫ min(c,ε)

γ=max(0,c−v+ε)

∫ h

η=0

× β̂(v − ε, ε, c − γ, γ, h − η, η)f(t, v − ε, c − γ, h − η)f(t, ε, γ, η) dη dγ dε, (4.7)

and

Dagg(v, c, h) =
∫ ∞

ε=0

∫ ε

γ=0

∫ ∞

η=0
β̂(v, ε, c, γ, h, η)f(t, v, c, h)f(t, ε, γ, η) dη dγ dε. (4.8)

The appearance of complicated integral limits in second integral of birth term will be explained
later. They appear due to the fact that the moisture content of one of the aggregating particles
can not be bigger than the mass (volume) of the newborn granule and also cannot be smaller
than c − v + ε to produce a particle of size v and moisture content c.

Application 3: Tracer studies of high shear granulation

Similar to the previous case, Hounslow et al. [33] applied a two-dimensional PBE to study
the tracer mass distribution in a high shear granulation. They considered that every granule
is identified by two distinct properties: the size of granule and the mass of tracer within the
granule. The associated birth and death terms in this case are

Bagg(v, c) =
1
2

∫ v

ε=0

∫ min(c,ε)

γ=max(0,c−v+ε)
β̂(v − ε, ε, c − γ, γ)f(v − ε, c − γ)f(ε, γ) dγ dε, (4.9)

and

Dagg(v, c) =
∫ ∞

ε=0

∫ ε

γ=0
β̂(v, ε, c, γ)f(v, c)f(ε, γ) dγ dε. (4.10)

In order to solve PBEs associated with these birth and death terms Hounslow et al. [33] reduced
the PBE to a set of two one-dimensional PBEs. They also proposed a solution strategy to solve
the resulting coupled equations. We will explain the procedure to reduce the model and then
propose a better scheme to solve them in a next section.

Application 4: Coagulation of a two component mixture

Lushnikov [70] investigated coagulation of a two component mixture. Let f(m,n) be the con-
centration of the particles consisting of m and n monomers of the first and the second kind
respectively. Then the governing birth and death terms are given by

Bagg(m,n) =
1
2

∫ m

ε=0

∫ n

γ=0
β̂(m − ε, ε, n − γ, γ)f(m − ε, n − γ)f(ε, γ) dγ dε, (4.11)
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and

Dagg(m,n) =
∫ ∞

ε=0

∫ ∞

γ=0
β̂(m, ε, n, γ)f(m,n)f(ε, γ) dγ dε. (4.12)

Lushnikov [70] also presented analytical solutions for some simple aggregation kernels. Those
analytical solutions are useful to assess the efficiency of numerical schemes.

Below we propose a numerical scheme for the solutions of a multi-dimensional PBE. As men-
tioned before we will investigate numerical methods on two major classes of multi-dimensional
PBE: reduced models and complete models. The reduced model is based on a reduction of a
complete n-dimensional population balance to a set of n one-dimensional PBEs. Model reduction
is done to get an approximation of some average values at low computational cost. On the other
hand a complete model provides the entire property distribution at a very high computational
cost.

4.2 Reduced Model

This section is devoted to the modeling of reduced system of PBEs and their numerical solu-
tions. For convenience we consider here a two-dimensional PBE to show the procedure of model
reduction. However the same procedure can be applied for any higher dimensional system. The
same holds for numerical procedure. We will test our numerical scheme on a two-dimensional
PBE due to easily available analytical solutions.

4.2.1 Mathematical Modeling

A two-dimensional particle property distribution is defined as f(t, v, c), where v and c are two
distinct properties, granule volume (size) and tracer volume respectively. Thus, the total number
in a domain D is given by ∫

D
f(t, v, c) dv dc. (4.13)

It should be noted that granule volume v contains volume of tracer and volume of particles, that
is, c ≤ v. The two-dimensional PBE can be obtained by extending the classical one-dimensional
PBE [36] to two-dimensional space as

∂f(t, v, c)
∂t

=
1
2

∫ v

0

∫ min(c,ε)

max(0,c−v+ε)
β̂(t, v − ε, ε, c − γ, γ)f(t, v − ε, c − γ)f(t, ε, γ) dγ dε

−
∫ ∞

0

∫ ε

0
β̂(t, v, ε, c, γ)f(t, v, c)f(t, ε, γ) dγ dε. (4.14)

The limits of the second integral in the birth term can easily be explained. Note that the first
aggregating particle has volume v− ε and tracer contents c− γ. Therefore it is evident from the
definition of tracer mass that

c − γ ≤ v − ε ⇒ γ ≥ c − v + ε,
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v′

c′
v′ = c′

ε v − ε

min γ = c − v + ε

c − γ

c − v + ε

ε

c

v

(v, c)

v − ε

γ

Figure 4.1: Limits of integrals in 2-D PBE.

and obviously
γ ≥ 0.

These two bounds give the lower limits. Similarly the second set of aggregation particles have
volume ε and tracer contents γ. Clearly the following relation holds

γ ≤ ε.

Since the resultant aggregate has tracer content c, therefore

γ ≤ c.

These relations provides the upper integral limits. The limits of integration can also be perceived
from Figure 4.1. The above 2-D PBE (4.14) must be supplemented with an initial condition

f(0, v, c) = f0(v, c). (4.15)

The first and the second terms on the right hand side of the equation (4.14) account for the
formation and the loss of the particles with the properties v and c. Let us assume that the
aggregation kernel β̂ depends only on time and size of the granules, but not on the tracer
contents within the granules, i.e. β̂ = β̂(t, v, ε). Then the 2-D PBE can be converted into two
1-D PBEs corresponding to the conventional number density n(t, v) and mass of tracer within
granules m(t, v). The number density n(t, v), may be obtained from f by integrating over all
possible tracer masses

n(t, v) =
∫ v

0
f(t, v, c) dc. (4.16)
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vu − vu

n(v)

n(u)

n(u − v) c(v)

c(u − v)

c(u)

Figure 4.2: Birth of tracer mass.

The mass of tracer within the granules of size v is given analogously by

m(t, v) =
∫ v

0
cf(t, v, c) dc. (4.17)

Reduction to 1-D PBE for granule size distribution (GSD)

Integrating the equation (4.14) over all possible values of c, we have

∂n(t, v)
∂t

=
1
2

∫ v

0

∫ v

0

∫ min(c,ε)

max(0,c−v+ε)
β̂(t, v − ε, ε, c − γ, γ)f(t, v − ε, c − γ)f(t, ε, γ) dγ dε dc

−
∫ v

0

∫ ∞

0

∫ ε

0
β̂(t, v, ε, c, γ)f(t, v, c)f(t, ε, γ) dγ dε dc. (4.18)

Reversing the order of integration, we obtain

∂n(t, v)
∂t

=
1
2

∫ v

0

∫ ε

0

∫ v−ε+γ

γ
β̂(t, v − ε, ε, c − γ, γ)f(t, v − ε, c − γ)f(t, ε, γ) dc dγ dε

−
∫ ∞

0

∫ ε

0

∫ v

0
β̂(t, v, ε, c, γ)f(t, v, c)f(t, ε, γ) dc dγ dε. (4.19)

If we assume that the aggregation kernel depends only on time and the size of both granules,
i.e. β̂(t, v, ε, c, γ) = β(t, v, ε), then by substituting c − γ = p and using the definition of density
function n, we get

∂n(t, v)
∂t

=
1
2

∫ v

0
β(t, v − ε, ε)n(t, v − ε)n(t, ε) dε − n(t, v)

∫ ∞

0
β(t, v, ε)n(t, ε) dε. (4.20)

164



4.2. REDUCED MODEL

vu
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n(u)

c(v)
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Figure 4.3: Death of tracer mass.

Reduction to 1-D PBE for tracer mass distribution (TMD)

Proceeding as before, multiplication of the equation (4.14) by c and integrating over all possible
values of c yields

∂m(t, v)
∂t

=
1
2

∫ v

0
c

∫ v

0

∫ min(c,ε)

max(0,c−v+ε)
β̂(t, v − ε, ε, c − γ, γ)f(t, v − ε, c − γ)f(t, ε, γ) dγ dε dc

−
∫ v

0
c

∫ ∞

0

∫ ε

0
β̂(t, v, ε, c, γ)f(t, v, c)f(t, ε, γ) dγ dε dc. (4.21)

Again, reversing the order of integration and some simple substitution gives

∂m(t, v)
∂t

=
∫ v

0
β(t, v − ε, ε)m(t, v − ε)n(t, ε) dε − m(t, v)

∫ ∞

0
β(t, v, ε)n(t, ε) dε. (4.22)

Equations (4.20) and (4.22) are ordinary integro-differential equations which have to be solved
numerically. Hounslow et al. [34] developed a discretized method for solving GSD and later they
extended the discretization for the solution of TMD, see Hounslow et al. [33]. The discretized
PBE of TMD was applicable only for special geometric grid of the type xi−1/2 = 2xi+1/2. In the
next section we first briefly discuss the discretization of TMD and then propose a new idea for
the better accuracy and implementation.

The preceding PBE for the tracer mass can also directly be obtained from the classical one-
dimensional PBE (4.20). Note that the tracer mass distribution m(t, v), which represents the
total tracer mass contained in particles of size v, can be defined as the product of the number
density of particles size v with the mass of tracer c(t, v) in each particle.

m(t, v) = c(t, v)n(t, v). (4.23)
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It follows that the rate of change of total tracer mass contained in particles of size v as a results
of coagulation is therefore given by (see Figures 4.2 and 4.3)

∂m(t, v)
∂t

=
1
2

∫ v

0
β(t, v − ε, ε) [c(t, v − ε) + c(t, ε)] n(t, v − ε)n(t, ε) dε

− n(t, v)c(t, v)
∫ ∞

0
β(t, v, ε)n(t, ε) dε. (4.24)

Using the definition of m(t, v) from equation (4.23), we obtain the required PBE (4.22).

Here we have shown that a two-dimensional PBE can be reduced to a set of two one-dimensional
PBEs. A similar criteria can be applied to higher dimensional PBEs to get a reduced system.
Now it will then be possible to solve the set of reduced PBEs at moderate computational cost.
In the following section we shall first briefly discuss Hounslow’s discretized PBE for TMD and
consistency problems associated with the discretization. Then a new approach to solve the
coupled problem will be presented and some comparisons between them will be demonstrated.

4.2.2 Numerical Methods

Hounslow et al. [33] proposed a discretized population balance for both the reduced equations
(4.20), (4.22) and calculated the temporal change of particle size distribution and tracer mass
distribution (TMD) simultaneously. The discretization of the tracer PBE was similar to their
well-known discretized PBE [34]. It has been found by Peglow et al. [86] that the discretized
tracer population balance equation (DTPBE) for the tracer mass is not entirely consistent with
the associated discretized population balance equation (DPBE) for granule size distribution.
Our interest here is first to discuss the discretized tracer PBE and to show the inconsistency.
These inconsistencies are then remedied in a new formulation that retains the advantages of
the original DTPBE such as conservation of total tracer mass, prediction of tracer-weighted
mean particle volume and so on. Furthermore, the DTPBE has been extended to an adjustable
discretization based on that of Litster et al. [69]. Various comparisons are made of the validity
of the extended and modified formulation.

The discretization of the equation (4.22) is totally different than the discretization of PBE (4.20)
discussed in Chapter 2. We can not get a set of discrete equations directly from Hounslow’s
DPBEs (2.10). The reason is obviously mechanism number 5 discussed in Chapter 2. Hounslow
et al. [34] did not consider this mechanism when formulating discretization for PSD since it has
no effect on number of particles. Here we will discuss only mechanism number 5 in detail, all
others are the same discussed in Chapter 2.

Mechanism 1. The resulting expression for the rate of change of particles due to this mechanism
is given by

B
[1]
i =

i−2∑
j=1

3 · 2j−iβi−1,jNi−1Nj . (4.25)

So the rate of change of binder mass in the ith interval due to this mechanism is given by

B
[1]
i,T =

i−2∑
j=1

3 · 2j−iβi−1,j(Mi−1Nj + Ni−1Mj). (4.26)
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Mechanism 2. Birth rate of the tracer due to this mechanism is

B
[2]
i,T =

1
2
βi−1,i−1(Mi−1Ni−1 + Ni−1Mi−1)

=βi−1,i−1Mi−1Ni−1. (4.27)

Mechanism 3. Death rate of the tracer in the ith interval can be obtained from the death rate
of granules as

D
[3]
i,T = Mi

i−1∑
j=1

3 · 2j−i−1βi,jNj . (4.28)

Mechanism 4. In the similar way we can obtain death rate of tracer due to this mechanism in
the ith interval.

D
[4]
i,T = Mi

I∑
j=i

βi,jNj . (4.29)

Mechanism 5. As discussed before, this mechanism is completely different than others. It has
no influence on number of particles while mass within the interval increases. Particles can grow
within the ith interval only when a particle in the ith interval aggregates with a particle in the
jth (j < i) interval. If a particle of size a in the jth interval collides with particles in the size
range 2i ≤ v < (2i+1 − a) of ith interval, the resulting particle will be in the ith class. The
number of particles in the ith interval available for collision is (2i − a)Ni/2i. The differential
rate of change of tracer mass in the ith interval is given by

dB
[5]
i,j,T = βi,j

(2i − a)Ni

2i

Nj

2j
da

(
Mj

Nj

)
. (4.30)

Thus, the rate of birth in the ith interval resulting from collision between ith and jth interval
is given by

dB
[5]
i,j,T =βi,j

∫ 2j+1

2j

(2i − a)Ni

2i

Mj

2j
da

=βi,jNiMj

(
1 − 3 · 2j−i−1

)
. (4.31)

Summing over all j, the total rate of birth due to this mechanism can be expressed as

B
[5]
i,T =

i−1∑
j=1

βi,jNiMj

(
1 − 3 · 2j−i−1

)
. (4.32)

Collecting expressions from all the mechanisms and introducing a correction factor, the final set
of equations is

dMi

dt
=

i−2∑
j=1

k · 3 · 2j−iβi−1,j(Mi−1Nj + Ni−1Mj) + βi−1,i−1Mi−1Ni−1

− Mi

i−1∑
j=1

k · 3 · 2j−i−1βi,jNj − Mi

I∑
j=i

βi,jNj

+
i−1∑
j=1

βi,jNiMj

(
1 − k · 3 · 2j−i−1

)
. (4.33)
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Total rate of change of mass is given by (for simplicity we use constant β0)

∑
i

dMi

dt
=

I∑
i=1

i−2∑
j=1

k · 3 · 2j−iβi−1,j(Mi−1Nj + Ni−1Mj) +
I∑

i=1

βi−1,i−1Mi−1Ni−1

−
I∑

i=1

Mi

i−1∑
j=1

k · 3 · 2j−i−1βi,jNj −
I∑

i=1

Mi

M∑
j=i

βi,jNj

+
I∑

i=1

i−1∑
j=1

βi,jNiMj

(
1 − k · 3 · 2j−i−1

)
.

It can be rewritten as

∑
i

dMi

dt
=

I∑
i=1

Mi−1

i−2∑
j=1

k · 3 · 2j−iβi−1,jNj −
I∑

i=1

Mi

i−1∑
j=1

k · 3 · 2j−i−1βi,jNj

+
I∑

i=1

Ni−1

i−2∑
j=1

k · 3 · 2j−iβi−1,jMj −
I∑

i=1

Ni

i−1∑
j=1

k · 3 · 2j−i−1βi,jMj

+
I∑

i=1

βi−1,i−1Mi−1Ni−1 +
I∑

i=1

i−1∑
j=1

βi,jNiMj −
I∑

i=1

I∑
j=i

βi,jNjMi

=0,

for any value of k. Hounslow et al. [34] put k = 2/3, the same volume correction factor as they
derived in DPBs. For k = 2/3 it reduces to

dMi

dt
=

i−2∑
j=1

2j−i+1βi−1,j(Mi−1Nj + Ni−1Mj)

+ βi−1,i−1Mi−1Ni−1 + Ni

i−1∑
j=1

(
1 − 2j−i

)
βi,jMj

− Mi

i−1∑
j=1

2j−iβi,jNj − Mi

I∑
j=i

βi,jNj . (4.34)

A similar discretization corresponding to the fixed pivot technique can also be obtained in this
case. The advantage of the fixed pivot technique over the Hounslow’s discretization is the
generality regarding grids. The fixed pivot formulation can be applied on any types of grid. The
fixed pivot discretization of the equation (4.22) is given by

dMi(t)
dt

=
j≥k∑
j,k

xi−1≤x<xi+1

(
1 − 1

2δj,k

)
η(x)βj,k[Mj(t)Nk(k) + Nj(t)Mk(k)]

− Mi(t)
I∑

k=1

βi,kNk(t). (4.35)
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Note that both discretizations (4.34) and (4.35) become the same while applied on a geometric
grid. It is of interest to explain the simplicity of mass formulation by the application of the fixed
pivot technique, while it was complicated in Hounslow’s approach to get the discrete equation
for tracer mass from the discrete equation for GSD. We have to consider one more interaction
mechanism in case of Hounslow’s approach. However, the point can be made clear if we look
at birth and death terms separately. In Hounslow case, birth and death terms predict net rate
of birth and death in a section individually, while in the fixed pivot technique it is different.
Nevertheless, both techniques predict correct net rate of change of particles. In the fixed pivot
technique, all collisions with particles of ith section result in death which is not true, only some
of them result in death. If any particle from lower classes colloids with a particle of ith class
and the resultant particle still stays in ith class, there is no birth with respect to the number of
particles in this interaction mechanism. Particles are getting larger within the interval while the
number of particles remains constant. This mechanism simply leads to an increment of mass
in the interval. In the fixed pivot technique, these interactions first leads to death and then to
birth during the process of reassignment of particles. The reason why the formulation is trivial
in the case of the fixed pivot technique is now clear. On the other hand in case of Hounslow’s
discretization one has to take those collisions into account which have no influence in number of
particles in a section but have significant effects in tracer mass. So, formulation for tracer mass
distribution can not directly be obtained from number distribution.

One can use the DTPBE (4.34) of Hounslow et al. [33] or alternatively (4.35) for the computation
of various extensive properties (amount of water within the particle, enthalpy of particles etc.) of
aggregating systems. The equations predict the total amount of extensive properties exactly but
it fails to predict intensive properties which are proportional to the ratio of extensive properties
and mass of granules. For the purpose of illustration let us consider an example where a particle
system is described by the two properties: volume of particles and amount of water within the
particles. Our interest is to calculate the particle moisture content as the ratio of water mass
to particle mass - an intensive property. We assume that the density is constant and particle
volume is equal to the particle mass. For simplicity let us assume that initially the water mass
inside a particle is equal to the dry particle mass. In other words, the ratio between water
mass and dry particle mass or equivalently the particle moisture content is constant over the
particle size range and is equal to one. Since agglomeration is the only governing mechanism
which changes the particle size, the particle moisture content should be constant throughout the
process.

Let us consider the following initial condition for the PSD with volume as the distributed
property

n(t, x) =
N0

x0
exp

(
− x

x0

)
. (4.36)

In the DTPBE of Hounslow et al. [33] the particle size domain is divided into discrete size ranges
using a geometric discretization of the type xi+1/2 = 2xi−1/2. Integration of equation (4.36) over
the interval [xi−1/2, xi+1/2] gives the total number of particles within the interval

Ni =
N0

2

[
exp

(
−xi−1/2

x0

)
− exp

(
−xi+1/2

x0

)]
. (4.37)

169



CHAPTER 4. NEW NUMERICAL METHODS: MULTI-DIMENSIONAL

10
−2

10
0

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Initial Condition
Final Distribution (DPBE)
Final Distribution (DTPBE)

x/x0

M
/
(x

0
N

0
)

Figure 4.4: Initial and final distribution calculated Hounslow’s DTPBE and DPBE.

The dry mass of particles in an interval [xi−1/2, xi+1/2] is approximated as

Mp,i = Ni

(
xi−1/2 + xi+1/2

2

)
. (4.38)

Here we make an assumption of constant density, so that the mass could be replaced by volume.
The initial condition for water mass distribution is chosen in such a way that the total mass of
water Mw,i within the particles in the interval [xi−1/2, xi+1/2] is equal to the total mass of dry
particles in this interval, that is

Mw,i = Mp,i. (4.39)

Here the subscripts w and p denotes the water and particles respectively.

The computation is made for a size independent kernel and N0 = x0 = 1. We calculated the
particle mass and the water content within the particles as a function of particle volume using
Hounslow’s discrete PBE, see Hounslow et al. [34], and Hounslow’s DTPBE, see Hounslow et al.
[33], respectively. The numerical results at Iagg = 0.8 together with the initial condition have
been plotted in Figure 4.4. Clearly the DTPBE fails to predict the water distribution within the
particles correctly since both water distribution and mass distribution must be the same during
the process. Furthermore, Figure 4.5 includes initial and final ratio of water mass and particle
mass within the intervals. It can be seen from the figure that the final ratio is not constant.
However, it should be pointed out that both discretized formulations conserve mass.

Improved Hounslow’s discretization

Let us discuss this ratio problem in detail. Consider the birth contribution in the ith interval
due to collision of particles from the jth and kth cells. In DTPBE this birth contribution is
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Figure 4.5: Initial and final ratio of water mass and particle mass distribution.
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replaced by NjMk + MjNk as a tracer mass birth contribution which is the actual amount of
tracer coming from the jth and kth cells. The cause for the non-constant ratio is that the
assignment of the tracer mass is different from that of granule mass in the ith interval. Let us
observe that the actual amount of granule mass corresponds to NjNk birth in the ith cell. If xi

represents the mean volume (or mass) of the ith interval then NjNk(xj + xk) is the total mass
carried with NjNk particles from the jth and kth cells. On the other hand, corresponding to
NjNk particles in the ith cell we assign NjNkxi mass to the ith cell. Clearly

NjNk(xj + xk) �= NjNkxi, for all i, j, k. (4.40)

The authors did not assign the mass of tracer in the same ratio as granule mass. This inconsis-
tency can be repaired by introducing some correction factors. For instance, a correction factor
K in this case can be introduced in the following way

Assigned tracer mass
Actual tracer mass

=
Assigned granule mass
Actual granule mass

=
xj

xj + xk
= K. (4.41)

By introducing correction factors in each term of the DTPBE, we obtain the following set of
equations

dMi

dt
=

i−2∑
j=1

2j−i+1βi−1,j (Mi−1Nj + Ni−1Mj) K1 + Ni

i−1∑
j=1

(
1 − 2j−i

)
βi,jMjK2

+ βi−1,i−1Ni−1Mi−1 − Mi

i−1∑
j=1

2j−iβi,jNjK3 − Mi

I∑
j=i

βi,jNj, (4.42)

with correction factors

K1 =
2

2j−i+1
, K2 =

1
2j−i + 1

, K3 =
2

2j−i + 1
. (4.43)

The correction factors corresponding to the third and the last terms of (4.42) are 1. It can
be easily shown that the total tracer mass is still conserved, see Appendix B.8. This modified
formulation has been now applied to the same problem as before. As expected, Figure 4.6 shows
the same prediction by both the DPBE and the modified DTPBE.

The discretized equation outlined above, which is valid for the geometric grid of type xi+1/2 =
2xi−1/2, is now generalized to adjustable discretizations of the form xi+1/2 = 21/qxi−1/2. Besides
5 interaction mechanisms described in Litster et al. [69], one more interaction mechanism will
be considered in the case of tracer mass distribution. We call this new interactions mechanism a
Type 6 interaction. In these interactions, particles in interval i and j aggregate, and the resulting
particles still stay in the ith interval, see Figure 4.7. These interactions have not changed the
number of particles in the interval but the tracer mass, or the mass of granules itself, in the
interval is increased due to the particles coming from the lower intervals. This mechanism was
not considered in the birth term of the adjustable discretization of the number density PBE since
it does not change the number of particles in the cell. This is a birth mechanism with respect
to mass. All 4 interactions which produce birth in the ith cell are summarized in Table 4.1. A
similar table for death mechanisms and other detailed descriptions can be found in Litster et al.
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[69] and Wynn [120]. Following Litster et al. [69] and Wynn [120], all 6 interaction mechanisms
(birth and death) can be put together in the following expression. The final extended and
consistent model is given by

dMi

dt
=

i−S1∑
j=1

2(j−i+1)/q

21/q − 1
βi−1,j (Mi−1Nj + Ni−1Mj)K1 + βi−q,i−qNi−qMi−q

+
q−1∑
p=1

i+1−Sp+1∑
j=i+1−Sp

21/q − 2(j−i)/q − 2−p/q

21/q − 1
βi−p,j (Mi−pNj + Ni−pMj)K2

+
q∑

p=2

i−Sp∑
j=i−Sp−1

2(j−i+1)/q − 1 + 2−(p−1)/q

21/q − 1
βi−p,j (Mi−pNj + Ni−pMj)K3

+
i−S1+1∑

j=1

(
1 − 2(j−i)/q

21/q − 1

)
βi,jNiMjK4

−
i−S1+1∑

j=1

2(j−i)/q

21/q − 1
βi,jMiNjK5 −

I∑
j=i−S1+2

βi,jMiNj, (4.44)

where

Sp = Int

[
1 − q ln(1 − 2−p/q)

ln 2

]
, (4.45)

and

K1 =
2(i−j)/q

1 + 2(i−j−1)/q
, (4.46)

K2 = K3 =
2(i−j)/q

1 + 2(i−j−p)/q
, (4.47)

K4 =
1

1 + 2(j−i)/q
, (4.48)

K5 =
21/q − 1
2(j−i)/q

− −2i/q + 2(2i−j)/q(21/q − 1)
2i/q + 2j/q

. (4.49)

The function Int[x] gives the integer part of x. Let us call this formulation the modified DTPBE.
The inclusion of the correction factors allows us to predict the change of the mass of tracer
according to the change of mass of particles. In Hounslow’s previous approach, see Hounslow
et al. [33], the change of number of particles within an interval was considered to determine
the change of tracer. Setting all corrections factors K1 − K5 to 1, the set of equations (4.42)
and (4.44) reduces exactly to those given by Hounslow et al. [33] and its extended version for
geometric grids of the type xi+1/2 = 21/qxi−1/2 respectively.
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xj−1/2

Nj Ni+1Ni

xi−1/2xj+1/2 xi+1/2

Figure 4.7: Birth mechanism with respect to mass only.

Though the DTPBE of Hounslow et al. [33] is extended to adjustable discretizations of type
xi+1/2 = 21/qxi−1/2, one can not apply it on general grids. The objective now is to propose
a general discretization for tracer PBEs. Before we proceed to the next section it is worth
to make some comparisons between Hounslow’s original DTPBE and the modified, adjustable
and consistent discretization DTPBE. Detailed comparisons are made in Peglow et al. [86]. We
consider only a few of them here.

In order to compare the extended and modified formulation with Hounslow’s original DTPBE
we consider the same problem which was considered in Hounslow et al. [33] for a CST with size-
independent aggregation. They considered a well-mixed continuous process initially at steady
state to which a spike of mono-disperse tracer was added. The continuous form of the tested
problem is the following

∂n(t, v)
∂t

=
1
2

∫ v

0
β(t, v − ε, ε)n(t, v − ε)n(t, ε) dε − n(t, v)

∫ ∞

0
β(t, v, ε)n(t, ε) dε

+B0δ(v) − n(t, v)
τ

, (4.50)

n(t, 0−) = 0,
∂n(t, v)

∂t

∣∣∣
t=0

= 0, (4.51)

∂m(t, v)
∂t

=
∫ v

0
β(t, v − ε, ε)m(t, v − ε)n(t, ε) dε − m(t, v)

∫ ∞

0
β(t, v, ε)n(t, ε) dε − m(t, v)

τ
,

(4.52)

m(t, 0−) = 0, m(0, v) = δ(v − v0). (4.53)

Ilievski and Hounslow [38] provided the solutions of decay of total tracer mass and tracer
weighted mean particle volume v̄T for the size-independent kernel β(u, v) = β0, the sum kernel
β(u, v) = β0 × (u + v), and the product kernel β(u, v) = β0 × u × v. The tracer weighted mean
particle volume v̄T is defined as

v̄T (t) =

∫∞
0 vm(t, v) dv∫∞
0 m(t, v) dv

. (4.54)

The analytical solutions of v̄T for these kernels have been collected in Appendix A.9. They
mentioned that v̄T gives meaningful values up to one-third degree of aggregation for a sum
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Figure 4.8: Progress of total tracer mass for size-independent aggregation, Iagg = 1/4.

kernel and is valid up to one-eighth degree of aggregation for a product kernel. The decay of
total mass of tracer MT in each case takes the following form

MT = M0 exp(−t/τ). (4.55)

Figure 4.8 compares the total tracer mass calculated using both formulations. The prediction
of total tracer mass is exactly the same for both formulations. A comparison of tracer-weighted
mean particle volumes, as drawn in Figure 4.9, illustrates that a good prediction is only possible
by the original version. For a better prediction of numerical results we have to use a finer grid.
This is true for the DTPBE and for the DBPE as well. The numerical solutions obtained for
different discretizations are plotted in Figure 4.10. However, already for q = 5 the results are in
quite good agreement with the analytical solutions.

In Figures 4.11 and 4.12 , a similar comparison of tracer weighted mean particle volume for
the size-dependent sum kernel. The decay of total mass is the same in each case, we refrain
from plotting that comparison here. For this kernel both formulations deviate significantly from
analytical solutions, see Figure 4.11. The effectiveness of the grid for different values of q has
been shown in Figure 4.12. Once again the numerical results are satisfactory by q = 5. A similar
observation has been made for the product kernel shown in Figures 4.13 and 4.14.

To conclude, the consistency of numerical solutions of the tracer mass distribution results in
lower accuracy. The accuracy has been investigated only for a constant aggregation kernel. It
gets even worse for other kernels like a sum and product kernels, see Peglow et al. [86]. The low
accuracy and restriction to geometric type grids the above numerical formulations motivate us
to propose a better scheme. Therefore the aim is now to develop a numerical scheme for the
tracer PBE which is more accurate and general.
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Figure 4.9: Progress of tracer-weighted mean particle volume for size independent aggregation,
Iagg = 1/4.
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Figure 4.10: Progress of tracer-weighted mean particle volume for size independent aggregation,
Iagg = 1/4.
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Figure 4.11: Progress of tracer-weighted mean particle volume with the sum aggregation kernel,
Iagg = 1/4.
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Figure 4.12: Progress of tracer-weighted mean particle volume with the sum aggregation kernel,
Iagg = 1/4.
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Figure 4.13: Progress of tracer-weighted mean particle volume with the product aggregation
kernel, Iagg = 1/4.
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Figure 4.14: Progress of tracer-weighted mean particle volume with the product aggregation
kernel, Iagg = 1/4.
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New numerical scheme

The new discretized scheme is based on the cell average technique discussed in Section 3.2. The
entire size domain in this technique is divided into several small cells. The particles within a
cell are assumed to be concentrated at a representative size. The idea was to take the average of
all new born particles within the cell and then assign them to the neighboring nodes such that
pre-chosen properties are exactly preserved. The same idea can be adapted for the discretization
of the TPBE. Since all the particles are assumed to be concentrated at representatives sizes xi,
the number and tracer mass density can be expressed as

n(t, v) =
I∑

j=1

Nj(t)δ(v − xj). (4.56)

and

M(t, v) =
I∑

j=1

Mj(t)δ(v − xj). (4.57)

Birth term: Substitution of n and M into the birth term of equation (4.22) gives

Bi,T =
j≥k∑
j,k

vi≤(xj+xk)<vi+1

(
1 − 1

2
δj,k

)
βj,k(MjNk + NjMk). (4.58)

Analogous to the cell average technique the assignment of a fraction of this tracer birth and
collection of all birth contributions from neighboring cells, the modified tracer birth rate at x i

is given by

BCA
i,T =Bi−1,Tλ−

i (v̄i−1)ηi(v̄i−1)H(v̄i−1 − xi−1) + Bi,Tλ−
i (v̄i)ηi(v̄i)H(xi − v̄i)

+ Bi,Tλ+
i (v̄i)ηi(v̄i)H(v̄i − xi) + Bi+1,T λ+

i (v̄i+1)ηi(v̄i+1)H(xi+1 − v̄i+1), (4.59)

where

ηi(a) = xi/a. (4.60)

The factor η assigns the tracer mass in the same ratio as granule mass. This factor can be
illustrated by a simple example, consider the birth contribution of granules Bi−1λ

−
i (v̄i−1) from

the cell i − 1 to the cell i. The total volume (mass) fraction carried with these particle is given
as Bi−1λ

−
i (v̄i−1)v̄i−1. On the other hand, corresponding to Bi−1λ

−
i (v̄i−1) particles we assign

Bi−1λ
−
i (v̄i−1)xi volume to the cell i. Now we wish to distribute the tracer mass same as granule

mass

Assigned granule mass
Actual granule mass

=
Bi−1λ

−
i (v̄i−1)xi

Bi−1λ
−
i (v̄i−1)v̄i−1

=
Assigned tracer mass
Actual tracer mass

.

It follows that

Assigned tracer mass
Actual tracer mass

=
xi

v̄i−1
:= ηi(v̄i−1).
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Similarly we can construct the other two factors appearing in the formulation (4.59). A detailed
discussion about this factor can also be found in Peglow et al. [86].

Death term: Substituting n and M in the death term of equation (4.22), we obtain

Di,T = Mi

I∑
j=1

β(xi, xj)Nj . (4.61)

The detailed calculations of tracer birth and death terms term have been put in Appendix B.9.
The final set of discrete equations for tracer mass is given as

dMi

dt
= BCA

i,T − Di,T . (4.62)

Now the discretized (4.62) together with the cell average discretization (3.67) of the number
density PBE (4.20) will be used for the calculation of TMD and GSD. These new discretized
equations will be compared with the modified Hounslow discretized model by application to
several analytically tractable problems in the next cell.

4.2.3 Test Cases

In order to show the effectiveness of the new discretization of TPBE we consider two differ-
ent types of problems, aggregation in a batch mode of operation and the problem which was
considered in [33] for a mixed-suspension-mixed-product-removal (MSMPR) system considered
in previous section. The new discretized scheme will be compared with the modified DTPBE
developed in previous section.

Aggregation in a batch system

First we take a trivial test case. We consider two properties of the system: granule volume and
the concentration of primary particles in a granule. For the sake of simplicity and the availability
of analytical solutions let us take the discrete problem of mono-disperse charge particles with
dimensionless size unity. Aldous [3] provides the particle size distribution for size-independent
kernel βi,j = 1 and N0 = 1 as

Ni(t) =
4

(t + 2)2

(
t

t + 2

)i−1

. (4.63)

Here Ni is the number concentration of clusters containing i primary particles. Here the size of
a granule v is identified by the number of primary particles i in the granule. The total number
of primary particles in clusters containing i primary particles, say Np,i which corresponds to
M(t,v) in continuous setting, is trivial in this case and given by

Np,i(t) = i ∗ Ni(t). (4.64)

The mean volume size of the primary particle distribution in this case is computed by

v̄p(t) =
∑

i iNp,i∑
i Np,i

= 1 + t, for all t. (4.65)
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Figure 4.15: Comparison of primary particle number distribution for constant kernel, Iagg = 0.98.
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Figure 4.16: Progress of mean particle volume for size-independent aggregation in a batch
system, Iagg = 0.98.
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Figure 4.17: Progress of mean particle volume for aggregation in a batch system.
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Table 4.2: Computation time in seconds for both techniques (batch problem)

Case Kernel q Modified DTPBE New technique

1 1.04 0.68
1 Constant 2 3.42 1.28

3 7.34 2.04

1 1.09 1.07
2 Sum 2 4.10 1.67

3 9.18 5.01

1 0.92 0.60
3 Product 2 4.12 1.57

3 8.34 2.65

Now Ni and Np,i have been calculated simultaneously using discretized PBE for GSD and TMD
respectively. Although the analytical solution Np,i is trivial and there is no need to use a DTPBE
for this case, we just consider this case in order to check the ability of the new scheme to handle
it. A comparison of primary particle number distribution has been depicted in Figure 4.15.
The numerical results are obtained for a coarse geometric grid of the type xi+1/2 = 2xi−1/2 in
this section since both the formulations produce the same results for a fine grid. The degree of
aggregation, see Subsection 3.2.2, is chosen to be 0.98 in this case. The modified DTPBE gives
over-prediction in the large size range. This over-prediction can clearly be seen once again in
the corresponding Figure 4.16. The mean volume size of the primary particle is shown in this
figure. The figures conclude that both the formulations differ significantly from each other.

Since for a large degree of aggregation analytical solutions for a sum and a product kernel are
difficult to calculate, we are plotting only mean volume size in these cases. For the sum kernel
βi,j = i + j, the mean volume size takes the following form

v̄p(t) =
∑

i iNp,i∑
i Np,i

= exp(2t), for all t. (4.66)

For the product kernel βi,j = ij, the mean volume is given by

v̄p(t) =
∑

i iNp,i∑
i Np,i

=
1

1 − t
, 0 ≤ t < 1. (4.67)

The temporal change of the primary particle mean volume for the sum kernel βi,j = i + j, has
been drawn in Figure 4.17(a). The computation has been carried out for a degree of aggregation
Iagg = 0.90. The figure shows that the prediction at very short times is the same for both
formulations, but at later times prediction by the new formulation is considerably better than
that predicted by the modified DTPBE. In Figure 4.17(b), the same comparison is made for a
product kernel βi,j = i× j. The results have been obtained for Iagg = 0.35. A similar conclusion
can be reached for this case.

The computations were carried out in the programming software MATLAB on a Pentium-4
processor with 1.5 GHz and 512 MB RAM. The set of ordinary differential equations resulting
from the discretized formulation is solved by a Runge-Kutta fourth order method with adaptive
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Figure 4.18: Decay of total tracer mass for size-independent aggregation in Ilievski and Houn-
slow’s problem, Iagg = 1/4.

step-size control. We have considered several cases in order to check the computation time for
both formulations. A comparison of CPU time taken by both formulations for the same demand
of accuracy and other conditions is given in Table 4.2. The table indicates that the computation
times are comparable for coarse grids but the modified DTPBE takes considerably more time
for fine grids in each case.

Aggregation of a mono-disperse feed in MSMPR

Here we take the same problem which has been considered in the previous section in Figures 4.8
and 4.9. Analytical solutions have been summarized in Appendix A.9. Three different types of
aggregation kernels have been investigated for numerical computation.

Figure 4.18 shows that both formulations predict exactly the same total tracer mass and are in
excellent agreement with analytical results. The prediction of the total tracer mass is similar
and is in excellent agreement with analytical results for all other kernels as well. In Figure 4.19,
the numerical and analytical temporal changes of tracer weighted mean particle volume v̄T (t)
have been compared. The numerical solutions by the cell average technique are in very close
agreement with analytical results at small times while the modified DTPBE gives over-prediction
at large times. Both the numerical solutions converges to the analytical solutions using finer
grids. More rigorous comparisons are made in J. Kumar et al. [54].

Figures 4.20 and 4.21 compare the prediction of tracer weighted mean particle volume for the
sum and the product kernels respectively. Similar findings as before have been observed in
this case. The numerical results by the new formulation are in good agreement with analytical

185



CHAPTER 4. NEW NUMERICAL METHODS: MULTI-DIMENSIONAL

0 1 2 3 4 5
1

2

3

4

5

6

7
New Formulation
Modified DTPBE
Analytical

t/τ

v̄ T

Figure 4.19: Progress of tracer-weighted mean particle volume for a size-independent aggregation
kernel in Ilievski and Hounslow’s problem, Iagg = 1/4.

0 1 2 3 4 5
0

20

40

60

80

100

120
New Formulation
Modified DTPBE
Analytical

t/τ

v̄ T

Figure 4.20: Progress of tracer-weighted mean particle volume for a sum aggregation kernel in
Ilievski and Hounslow’s problem, Iagg = 1/4.
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Figure 4.21: Progress of tracer-weighted mean particle volume for a product aggregation kernel
in Ilievski and Hounslow’s problem, Iagg = 1/4.

results. The prediction is very poor by the modified DTPBE even at small times and a diverging
behavior of solution can be observed at large times.

To summarize, the main advantages of the new discretized method discussed above are less
computational time and flexibility with type of grids. Moreover, a better accuracy has been
observed in all test problems. The new discretization is also easy to implement in any program-
ming language. Additionally, unlike Hounslow’s discretization for TMD, the new formulation is
a straightforward extension of the discretized scheme of GSD.

In the following section we shall formulate a numerical scheme for the computation of the com-
plete particle property distribution. The reduced model approach considered up to now in this
chapter is limited to produce only some average quantities; in other words, it assumes that a
particle of the same size contains the same amount of another distributed property. Whereas in
many applications one needs to get information about the complete property distribution. There-
fore, we shall extend the previously discussed one-dimensional schemes to multi-dimensional
problems.

4.3 Complete Model

As we have observed that by reduced model approach it is possible to simulate the process at
low computational cost. But there we estimate only the particle size distribution and amount
of the second property as a function of size of particle. Consider a particle property number
distribution as shown in a Figure 4.22. The same size particles v1 = v2 have different content of
the second property and therefore different distribution function f1 and f2. Therefore a reduced
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Figure 4.22: A complete two-dimensional particle property distribution.

model approach is not adequate to simulate such processes. We need to calculate the complete
property distribution by a numerical scheme applicable for a complete two-dimensional PBE.
Here we consider a two-dimensional PBE for aggregation which is an extension of the one-
dimensional PBE is given as [70]

∂f(x, y)
∂t

=
1
2

∫ x

0

∫ y

0
β̂(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(x, y) dγ dε

−
∫ ∞

0

∫ ∞

0
β̂(x, ε, y, γ)f(x, y)f(ε, γ) dγ dε, (4.68)

where x and y are two extensive properties of the particle and β̂ is an aggregation kernel. The
first term is corresponding to the birth of particles of properties x and y due to aggregation
of smaller particles. The last term describes the death of particles (x, y) due to collision and
adhesion to particles.

4.3.1 Numerical Methods

Numerical solution of the above PBE is difficult due to the double integral and the non-linear
behavior of the equation. There are only few numerical techniques available in the literature
to compute the complete property distribution. Some numerical techniques can be found in
the following literature [39, 62, 112, 122, 123]. But all of them either have problems regarding
the preservation of properties of the distribution or they are computationally very expensive.
The accurate computation of total mass and number is essential in many applications. In order
to overcome the computational load, an attempt has been made in the previous section. The
reduced model is, of course, computationally less expensive but it is not possible to capture the
complete two-dimensional behavior of the population with the model. In the reduced model, it
has been assumed that particles of the same size contain the same amount of the second property.
Therefore the objective of this work is to calculate the complete two-dimensional distribution of
the population at a relatively low computational cost.
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Figure 4.23: Domain discretization.

We present a new numerical technique to solve the two-dimensional PBE (4.68). For simplicity
only we have considered a numerical scheme applicable for a two-dimensional PBE. But it can
easily be extended to higher dimensional problems. The numerical technique is an extension of
the cell average technique which was discussed in Section 3.2 for solving the one-dimensional
PBE. This is based on taking averages of all newborn particles in cells. The entire property
domain is first divided into small cells. The division may be inhomogeneous, for example ge-
ometric or any other appropriate choice. Each cell will have its representative where all the
particles of this cell are assumed to be concentrated. The solution strategy follows two steps,
one to calculate averages of the properties of the newborn particles in a cell and the other to
assign them to the neighboring 4 nodes such that some properties of the distribution are exactly
preserved.

Furthermore a similar extension of the fixed pivot technique [57] will be derived and comparisons
will be made between the two extended techniques. We will see that the extended cell average
technique is more accurate and less diffusive than the extended fixed pivot technique. Moreover,
prediction of higher moments is better by the extended cell average technique. On the other
hand, the extended fixed pivot technique predicts one extra moment exactly.

Extended cell average technique

We now present the extension of the cell average technique to the two-dimensional PBE (4.68).
The entire two-dimensional property domain is divided into small cells Ci,j. A typical domain
discretization is shown in Figure 4.23. The particles within a cell are assumed to be concentrated
at a representative node Pi,j of the cell Ci,j. The size of cells could be chosen arbitrarily. It
should be noted that each node Pi,j is associated with two properties xi and yj in case of
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a two-dimensional problem. Particulate processes such as aggregation, breakage and growth,
produce particles of properties that are not associated with any nodes (except on a uniform
linear grid). The idea of the cell average technique is to calculate the average properties of
all newborn particles in a cell and observe the position of the averages values. If the two-
dimensional average value lies exactly at the node of the cell, which is again rarely possible,
then we assign all newborn particles to the node, otherwise these newborn particles must be
reassigned to the neighboring nodes depending upon the position of average properties in the
cell. The reassignment process is done in such a way that some pre-chosen moments are exactly
preserved.

We now formulate the cell average idea mathematically. Let us define the discrete number
density Nij, i.e. the total number of particles in a cell by integrating the number density over
both properties as

Nij =
∫ xi+

xi−

∫ yj+

yj−
f(t, x, y) dx dy. (4.69)

For notational convenience xi±1/2 and yj±1/2 are replaced by xi± and yi± respectively. The
moment of the distribution are defined by

μij(t) =
∫ ∞

0

∫ ∞

0
xjyjf(t, x, y) dx dy.

Integrating equation (4.68) over both the properties we obtain

dNij

dt
=

1
2

∫ xi+

xi−

∫ yj+

yj−

∫ x

0

∫ y

0
β̂(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx

−
∫ xi+

xi−

∫ yj+

yj−

∫ ∞

0

∫ ∞

0
β̂(x, ε, y, γ)f(x, y)f(ε, γ) dγ dε. (4.70)

Since particles within a cell Cij are assumed to be concentrated at the representative node
Pi, j = (xj , yj), the number density can be expressed using Dirac point masses as

f(t, x, y) =
Ix∑
i=1

Iy∑
j=1

Nijδ(x − xi)δ(y − yj). (4.71)

Here Ix and Iy are the total number of cells in the x and y property directions respectively.
Putting the value of f from (4.71) into equation (4.70), we obtain the following equation, see
Appendix B.10,

dNij

dt
= Bij − Dij . (4.72)

The birth and death terms are given as

Bij =
k≥l∑
k,l

xi−≤(xk+xl)<xi+

m≥n∑
m,n

yj−≤(ym+yn)<yj+

(
1 − 1

2
δk,lδm,n

)
β̂klmnNkmNln, (4.73)
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and

Dij =
Ix∑

p=1

Iy∑
q=1

β̂ipjqNijNpq, (4.74)

where

β̂klmn = β̂(xj, xl, ym, yn), (4.75)

and δm,n is Kronecker delta.

For uniform liner grids, equation (4.72) reduces exactly to the discrete PBE for two-dimensional
problems. This could of course be used for numerical computation on uniform linear grids at
a very high computational cost. Due to the high computational costs of linear grids, other
inhomogeneous such as geometric grids are preferred. Inhomogeneity in the grids causes in-
consistency of moments in this formulation. In order to resolve this problem, the birth term
has to be modified (reassignment of particles to neighboring nodes) so that the formulation
becomes consistent with certain moments. This issue has already been discussed in detail for
one-dimensional problems.

The birth term (4.73) approximates the total birth rate in the cell Cij. Note that the newborn
particles in the cell Cij may be distributed everywhere. Since a birth takes place by aggregation
of smaller particles, it is easy to compute the net flux of the property x, Vx,i, into cell Cij as a
result of these aggregation as

Vx,i =
k≥l∑
k,l

xi−≤(xk+xl)<xi+

m≥n∑
m,n

yj−≤(ym+yn)<yj+

(
1 − 1

2
δk,lδm,n

)
β̂klmnNkmNln (xk + xl) . (4.76)

Similarly, the net flux of the property y, Vy,j , can be computed as

Vy,j =
k≥l∑
k,l

xi−≤(xk+xl)<xi+

m≥n∑
m,n

yj−≤(ym+yn)<yj+

(
1 − 1

2
δk,lδm,n

)
β̂klmnNkmNln (ym + yn) . (4.77)

Consequently, the average property values of all newborn particles in the cell Ci,j can be calcu-
lated as

x̄i =
Vx,i

Bij
, (4.78)

and

ȳj =
Vy,j

Bij
. (4.79)

If these average values x̄i and ȳj are different from the representatives xi and yj, particles have
to be reassigned to the neighboring nodes. Note that in the case of linear (equidistant) grids in
both directions x̄i and ȳj are always equal to xi and yi. Therefore, in that case all particles will

191



CHAPTER 4. NEW NUMERICAL METHODS: MULTI-DIMENSIONAL

yj+3/2

xi−3/2 xi−1/2 xi+1/2 xi+3/2

yj−3/2

yj−1/2

yj+1/2

pi−1,j−1 pi,j−1 pi+1,j−1

pi+1,j

pi+1,j+1pi,j+1pi−1,j+1

pi−1,j pi,j

representative of a cell

(x̄i, ȳj)
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Figure 4.24: Distribution of particles to neighboring nodes.

be assigned to the same cell they belong to without any assignment to neighboring nodes. An
obvious question arises: Which and how many neighboring nodes must be chosen for assignment
of particles? The number of nodes for assignment of course depends on the choice of number of
moments we want to preserve during assignment of particles. Here we are interested in preserving
total number and total mass of each properties and therefore we have chosen, probably the most
appropriate and easy choice, the four surrounding nodes of the position of average properties.
There are a total of 9 nodes which may get a birth contribution from newborn particles in cell
Cij . The choice of 4 neighboring nodes depends on the position of (x̄i, ȳj) in the cell Cij.

Let us consider that the average property values as shown in Figure 4.24. Clearly in this
case the particles will be assigned to the nodes pi−1,j−1 = (xi−1, yj−1), pi,j−1 = (xi, yj−1),
pi,j = (xi, yj) and pi−1,j = (xi, yj). Let us suppose that the particle fractions a1, a2, a3 and a4

have been assigned to the neighboring nodes pi−1,j−1, pi,j−1, pi,j and pi−1,j respectively. For the
consistency of zeroth μ00 and first moments μ10 or μ01, these fractions must satisfy the following
relations

a1 + a2 + a3 + a4 = Bij ,

a1xi−1 + a2xi = (a1 + a2)x̄i,

a3xi + a4xi−1 = (a3 + a4)x̄i,

a1yj−1 + a4yj = (a1 + a4)ȳj,

a2yj−1 + a3yj = (a2 + a3)ȳj.
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Figure 4.25: Collection of particles from neighboring nodes.

The above system of equations (4 variables and 5 equations) has a unique solution. The last
four equations are dependent equations. This system of equations can easily be solved to give

a1 =
(xi − x̄i)(yj − ȳj)

(xi − xi−1)(yj − yj−1)
Bij, (4.80)

a2 =
(x̄i − xi−1)(yj − ȳj)

(xi − xi−1)(yj − yj−1)
Bij, (4.81)

a3 =
(x̄i − xi−1)(ȳj − yj−1)
(xi − xi−1)(yj − yj−1)

Bij, (4.82)

a4 =
(xi − x̄i)(ȳj − yj−1)

(xi − xi−1)(yj − yj−1)
Bij. (4.83)

Furthermore, it is easy to show that the assignment process of particles is also consistent with
the first cross moment μ11, see Appendix B.11. Thus, the fractions also satisfy the following
equality

a1xi−1yj−1 + a2xiyj−1 + a3xiyj + a4xi−1yj = Bij x̄iȳj. (4.84)

It must be pointed out here that the particles assignment process is consistent with the first
cross moment μ11 but we have lost this consistency during the averaging process, i.e.

k≥l∑
k,l

xi−≤(xk+xl)<xi+

m≥n∑
m,n

yj−≤(ym+yn)<yj+

(
1 − 1

2
δk,lδm,n

)
β̂klmnNkmNln(xk + xl)(ym + yn) �= Bijx̄iȳj.
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It is clear now that the formulation is consistent with μ00, μ10 and μ01 only, but not with μ11.
Now the aim is to collect all birth contributions coming from surrounding cells and the cell Cij

itself. There are 8 surrounding cells which may give rise to birth in cell Cij . Similar to the
one-dimensional case it is convenient to define a function λ as

λ±,±
i,j (x, y) =

(x − xi±1)(y − yj±1)

(xi − xi±1)(yj − yj±1)
. (4.85)

Now a1, a2, a3 and a4 can be rewritten using λ±,±
i,j as

a1 = λ+,+
i−1,j−1(x̄i, ȳj)Bij , (4.86)

a2 = λ−,+
i,j−1(x̄i, ȳj)Bij , (4.87)

a3 = λ−,−
i,j (x̄i, ȳj)Bij , (4.88)

a4 = λ+,−
i−1,j(x̄i, ȳj)Bij . (4.89)

Collecting all birth contributions to the node Pi,j, the final formulation takes the following form

dNij

dt
=

1∑
p=0

1∑
q=0

Bi−p,j−qλ
−,−
i,j (xi−p, yj−q)H [(−1)p(xi−p − x̄i−p)] H [(−1)q(yj−q − ȳj−q)]

+
1∑

p=0

1∑
q=0

Bi−p,j+qλ
−,+
i,j (xi−p, yj+q)H [(−1)p(xi−p − x̄i−p)] H

[
(−1)q+1(yj+q − ȳj+q)

]

+
1∑

p=0

1∑
q=0

Bi+p,j+qλ
+,+
i,j (xi+p, yj+q)H

[
(−1)p+1(xi+p − x̄i+p)

]
H

[
(−1)q+1(yj+q − ȳj+q)

]

+
1∑

p=0

1∑
q=0

Bi+p,j−qλ
+,−
i,j (xi−p, yj+q)H

[
(−1)p+1(xi+p − x̄i+p)

]
H [(−1)q(yj−q − ȳj−q)]

−
Ix∑

p=1

Iy∑
q=1

β̂ipjqNijNpq. (4.90)

Here H is the Heaviside function defined as in previous chapter. Figure 4.25 explains the
birth terms in the above formulation. Four major terms (double sum in each) in the birth are
corresponding to the four different domains, shown by dotted lines, in Figure 4.25. Each major
term has a contribution from four cells, numbered 1, 2, 3, 4, shown in the figure i.e. each major
term has four terms again. There are a total of 16 terms and many of them may be zero at a
particular time depending upon the average property values in each cell.

It is also of interest to mention the discrete formulation of a one-dimensional PBE in the form
presented above and see the similarity between them. The discrete formulation for the one-
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dimensional case can be rewritten as

dNi

dt
=

1∑
p=0

Bi−pλ
−
i (x̄i−p)H [(−1)p(xi−p − x̄i−p)] +

1∑
p=0

Bi+pλ
+
i (x̄i+p)H

[
(−1)p+1(xi+p − x̄i+p)

]

−
I∑

q=1

βiqNiNq. (4.91)

Here the parameter λ is given as

λ±
i (x) =

(x − xi±1)
(xi − xi±1)

. (4.92)

Clearly the two-dimensional formulation is a direct extension of the one-dimensional case. We
have written the formulation (4.90) in such a way that it could be easily extended to higher
dimensional (more than two) problems. For example in the three dimensional case each birth
term will be extended corresponding to the third z variable and the total major birth term (triple
sum in each) will be 8 in that case. Nevertheless the formulation will become computationally
very expensive and therefore some other dimensionality reduction methods or Monte Carlo
methods would be preferred for higher dimensional cases.

Extended fixed pivot technique

Now it is easy to formulate the extended version of the fixed pivot technique for two-dimensional
problems. The basic difference between the two techniques is the averaging of properties. The
reassignment strategy is the same in both the techniques. If a newborn particle appears due to
aggregation or breakage in the dotted domain in Figure 4.26 then it will be partly assigned to
the node Pi,j in such a way that the number and mass is preserved. Note that this domain is
not the same as that of the cell average technique, all surrounding cells were taken into account
for the assignment in the cell average technique. On the other hand, in the fixed pivot technique
a part of the surrounding cells is being taken into consideration for the assignment. In the cell
average technique, particle birth reassignment was done once for each cell whereas in the fixed
pivot technique reassignment is done for each birth separately.

Consider that a birth takes place at (x, y) in the sub-domain A shown in the Figure 4.26. It
is clear that particles appeared at (x, y) will be assigned to Pi−1,j−1, Pi,j−1, Pi,j and Pi−1,j .
Suppose that fractions a1, a2, a3 and a4 of this birth have been assigned to Pi−1,j−1, Pi,j−1, Pi,j

and Pi−1,j respectively. Similar to the cell average technique, for the exact prediction of total
number and total mass of each component these fraction will be given by

a1 =
(xi − x)(yj − y)

(xi − xi−1)(yj − yj−1)
, (4.93)

a2 =
(x − xi−1)(yj − y)

(xi − xi−1)(yj − yj−1)
, (4.94)

a3 =
(x − xi−1)(y − yj−1)

(xi − xi−1)(yj − yj−1)
, (4.95)
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a4 =
(xi − x)(y − yj−1)

(xi − xi−1)(yj − yj−1)
. (4.96)

Let us denote the fraction of the birth assigned to the node Pi,j from the new particles appeared
at (x, y) in the dotted domain shown in Figure 4.26 by a function η(x, y). Thus, the function
η(x, y) is given by

η(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xi−1)(y − yj−1)
(xi − xi−1)(yj − yj−1)

, xi−1 ≤ x < xi and yj−1 ≤ c < yj, (sub-domain A)

(x − xi−1)(yj+1 − y)
(xi − xi−1)(yj+1 − yj)

, xi−1 ≤ x < xi and yj ≤ c < yj+1, (sub-domain B)

(xi+1 − x)(yj+1 − y)
(xi+1 − xi)(yj+1 − yj)

, xi ≤ y < xi+1 and yj ≤ c < yj+1, (sub-domain C)

(xi+1 − x)(y − yj−1)
(xi+1 − xi)(yj − yj−1)

, xi ≤ y < xi+1 and yj−1 ≤ c < yj, (sub-domain D).

(4.97)

Now the continuous PBE (4.68) is integrated over the cell Cij and the birth term is modified to
make the formulation consistent with the total number and mass. It takes the following form

dNij

dt
=

1
2

∫ xi+1

xi−1

∫ yj+1

yj−1

η(x, y)
∫ x

0

∫ y

0
β̂(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx

−
∫ xi+

xi−

∫ yj+

yj−

∫ ∞

0

∫ ∞

0
β̂(x, ε, y, γ)f(x, y)f(ε, γ) dγ dε. (4.98)

Substituting the f(x, y) using Dirac point masses from equation (4.71) and after some manip-
ulations similar to the cell average technique, one arrives at the following discrete equations

dNij

dt
=

k≥l∑
k,l

xi−1≤(xk+xl)<xi+1

m≥n∑
m,n

yj−1≤(ym+yn)<yj+1

(
1 − 1

2
δk,lδm,n

)
η (xk + xl, ym + yn)) β̂klmnNkmNln

−
Ix∑

k=1

Iy∑
l=1

β̂ikjlNijNkl. (4.99)

Note that besides the correct prediction of total mass and number the fixed pivot technique is
consistent with the first cross moment μ11 which we have lost in the cell average technique during
averaging process. It is due to the fact that we reassigned particles in the fixed pivot technique
immediately after their birth to the appropriate grids according to the rule discussed above. We
have already seen that the reassignment rule is also consistent with the first cross moment. In
the next section we will see some comparisons of the two techniques with analytically available
solutions.

4.3.2 Test Cases

In order to show the effectiveness of the two numerical techniques, we now present some compar-
isons of the numerical solutions with analytical solutions of two components processes. The aim
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Figure 4.26: Sub-domains which produce particle birth at the node Pi,j.

is to demonstrate the difference between the extended cell average and fixed pivot techniques.
We will consider two test cases in this section. The first test case presents the computation on a
complete two-dimensional problem to check the ability of the schemes to estimate the complete
particle property distribution and its moments. The second test case is an one-dimensional
problem computed by the extended techniques to demonstrate the numerical diffusion.

Test case 1

First we considered a problem from Lushnikov [70]. He considered a discrete aggregation problem
of two different types of particles. Analytical solutions for the number density and its moments
for the constant kernels have been summarized in Appendix A.8. Two different types of mono-
disperse particles with the same concentration have been taken as an initial condition, shown in
Figure 4.27. The number of monomers of each type m and n are displayed on the x and y axes
respectively. The z axis represents the number density of particles.

The computation is made at high degree of aggregation, Iagg = 0.98. The number of grids
in each direction has been taken to be 20. First 10 grids are chosen linearly and the rest are
taken geometrically by the rule xi+1/2 = 2xi−1/2 in both the directions. A low order MATLAB
ODE23 solver is used for integration. The ODE23 is based on an explicit Runge-Kutta (2,3)
formula. A low order integrator had to be taken since higher order methods, like the explicit
Runge-Kutta (4,5), produces negative values. A more sophisticated higher order method which
preserve positivity must be used.

The complete particle size distribution at final time computed by the cell average technique is
shown in Figure 4.28. The analytical and numerical particle property distributions computed
by the fixed pivot technique match exactly with the Figure 4.28 and therefore we omitted to
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Figure 4.27: Initial condition for the test case 1.
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Figure 4.28: Complete particle property distribution, Iagg = 0.98.
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Figure 4.29: Temporal change of the first two moments, Iagg = 0.98.
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Figure 4.30: Temporal change of the first cross moment, Iagg = 0.98.
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Figure 4.31: Temporal change the second moment, Iagg = 0.98.
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Figure 4.32: Initial condition for the test case 2.

200



4.3. COMPLETE MODEL

2 4 6 8 10 12

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

m

n

(a) The cell average technique

2 4 6 8 10 12

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

m

n

(b) The fixed pivot technique

Figure 4.33: A comparison of the two technique showing numerical diffusion, Iagg = 0.98.
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Figure 4.34: Temporal change of the first cross moment, Iagg = 0.98.
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Figure 4.35: Temporal change of the second moment, Iagg = 0.98.
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present them here. The numerical results are symmetrical since we have taken the same initial
concentration of both types of particles. It is difficult to here to measure the efficiency of the
schemes by direct comparison of the particle property distribution. Therefore we have compared
the few important moments of the particle property distribution.

As expected, the prediction of the zeroth and first moment in Figure 4.29 is exactly matching
with the analytical solutions and is the same by both the techniques. The first cross moments
have been plotted in Figure 4.30. As we know that the cell average formulation is consistent
only with the two moments μ00 and μ01 or μ10, whereas besides these moments the fixed pivot
technique is also consistent with μ11. The same observations can be seen in the Figure 4.30.
The prediction by the fixed pivot technique is exact while a slight under-prediction has been
observed by the cell average technique. This is due to the fact that we lose during averaging
process in the cell average technique.

Figure 4.31 presents the temporal evolution of the second moment. Completely different results
are observed in this case. Though the cell average technique is consistent only with two moments,
the prediction of the second moment is extremely accurate. On the other hand the fixed pivot
technique which reproduces the first cross moment exactly, however, gives a very poor prediction
of the second moment. A diverging behavior with time has been observed in the fixed pivot
technique. The temporal change of the second moment clearly reflects the ability of the scheme
of the cell average technique to predict higher moments with good accuracy.

We can not conclude from this test problem the choice of a better technique. The fixed pivot
technique predicts three moments exactly but fails to predicts higher moments. On the other
hand the cell average predicts higher moments with good accuracy. Nevertheless in the next
case we will see that the cell average technique predicts not only higher moments accurately but
also suffers from much less numerical diffusion.

Test case 2

Here we compute a one-dimensional problem with both extended techniques. We consider
aggregation of mono-disperse 2-mer granules and each granule is composed of two different
types of primary particles. Whenever two granules aggregate they will form a new granule
with an equal number of primary particles of each type. In that way it is a one-dimensional
problem. The initial condition is shown in Figure 4.32. The new granules will be formed along
the diagonal only. The aim here is to calculate the PSD using both techniques and to see the
numerical diffusion in each case. The computation is done with the constant aggregation kernel
at Iagg = 0.98. The number of grid points in each direction is chosen to be 13 with the rule
xi+1/2 = 2xi−1/2. The grid point numbers have been shown on the x and y axis. Again the
ODE23 MATLAB solver is used to solve the system of ODEs.

The distribution of granules has been presented in Figure 4.33. The grid points are displayed
on x and y axes. The granules are supposed to be appear at the diagonal only. Due to the
non-linear grids, granules do not appear exactly at the grid points and therefore a granule
reassignment is done in both techniques which causes diffusion. The numerical diffusion can not
be avoided completely. However, the Figure 4.33 clearly shows that the cell average technique
is less diffusive than the fixed pivot technique.
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Furthermore, different moments of granule distribution have been compared with the analytical
solutions. The first cross moment is plotted in Figure 4.34. Once again the same observations
like in the previous test case have been obtained, i.e. a slight under-prediction by the cell average
technique and exact prediction by the fixed pivot technique. A comparison of second moments
has been shown in Figure 4.35. The prediction by the cell average technique is extremely
accurate while a diverging behavior by the fixed pivot technique is obtained. Some of the results
presented in this section can also be found in J. Kumar et al. [56].

Before concluding this chapter, some attention to the computational time must be given. The
computations are made on a Pentium-4 PC with 1.5 GHz, and 512 RAM for both test cases.
The computation times by both the techniques are approximately the same. The first test case
takes a CPU time of about 60 seconds and the second takes only 20 seconds. In both the cases
computational time is affordable by a desktop PC. Finally by taking all the factors into account
we conclude that the extended cell average technique is superior to the extended fixed pivot
technique and can be used for practical problems to compute higher moments as well as the
complete particle property distribution.
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Chapter 5

Conclusions

This work presents a new numerical scheme, the cell average technique, for solving population
balance equations. The technique is based on the fixed pivot technique developed by Kumar and
Ramkrishna [57]. The cell average technique follows a two step strategy, one to calculate average
size of the newborn particles in a class and the other to assign them to neighboring nodes such
that the properties of interest (moments) are exactly preserved. The main significance from the
applicational point of view of the improved efficiency is that the cell average technique can be
used as a tool for the calculation up to (or near to) the gelation point. On the other hand,
it has been shown that the fixed pivot technique diverges before the gelation point due to the
over-prediction of number density at large volumes. A comparison of the numerical results
obtained by the fixed pivot and cell average techniques with the analytical results indicates that
the cell average technique improves the under-prediction in the moderate size range and the
over-prediction in the large size range. Furthermore, the cell average technique has been applied
to physically relevant problems and the results have been compared with the fixed pivot and
generalized approximation techniques. The numerical results for these problems are comparable
to the generalized approximation method while the fixed pivot technique gives over-prediction
in each case.

The cell average technique proposed in this work allows the convenience of using regular (linear,
geometric- or equal-size) and irregular meshes. Furthermore, the cell average scheme is consistent
with the zeroth and first moments, the same procedure can be used to provide consistency with
any two or more than two moments. Consistency with more than two moments can be achieved
by distributing particles to more grid points. Note that we are not computing moments but the
complete distribution function. The numerical results have shown the ability of the cell average
technique to predict very well the time evolution of the second moment as well as the complete
particle size distribution.

An important attribute of a numerical scheme, the computational time, has been investigated
for numerous problems. It has been found that the computation time taken by the cell average
technique is comparable to that taken by the fixed pivot technique. Moreover, for several aggre-
gation problems it was even less than the computation time taken by the fixed pivot technique.
A complete stability and convergence analysis of the fixed pivot and cell average techniques for
breakage problems has been performed. Mathematical analysis and also experimental evidence
show that the fixed pivot technique is only a first order accurate for breakage problems. Whereas
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it has been proved that the cell average technique provides a second order accuracy for most of
the breakage problems. It has also been confirmed by experimental order of convergence stud-
ies. For aggregation problems, it has been shown numerically that the cell average technique
converges to the analytical solutions faster than the fixed pivot technique.

A new approach for solving growth population balance equations is presented. The growth
process has been treated as aggregation of existing particles in the disperse phase with some
imaginary nuclei appearing form the continuous phase. Thus, the growth population balance
equation is converted to the aggregation population balance equation. The aggregation rate is
expressed in terms of the growth rate. Consequently, it becomes a trivial task to apply the
cell average technique to the transformed aggregation population balance equation. However,
numerical results of the particle size distribution turn out to be very diffusive. Nonetheless,
the cell average formulation predicts the first two moments extremely accurately without any
computational difficulties.

Further, a new concept for the coupling of different processes has been introduced. All processes
including growth and nucleation have been solved using the cell average technique by treating
them uniformly. It has been demonstrated that the new approach of coupling is not only more
accurate but also computationally less expensive. This is achieved by collecting all newborn
particles in a cell independently of the events (aggregation, breakage, growth and nucleation
processes) that make them appear in the cell. Then a similar treatment like the cell average
technique provides to individual processes is given. A substantial success of this coupling is
observed for combined processes where growth is present because the coupling of growth with
other processes has been a challenging task. The new approach of coupling makes the numerical
discretization very simple and more accurate.

In addition, the number density based breakage population balance equation has been trans-
formed to the form of a mass conservation law. Then it has become easy to apply the well
known finite volume schemes that have an important property of mass conservation. Although
the number density distribution calculated by the finite volume scheme discussed in this work
is more accurate than that obtained by the cell average technique, the finite volume scheme
produces very poor results for the zeroth moment. In addition to the stability and convergence
analysis some other properties of the numerical solution of the finite volume scheme have been
studied rigorously. Then, the proposed finite volume scheme for breakage problems has been
coupled with the existing finite volume scheme for aggregation. In order to assess the effective-
ness of the finite volume and cell average schemes, the number density distributions computed
by the two techniques for several coupled problems have been compared.

In this work the DTPBE of Hounslow et al. [33] has been modified since it was not consistent
with the associated discretized population balance equation. The new version retains all the
advantages of the original version. It has been tested for a simple aggregation problem in a
batch system. Contrary to the original version, the new version predicts a constant ratio of
tracer mass and granule mass during aggregation in a batch system. It has been shown that
both versions predict the same results for total tracer mass, while the original version is more
accurate for tracer-weighted mean particle volume. Moreover, the modified DTPBE has been
extended for the geometric grid of the type xi+1/2 = 21/qxi−1/2 while the original formulation
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was valid for the grid of the type xi+1/2 = 2xi−1/2. The new scheme, extended and modified
formulation, has been validated by many problems where analytical solutions are available.

The cell average technique is then formulated for solving the tracer population balance equation.
Contrary to the previously existing method of Hounslow et al., the new formulation can be
applied to any type of grid. Moreover, we compared our new discretization with the modified
DTPBE of Peglow et al. [86] for several problems. It has been found in each case that the
new discretization predicts better results than the modified DTPBE. The new formulation is
more efficient on coarse grids while both formulations produce similar results on fine grids.
Additionally, a comparison of CPU time taken by both formulations concludes that the new
formulation takes less computational time.

The cell average and fixed pivot techniques have also been extended for solving two-dimensional
aggregation population balance equations. The schemes are based on the exact prediction of
some selected moments. We have considered the exact prediction of the total number and
total mass of each component of the population. In the cell average technique, this is done
by collecting all of the particles in a cell and then distributing them to neighboring cells so
that the scheme is consistent with the total number and mass. On the other hand, in the
fixed pivot technique the newborn particles of different sizes in a cell have been distributed to
neighboring nodes separately without collecting them first at a point in the cell. Moreover it
has been observed that with this setting the prediction of one extra higher moment, the first
cross moment of the distribution, is exact in the fixed pivot technique. Therefore the fixed pivot
technique becomes consistent with three different moments. While the cell average technique
remains consistent with the first two moments only. The accuracy of numerical results has been
shown by comparing the particle size distribution and its moments for a test problem. Similar
to the one-dimensional case, the numerical results, however, show that the cell average scheme
has potential to predict the number density distribution as well as higher moments with better
accuracy.

One of the main goals of this research was to develop a numerical scheme that retains all
advantages of existing schemes as well as predicts more accurate results and can be applied
to solve the different particulate processes simultaneously. A further objective was to extend
the scheme for solving higher dimensional problems. These objectives have been successfully
achieved. Nevertheless, based on the work carried out in this research, some future works are
proposed below.

1. Though we have presented the cell average technique for two-dimensional aggregation
problems in such a way that it could easily be extended for more than two-dimensional
problems, but it will in that case become computationally very expensive. Therefore some
other criteria to reduce the computational cost should be proposed.

2. A more sophisticated finite volume schemes must be developed which can at least predict
the first two moments accurately.

3. Mathematical analysis for aggregation problems should be performed.

4. A dynamic grid refinement strategy may be accomplished with the cell average technique
to make the technique more powerful.
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Appendix A

Analytical Solutions

A.1 Pure breakage

Table A.1: Analytical solutions for pure breakage in bath systems, Ziff and McGrady [125]

Case S(x) β(x, y) n(0, x) Analytical solution, n(t, x)

1 x 2/y δ(x − L) exp (−tx)
(

δ(x − L) +
[
2t + t2(L − x)

]
θ(L − x)

)
2 x2 2/y δ(x − L) exp

(−tx2
)
[δ(x − L) + 2tLθ(L − x)]

3 x 2/y exp(−x) exp (−x(1 + t)) (1 + t)2

4 x2 2/y exp(−x) exp(−tx2 − x) [1 + 2t(1 + x)]

In this table the function θ is the step function defined as

θ(x − L) =

{
1, x < L

0, otherwise.
(A.1)

A.2 Pure aggregation

Analytical solution of the number density

Scott [102] provided a number of solutions for a variety of initial conditions and three types of
coalescence kernel. A brief outline of the solutions is being presented here. They considered the
following gaussian like initial condition

n(v, 0) =
N0ǎ

ν+1

v2Γ(ν + 1)

(
v

v2

)ν

exp(−ǎv/v2), (A.2)

where ν, ǎ and v2 are constants which characterize the shape of the initial distribution. The
mean volume is given by

v0 = v2(ν + 1)/ǎ. (A.3)
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It is convenient to introduce the dimensionless volume unit x by

x =
v

v0
, (A.4)

and the dimensionless density function φ,

φ(x, Ta) =
v0

N0
n(v, t), (A.5)

where Ta is a dimensionless time variable, defined in each case of the three different coalescence
kernel. Initial distribution in terms of dimensionless variables is defined as

φ(x, 0) =
(ν + 1)ν+1xν exp [−x(ν + 1)]

Γ(ν + 1)
. (A.6)

Now three cases for different coalescence kernel are considered. In each cases, two different
solutions are presented, one is valid for small values of x and the other one is asymptotic
expression using saddle-point method valid for large values of x.

Constant coalescence kernel β(u,v) = β0

The decay of total number can be obtained by integrating the equation (2.3) with respect to v
from zero to infinity and solving the resulting ordinary differential equation. Thus

N(t) =
2N0

2 + β0N0t
. (A.7)

Define the dimensionless time Ta = β0N0t. Using Laplace transforms and series expansions,
exact solution for small values of x and Ta is given by

φ(x, Ta) =
4 exp [−(ν + 1)]

x(Ta + 2)2

∞∑
k=0

[x(ν + 1)](ν+1)(k+1)

Γ [(ν + 1)(k + 1)]

(
Ta

Ta + 2

)k

. (A.8)

An asymptotic expression valid for large values of x and Ta can be obtained by the saddle-point
method. An approximate solution in this case is

φ(x, Ta) � 4(ν + 1) exp [(ys − 1)x(ν + 1)]
(Ta + 2)2yν

s [2π(ν + 1)(ν + 1 − ν/ysx)]
, (A.9)

with the relation between Ta and ys

Ta

Ta + 2
= yν

s (ys − 1/x). (A.10)

Sum coalescence kernel β(u,v) = β0(u + v)

For this case

N(t) = N0 exp(−β0N0v0t) = N0 exp(−Ta) = N0(1 − τ), (A.11)
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where the dimensionless time Ta and parameter τ are defined as

Ta =β0N0v0t,

τ =1 − exp(−Ta).

A series solution is obtained by Laplace transforms and conformal transformation

φ(x, Ta) = (1 − τ) exp [−(τ + ν + 1)x]
∞∑

k=0

τkxν+k(ν+2)(ν + 1)(ν+1)(k+1)

(k + 1)!Γ [(ν + 1)(k + 1)]
. (A.12)

The saddle-point calculation leads to the following asymptotic expression

φ(x, Ta) �
(1 − τ) exp

[−(τ + ν + 1)x + (ν + 2)xτ 1/(ν+2)
]

x3/2τ (2ν+3)/(2ν+4) [2π(ν + 2)/(ν + 1)]1/2

[
1 − (2ν + 3)(ν + 3)

24xτ1/(ν+2)(ν + 1)(ν + 2)

]
.

(A.13)

Product coalescence kernel β(u,v) = β0uv

It can be easily shown that decay of total number in this case is given by

N(t) = N0 − 1
2
β0N

2
0 v2

0t = N0

(
1 − 1

2
Ta

)
, (A.14)

with dimensionless time Ta

Ta = β0N0v
2
0t. (A.15)

Laplace transform and conformal transformation techniques yield a series solution

φ(x, Ta) = exp [−(Ta + ν + 1)x]
∞∑

k=0

T k
a xν+k(ν+3)(ν + 1)(ν+2)(k+1)

(k + 1)!Γ [(ν + 2)(k + 1)]
. (A.16)

An asymptotic expansion for this case is

φ(x, Ta) �(ν + 2) exp{−x(Ta + ν + 1) + x(ν + 3)T 1/(ν+3)
a [(ν + 1)/(ν + 2)](ν+2)/(ν+3)}

x5/2[Ta(ν + 2)/(ν + 1)](2ν+5)/(2ν+6) [2π(ν + 1)(ν + 3)]1/2

×
{

1 −
[

(ν + 4)(2ν + 5)
24xT 1/(ν+3)(ν + 1)(ν+2)/(ν+3)(ν + 2)1/(ν+3)(ν + 3)

]}
. (A.17)

Particular cases

For the exponential initial distribution, the solution can be further simplified for the constant
and sum kernel. So the initial condition is

n(v, 0) =
N0

v0
exp(−x). (A.18)

For size independent kernel β(u, v) = β0, the simplified form of analytical kernel is given by

n(v, t) =
4N0

v0(Ta + 2)2
exp

( −2x
(Ta + 2)

)
, (A.19)
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where Ta = N0β0t.

For the case where β(u, v) = β0(u + v), The analytical solution for the population density is

n(v, t) =
N0(1 − τ)

v0x
√

τ
exp (−(1 − τ)x) I1(2x

√
τ), (A.20)

where τ and Ta are defined above for the sum kernel case and I1 is the modified Bessel function of
the first kind of order one. It is difficult to compute modified Bessel function for large arguments.
Asymptotic expansions of modified Bessel function for the large arguments can be found in [1].

Iν(z) ∼ exp(z)√
2πz

{
1 − μ − 1

8z
+

(μ − 1)(μ − 9)
2!(8z)2

− (μ − 1)(μ − 9)(μ − 25)
3!(8z)3

+ . . .

}
,

where μ = 4ν2 and | arg z| < π/2.

Analytical solution of number density for mono-disperse initial condition with size
unity

The analytical solution for this case can be found in Aldous [3]. For constant kernel β(x, y) = 1,
the analytical number density is given by

n(t, x) =
(

1 +
t

2

)−2 ( t

2 + t

)x−1

, (A.21)

where t may vary from 0 to ∞. For the sum β(x, y) = x + y and the product β(x, y) = xy
kernels, it is given by

n(t, x) = exp(−t)B (1 − exp(−t), x) , with 0 ≤ t < ∞, (A.22)

and

n(t, x) = x−1B (t, x) , with 0 ≤ t < 1. (A.23)

Here the function B is defined as

B(λ, x) = (λx)x−1 exp(−λx)/x!, x = 1, 2, . . . ; 0 ≤ λ ≤ 1. (A.24)

A.3 Pure growth

The rate of change of jth moment for pure growth can be obtained by multiplying the growth
PBE by xj and integrating over the complete size range as∫ ∞

0
xj ∂n(t, x)

∂t
dx = −

∫ ∞

0
xj ∂G(x)n(t, x)

∂x
dx. (A.25)

Using partial integration on the right hand side of the above equation gives

dμj

dt
=

(
xjG(x)n

) ∣∣∞
0

+
∫ ∞

0
jxj−1G(x)n(t, x) dx. (A.26)
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The first term on the right hand side is zero since we have the following assumptions that
n(t, 0) = 0 and n(t,∞) = 0. Finally the rate of change of μj is given by

dμj

dt
=

∫ ∞

0
jxj−1G(x)n(t, x) dx. (A.27)

Further simplifications is not possible without knowing the form of growth rate. We will consider
two special forms of growth rate.

Constant growth rate

Moments: Substituting the growth rate G(x) = G0 in the equation (A.27) we obtain

dμj

dt
= G0

∫ ∞

0
jxj−1n(t, x) dx. (A.28)

The zeroth moment is calculated by

dμ0

dt
= 0, (A.29)

which can be solved to give μ0(t) = μ0(0). The rate of change of the first moment is given by

dμ1

dt
=G0

∫ ∞

0
n(t, x) dx

=G0μ0(0). (A.30)

It can be solved to give the temporal change of the first moment as

μ(t) = μ1(0) + G0μ0(0)t. (A.31)

Number density: The growth rate is constant, so all points on the solution profile will move
at the same speed G(x) = G0. If n0(x) is the initial solution, then the time evolution of number
density is given by

n(t, x) = n0(x − G0t). (A.32)

Linear growth rate

Moments: As we have seen that the rate of change of the zeroth moment is always zero
independently of growth rate. Therefore the zeroth moment remains constant during the growth
process i.e. μ0(t) = μ0(0). The rate of change of the first moment in this case is calculated by

dμ1

dt
=G0

∫ ∞

0
xn(t, x) dx

=G0μ1. (A.33)

Finally, it gives

μ1(t) = μ1(0) exp(G0t). (A.34)
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Number density: For linear growth rate, G(x) = G0v, Kumar and Ramkrishna [59] have
provided the analytical solution for pure growth PBE

n(t, x) = n0

(
x exp(−G0t)

)
exp(−G0t), (A.35)

where n0(x) is the initial particle size distribution.

A.4 Simultaneous aggregation and breakage

Patil et al. [81] provided an analytical solution for the PBE with simultaneous breakage and
coalescence for a special case where the total number of particles is constant. They considered
the following continuous PBE

∂n(v, t)
∂t

=
1
2

∫ v

0
β(v − u, u)n(v − u, t)n(u, t) du − n(v, t)

∫ ∞

0
β(v, u)n(u, t) du

+2
∫ ∞

v
S(u)n(u, t)b(v, u)du − S(v)n(v, t), (A.36)

with the constraints

n(v, 0) ≥ 0,
0 ≤ β(u, v) = β(v, u),∫ w

0
b(v,w)dv = 1,∫ w

0
2vb(v,w)dv = w.

Kernels are

β(u, v) = β0,

S(v) = S0v,

b(v, u) =
1
u

.

Analytical solutions are obtained for the following two initial conditions

n(v, 0) =N(0)
N(0)
μ1

exp
(
−N(0)

μ1
v

)
, (A.37)

and

n(v, 0) =N(0)
(

2
N(0)
μ1

)2

v exp
(
−2

N(0)
μ1

v

)
, (A.38)

where N(t) is the total number of particles and μ1 =
∫∞
0 vn(v, t)dv is the first moment of the

distribution. It can also be proved that the total number is constant by choosing the values of the
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problem parameters to satisfy
√

2S0μ1/β0 = N(0). They introduced the following dimensionless
variables

Φ(Ts) =
N(t)
N(0)

, η =
vN(0)

μ1
, (A.39)

Ts = N(0)β0t, and φ(η, Ts) =
n(v, t)μ1

[N(0)]2
. (A.40)

Now, equation (A.36) can be written in dimensionless form as

∂φ

∂Ts
=

1
2

∫ η

0
φ(η − x, Ts)φ(x, Ts) dx − φ(η, Ts)Φ(Ts) + [Φ(∞)]2

∫ ∞

η
φ(x, Ts) dx

−η

2
[Φ(∞)]2 φ(η, Ts), (A.41)

with the initial condition

φ(η, 0) = exp(−η) or φ(η, 0) = 4η exp(−2η), (A.42)

where Φ(∞) =
√

(2S0μ1/β0)/N(0) and Φ(Ts) = Φ(∞) = 1.

By the simple use of Laplace and inverse Laplace transform, they obtained the following equi-
librium solution for the initial condition φ(η, 0) = exp(−η),

φ(η, Ts) = exp(−η). (A.43)

If the initial condition is φ(η, 0) = 4η exp(−2η), then the solution becomes

φ(η, Ts) ≈ 1
F (Ts) − E(Ts)

(
[E(Ts)]

2 [F (Ts) − 1] exp [−E(Ts)η]

− [F (Ts)]2 [E(Ts) − 1] exp[−F (Ts)η]
)
. (A.44)

Here F (Ts) and E(Ts) are the real roots of the polynomial

L1 + L2P + L3p
2 + L4p

3 + L5p
4, (A.45)

where

L1 =1
3
4
T 2

s +
1
4
T 3

s +
1
4
T 2

s exp(−Ts),

L2 =7Ts + 3
1
4
T 2

s +
1
4
T 3

s + T exp(−Ts) − 1
4
T 2

s exp(−Ts),

L3 =7 + 10Ts + 1
1
2
T 2

s + exp(−Ts) − T exp(−Ts),

L4 =9 + 3Ts − exp(−Ts),

L5 =2p4.

Obtaining the root of the above polynomial is difficult, therefore the roots will be obtained
numerically. They also mentioned that after enforcing constraints on the number and volume of
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the floc size distribution, there are only two significant real roots of the polynomial. Lage [61]
made some simplifications, their final solution equivalent to the previous one is

φ(η, Ts) =
2∑

i=1

K1(Ts) + piK2(Ts)
L2(Ts) + 4pi

exp(piη), ∀Ts > 0, (A.46)

where Pi’s are the roots of the polynomial L1(Ts) + L2(Ts)p + 2p2, and the others parameters
are

L1(Ts) =K1(Ts) = 7 + Ts + exp(−Ts), (A.47)
K2(Ts) =2 − 2 exp(−Ts)
L2(Ts) =9 + Ts − exp(−Ts).

The roots of the polynomial can easily be obtained

p1 =
1
4

[exp(−Ts) − Ts − 9] +
1
4

√
d(Ts), (A.48)

and

p2 =
1
4

[exp(−Ts) − Ts − 9] − 1
4

√
d(Ts), (A.49)

where

d(Ts) =T 2
s + [10 − 2 exp(−Ts)] Ts + 25 − 26 exp(−Ts) + exp(−2Ts).

A.5 Simultaneous aggregation and nucleation

The continuous population balance equation in this case is given as

∂n(v, t)
∂t

=
1
2

∫ v

0
β(v − u, u)n(v − u, t)n(u, t) du − n(v, t)

∫ ∞

0
β(v, u)n(u, t) du + Bnuc(t, x).

(A.50)

Analytical solutions are given for moments by considering the zero initial population with a
constant aggregation kernel and a constant nucleation rate. In this case the analytical solutions
for the first two moments are given by

μ0 = b̌ tanh(b̌τ/2), (A.51)

and

μ1 = στ, (A.52)

where
σ = B0/(β0N

2
0 ),

τ = β0N0t,

and
b̌ =

√
(2σ).
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A.6 Simultaneous growth and aggregation

There are various combinations of growth rates and aggregation kernels where analytical solu-
tions are available. These solutions can be found in Ramabhadran et al. [93]. So the PBE in
this case is simplified as follows

∂n(v, t)
∂t

+
∂ [G(v)n(v, t)]

∂v
=

1
2

∫ v

0
β(v − u, u)n(v − u, t)n(u, t) du − n(v, t)

∫ ∞

0
β(v, u)n(u, t) du.

(A.53)

Exponential initial condition

Assuming that the initial condition follows an exponential dependence with respect to particle
volume,

n(v, t = 0) =
N0

v0
exp(−v/v0), (A.54)

where N0 and v0 are the total number of particles and mean volume of particles at time t = 0,
respectively. The dynamics of the PSD in particulate systems undergoing combined particle
growth and aggregation will depend on the values of two characteristics time constants, namely,
the dimensionless aggregation time, Ta, and the dimensionless growth time, Tg, as

Ta = β0N0t,

and

Tg = G(v0)/tv0.

Let us define some more dimensionless quantities

L0 = 1 − 2Λ(1 − μ̃0)/μ̃0,

L1 = 1 − 2Λ(1 − μ̃0)/μ̃1,

L2 = (v/v0)μ̃1

√
1 − μ̃0,

μ̃0(t) =
Ntot(t)

N0
=

1
N0

∫ ∞

0
n(v, t)dv,

μ̃1(t) =
Vtot(t)
N0v0

=
1

N0v0

∫ ∞

0
vn(v, t)dv,

and

Λ = Tg/Ta.

Now we will consider two particular cases.
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Constant aggregation and linear growth: For the case,

β = β0 and G = G0v/v0,

one can easily obtain the following analytical solution

n(v, t) =
N0

v0

μ̃2
0

μ̃1
exp

(
− μ̃0

μ̃1
v

)
, (A.55)

where μ̃0 and μ̃1, are expressed as

μ̃0 =1/(1 + Ta/2),
μ̃1 = exp (Tg).

Sum aggregation and linear growth: For the case that β = β0(u + v) and G = G0v/v0,
the analytical solution is the following

n(v, t) =
N0

v0

μ̃0

μ̃1

1
L2

exp
(
− μ̃0

μ̃1

v

v0

(
2
μ̃0

− 1
))

I1

(
2L2v

v0

)
, (A.56)

where I1 is the modified Bessel function of the first kind of order one, and

μ̃0 = exp
(

1 − exp(Tg)
Λ

)
,

μ̃1 = exp (Tg).

For large values of Ta and x, an asymptotic expression for modified bessel function can be used
to calculate density function.

A.7 Simultaneous growth and nucleation

For this case, continuous population balance takes the following form

∂n(v, t)
∂t

+
∂ [G(v)n(v, t)]

∂v
= S(v), (A.57)

where S is the nucleation rate. Hounslow [32] solved this equation for constant growth rate
(G = G0) and mono-disperse nuclei S(v)(= B0δ(v − v0)) of zero size (v0 = 0) with the initial
condition n(v, 0) = 0. Using Laplace and inverse Laplace transform, he obtained the following
solution

n(v, t) =
B0

G0
U

(
t − v

G0

)
, (A.58)

where U is the unit step function.

A.8 Analytical solutions of a two component PBE

Analytical solutions for constant kernel and initial condition f(0,m, n) = c1δm,1 + c2δ1,n are the
following.
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Number density:

f(t,m, n) =
(

m

n

)(
c1

c0

)m(
c2

c0

)n

f(t,m + n), c0 = c1 + c2, (A.59)

where f(t, n+m) is the concentration of particles composed of (m+n) monomers of either type.
It is given by

f(t, i) = 4c0
(Tz)i−1

(Tz + 2)i+1
, Tz = β0c0t. (A.60)

Moments:

μ00 =
2c0

Tz + 2
, μ10 = c1, μ01 = c2, (A.61)

μ11 = c0
c2

c0

c1

c0
Tz, μ20 = c1

(
1 +

c1

c0
Tz

)
, μ02 = c2

(
1 +

c2

c0
Tz

)
. (A.62)

A.9 Analytical solutions of tracer weighted mean particle vol-
ume

Table A.2: Tracer weighted mean particle volume

β v̄T /v0

β0 1 +
t

τ

2Iagg

(1 − Iagg)2

(u + v)
1 − Iagg

3Iagg − 1
+

4Iagg − 2
3Iagg − 1

exp
[

t

τ

Iagg

1 − Iagg

]

(u · v) exp

[
t

τ

1 −√
1 − 8Iagg

2

]
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Appendix B

Mathematical Derivations

B.1 Birth and death rates for aggregation in the fixed pivot
technique

Let us first summarize two important properties of Dirac-delta distribution:

(i) δ(x − x0) = 0, x �= x0,

(ii)
∫ b
a f(x)δ(x − x0) dx = f(x0), where x ∈]a, b[ .

Birth rate

The birth rate in the ith cell according to the fixed pivot technique is given as

BFP
i =

1
2

∫ xi+1

xi

a(x, xi)
∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε dx

+
1
2

∫ xi

xi−1

b(x, xi)
∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε) dε dx

=:I1 + I2.

First we consider the first term I1. The parameter t is not important here, we omit it in our
derivation. Assuming x1 = σ with σ < minj (xj+1 − xj), this term can be rewritten as follows

I1 =
1
2

∫ xi+1

xi

a(x, xi)
i−1∑
j=1

∫ xj+1−σ

xj−σ
β(x − ε, ε)n(x − ε)n(ε) dε dx

+
1
2

∫ xi+1

xi

a(x, xi)
∫ x

xi−σ
β(x − ε, ε)n(x − ε)n(ε) dε dx. (B.1)

Substituting n(x) =
∑I

k=1 Nkδ(x − xk) in the equation (B.1), we obtain

I1 =
1
2

∫ xi+1

xi

a(x, xi)
i−1∑
j=1

∫ xj+1−σ

xj−σ
β(x − ε, ε)

I∑
k=1

[Nkδ(x − ε − xk)]
I∑

k=1

[Nkδ(ε − xk)] dε dx

+
1
2

∫ xi+1

xi

a(x, xi)
∫ x

xi−σ
β(x − ε, ε)

I∑
k=1

[Nkδ(x − ε − xk)]
I∑

k=1

[Nkδ(ε − xk)] dε dx. (B.2)
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Using the definition of Dirac-delta distribution, we get

I1 =
1
2

∫ xi+1

xi

a(x, xi)
i−1∑
j=1

β(x − xj, xj)
I∑

k=1

[Nkδ(x − xj − xk)]Nj dx

+
1
2

∫ xi+1

xi

a(x, xi)β(x − xi, xi)
I∑

k=1

[Nkδ(x − xi − xk)]Ni dx. (B.3)

The foregoing equation can be further simplified to

I1 =
1
2

i−1∑
j=1

Nj

∫ xi+1

xi

a(x, xi)β(x − xj, xj)
I∑

k=1

[Nkδ(x − xj − xk)] dx

+
1
2
Ni

∫ xi+1

xi

a(x, xi)β(x − xi, xi)
I∑

k=1

[Nkδ(x − xi − xk)] dx. (B.4)

Again, applying the definition of Dirac-delta in both the terms, we get

I1 =
1
2

i−1∑
j=1

Nj

∑
xi≤(xj+xk)<xi+1

a(xj + xk, xi)β(xk, xj)Nk

+
1
2
Ni

∑
(xi+xk)<xi+1

a(xi + xk, xi)β(xk, xi)Nk. (B.5)

All terms in equation (B.5) which appear twice except for j = k can be eliminated by rewriting
the equation in the following way

I1 =
j≥k∑

xi≤(xj+xk)<xi+1

(
1 − 1

2
δj,k

)
a(xj + xk, xi)β(xj , xk)NjNk. (B.6)

Similarly the second term I2 can be obtained as

I2 =
j≥k∑

xi−1≤(xj+xk)<xi

(
1 − 1

2
δj,k

)
b(xj + xk, xi)β(xj , xk)NjNk. (B.7)

Solving the equations (2.11) and (2.12) for the consistency of the first two moments, we get

a(x, xi) =
xi+1 − x

xi+1 − xi
, b(x, xi+1) =

x − xi

xi+1 − xi
. (B.8)

Now the complete birth rate BFP
i is given by

BFP
i =

j≥k∑
xi≤(x)<xi+1

(
1 − 1

2
δj,k

)(
xi+1 − x

xi+1 − xi

)
β(xj , xk)NjNk

+
j≥k∑

xi−1≤(xj+xk)<xi

(
1 − 1

2
δj,k

)(
x − xi−1

xi − xi−1

)
β(xj , xk)NjNk, (B.9)

where x = xj + xk.
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Death rate

The derivation of the discrete death term can be derived in the similar way. The rate of death
in ith cell is the following

DFP
i =

∫ xi+1/2

xi−1/2

n(x)
∫ ∞

0
β(x, ε)n(ε) dε dx. (B.10)

Equation (B.10), truncated up to xI+1/2, can be rewritten as follows

DFP
i =

∫ xi+1/2

xi−1/2

n(x)
I∑

j=1

∫ xj+1/2

xj−1/2

β(x, ε)n(ε) dε dx. (B.11)

Again using the Dirac-delta distribution, we obtain

DFP
i =

∫ xi+1/2

xi−1/2

I∑
k=0

[Nkδ(x − xk)]
I∑

j=1

∫ xj+1/2

xj−1/2

β(x, ε)
I∑

k=0

[Nkδ(ε − xk)] dε dx

=
∫ xi+1/2

xi−1/2

I∑
k=0

[Nkδ(x − xk)]
I∑

j=1

β(x, xj)Nj dx

=
I∑

j=1

Nj

∫ xi+1

xi

I∑
k=0

[Nkδ(x − xk)] β(x, xj) dx

=
I∑

j=1

β(xi, xj)NjNi. (B.12)

B.2 A different form of the fixed pivot technique

The formulation (2.18) can also be rewritten in the following simplified form as

dNi

dt
=

i−1∑
j=1

i∑
k=j+1

η′(x)βj,kNjNk +
1
2

i∑
j=1

η′(x)βj,jN
2
j − Ni

I∑
k=1

βi,kNk, (B.13)

or,

dNi

dt
=

1
2

i∑
j=1

i∑
k=1

η′(x)βj,kNjNk − Ni

I∑
k=1

βi,kNk, (B.14)

where

η′(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xi+1 − x

xi+1 − xi
, xi ≤ x < xi+1

x − xi−1

xi − xi−1
, xi−1 ≤ x < xi

0, otherwise.

(B.15)

The formulation (B.14) looks very simple and easy to implement. But it should be noted that
the formulation (B.14) will take more computational time than the formulation (2.18) due to
several useless calculations.
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B.3 Comparison of accuracy of local moments

Case 1, v̄i ≤ xi

The particle birth assigned at xi by the cell average technique is given as

NCA
i =

(
v̄i − xi−1

xi − xi−1

) Ii∑
j=1

Bj
i , if v̄i ≤ xi, (B.16)

where

v̄i =

∑Ii
j=1 yj

i B
j
i∑Ii

j=1 Bj
i

. (B.17)

We want to show that NCA
i ≥ NFP

i . Thus, we consider the following expression

NCA
i − NFP

i =
(

v̄i − xi−1

xi − xi−1

) Ii∑
j=1

Bj
i −

k∑
j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i +
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i . (B.18)

We substitute v̄i into the above equation to get

NCA
i − NFP

i =

(∑Ii
j=1 yj

i B
j
i −

∑Ii
j=1 xi−1B

j
i

xi − xi−1

)
−

k∑
j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i −
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i

=
Ii∑

j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i −
k∑

j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i −
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i

=
Ii∑

j=k+1

(
yj

i − xi−1

xi − xi−1

)
Bj

i −
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i

=
Ii∑

j=k+1

(xi+1 − xi−1)(y
j
i − xi)

(xi − xi−1)(xi+1 − xi)
Bj

i ≥ 0. (B.19)

It gives NCA
i ≥ NFP

i and clearly if Bj
i = 0 for all j ≥ k + 1 then equality holds.

Case 2, v̄i ≥ xi

A similar procedure as before can be followed in this case to obtain

NCA
i − NFP

i =

(∑Ii
j=1 xi+1B

j
i −

∑Ii
j=1 yj

i B
j
i

xi+1 − xi

)
−

k∑
j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i −
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i

=
Ii∑

j=1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i −
k∑

j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i −
Ii∑

j=k+1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i

=
k∑

j=1

(
xi+1 − yj

i

xi+1 − xi

)
Bj

i −
k∑

j=1

(
yj

i − xi−1

xi − xi−1

)
Bj

i

=
k∑

j=1

(xi+1 − xi−1)(xi − yj
i )

(xi+1 − xi)(xi − xi−1)
Bj

i . (B.20)
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In this case we have proved that NCA
i ≥ NFP

i and equality holds if Bj
i = 0 for all j ≤ k.

B.4 Discrete birth and death rates for breakage

Birth rate

The birth rate in the ith interval is given as

Bi =
∫ xi+1/2

xi−1/2

∫ ∞

x
b(t, x, ε)S(t, ε)n(t, ε) dε dx. (B.21)

Interchanging the order of integration the above term can be rewritten as

Bi =
∫ xi+1/2

xi−1/2

∫ ε

xi−1/2

b(t, x, ε)S(t, ε)n(t, ε) dx dε +
∫ ∞

xi+1/2

∫ xi+1/2

xi−1/2

b(t, x, ε)S(t, ε)n(t, ε) dx dε

=
∫ xi+1/2

xi−1/2

∫ ε

xi−1/2

b(t, x, ε)S(t, ε)n(t, ε) dx dε

+
I∑

k=i+1

∫ xk+1/2

xk−1/2

∫ xi+1/2

xi−1/2

b(t, x, ε)S(t, ε)n(t, ε) dx dε. (B.22)

Substituting the number density n(t, x) =
∑I

k=1 Nk(t)δ(x − xk), we obtain

Bi = Ni(t)
∫ xi

xi−1/2

b(t, x, xi)S(t, xi) dx +
I∑

k=i+1

Nk(t)
∫ xi+1/2

xi−1/2

b(t, x, xk)S(t, xk) dx. (B.23)

We can also combine the above two terms into one as follows

Bi =
I∑

k=i

Nk(t)S(t, xk)
∫ pi

k

xi−1/2

b(t, x, xk) dx, (B.24)

where pi
k = xi for k = i and pi

k = xi+1 elsewhere.

Death rate

Similarly, we substitute the number density n(t, x) =
∑I

k=1 Nk(t)δ(x − xk) into the death rate
to get

Di =
∫ xi+1/2

xi−1/2

S(t, x)
I∑

k=1

Nk(t)δ(x − xk) dx

=S(t, xi)Ni(t). (B.25)

B.5 Second moment of the Gaussian-like distribution

We calculate the second moment for the Gaussian-like initial condition

n(v, 0) =
N0a

ν+1

v2Γ(ν + 1)

(
v

v2

)ν

exp(−av/v2). (B.26)
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The second moment with respect to volume is given by

μ2(0) =
∫ ∞

0
v2 N0a

ν+1

v2Γ(ν + 1)

(
v

v2

)ν

exp(−av/v2) dv. (B.27)

This can be simplified further as follows

μ2(0) =
N0a

(ν+1)

vν+1
2 Γ(ν + 1)

∫ ∞

0
vν+2 exp(−av/v2) dv

=
N0a

(ν+1)

vν+1
2 Γ(ν + 1)

∫ ∞

0
vν+2 exp(−av/v2) dv. (B.28)

After the substitution, av/v2 = t, we get

μ2(0) =
N0a

(ν+1)

vν+1
2 Γ(ν + 1)

(v2

a

)ν+3
∫ ∞

0
tν+2 exp(−t) dt. (B.29)

Using the definition of Gamma function

μ2(0) =
N0a

(ν+1)

vν+1
2 Γ(ν + 1)

(v2

a

)ν+3
Γ(ν + 3)

=N0

(v2

a

)2
(ν + 2)(ν + 1). (B.30)

Equation (B.30) can be rewritten in the following form

μ2(0) = N0

[
v2(ν + 1)

a

]2 (ν + 2)
(ν + 1)

. (B.31)

The definition of initial mean volume, v0 = v2(ν + 1)/a, follows

μ2(0) = N0v
2
0

(ν + 2)
(ν + 1)

. (B.32)

The particular case of exponential distribution, ν = 0, gives

μ2(0) = 2N0v
2
0 . (B.33)

B.6 Discrete birth rate for aggregation

Birth rate

The birth rate in the ith cell is given as

Bi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0
β(t, x − u, u)n(t, x − u)n(t, u) du dx.
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The parameter t is not important here, we omit it in our derivation. Assuming x1 = 0, this
term can be rewritten as follows

Bi =
1
2

∫ xi+1/2

xi−1/2

i−1∑
j=1

∫ xj+1/2

xj−1/2

β(x − u, u)n(x − u)n(u) du dx

+
1
2

∫ xi+1/2

xi−1/2

∫ x

xi−1/2

β(x − u, u)n(x − u)n(u) du dx. (B.34)

Substituting n(x) =
∑I

k=1 Nkδ(x − xk) in equation (B.34), we obtain

Bi =
1
2

∫ xi+1/2

xi−1/2

i−1∑
j=1

∫ xj+1/2

xj−1/2

β(x − u, u)
I∑

k=1

[Nkδ(x − u − xk)]
I∑

k=1

[Nkδ(u − xk)] du dx

+
1
2

∫ xi+1/2

xi−1/2

∫ x

xi−1/2

β(x − u, u)
I∑

k=1

[Nkδ(x − u − xk)]
I∑

k=1

[Nkδ(u − xk)] du dx. (B.35)

Using the definition of Dirac-delta distribution in the first term and changing the order of
integration in the second term, we get

Bi =
1
2

∫ xi+1/2

xi−1/2

i−1∑
j=1

β(x − xj , xj)
I∑

k=1

[Nkδ(x − xj − xk)]Nj dx

+
1
2

∫ xi+1/2

xi−1/2

∫ xi+1/2

u
β(x − u, u)

I∑
k=1

[Nkδ(x − u − xk)]
I∑

k=1

[Nkδ(u − xk)] dx du. (B.36)

The foregoing equation can be further simplified to

Bi =
1
2

i−1∑
j=1

Nj

∫ xi+1/2

xi−1/2

β(x − xj , xj)
I∑

k=1

[Nkδ(x − xj − xk)] dx

+
1
2

∫ xi+1/2

xi

β(x − xi, xi)
I∑

k=1

[Nkδ(x − xi − xk)]Ni dx. (B.37)

Again, applying the definition of Dirac-delta in both the terms, we get

Bi =
1
2

i−1∑
j=1

Nj

∑
xi−1/2≤(xj+xk)<xi+1/2

β(xk, xj)Nk +
1
2

∑
(xi+xk)<xi+1/2

β(xk, xi)NkNi. (B.38)

All terms in equation (B.38) which appear twice except for j = k can be eliminated by rewriting
the equation in the following way

Bi =
j≥k∑

xi−1/2≤(xj+xk)<xi+1/2

(
1 − 1

2
δj,k

)
β(xj , xk)NjNk. (B.39)
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B.7 Stability condition for the combined problem

The finite volume scheme for simultaneous aggregation and breakage is given as

gm+1
i = gm

i − Δt

Δxi

(
Jm

i+1/2 − Jm
i−1/2

)
. (B.40)

Here the numerical flux J is given by the algebraical sum of both individual fluxes as

Jm
i+1/2 = Jm

i+1/2,agg + Jm
i+1/2,break. (B.41)

The fluxes Jm
i+1/2,agg and Jm

i+1/2,break are represented as

Jm
i+1/2,agg =

i∑
k=1

Δxkg
m
k

⎛
⎝ I∑

j=αi,k

∫
Λj

β(u, xk)
u

du gn
j +

∫ xαi,k−1/2

xi+1/2−xk

a(u, xk)
u

du gm
αi,k−1

⎞
⎠ , (B.42)

and

Jm
i+1/2,break = −

I∑
k=i+1

gm
k

∫
Λk

S(ε)
ε

dε

∫ xi+1/2

0
ub(xk, u) du. (B.43)

We make use of the proof of Propositions 3.4.1 and 3.4.4 to get

Jm
i+1/2 ≤Δxig

m
i

∫ R

δ

β(xi, u)
u

g(tm, u) du + Jm
i−1/2,agg

+ gm
i

∫
Λi

S(ε)
ε

dε

∫ xi+1/2

0
ub(xi, u) du + Jm

i−1/2,break. (B.44)

where δ = min(Δxi/2; i = 1, 2, . . . , I). The above inequality can be rewritten as

Jm
i+1/2 ≤ Δxig

m
i

(∫ R

δ

β(xi, u)
u

g(tm, u) du +
1

Δxi

∫
Λi

S(ε)
ε

dε

∫ xi+1/2

0
ub(xi, u) du

)
+ Jm

i−1/2.

(B.45)

Using the stability condition (3.272) we obtain

Jm
i+1/2 − Jm

i−1/2 ≤ Δxi

Δt
gm
i . (B.46)

Remaining steps are the same like in the proof of Proposition 3.4.1.
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B.8 Mass conservation of modified DTPBE

Summing over all i the equation (4.42), we obtain

∑
i

dMi

dt
=

∑
i

i−2∑
j=1

2j−i+2

2j−i+1 + 1
βi−1,j (Mi−1Nj + Ni−1Mj)

+
∑

i

Ni

i−1∑
j=1

(
1 − 2j−i

)
βi,jMj

1
2j−i + 1

+
∑

i

βi−1,i−1Ni−1Mi−1

−
∑

i

Mi

i−1∑
j=1

2j−i+1

2j−i + 1
βi,jNj −

∑
i

Mi

∑
j=i

βi,jNj

=
∑

i

Mi−1

i−2∑
j=1

2j−i+2

2j−i+1 + 1
βi−1,jNj +

∑
i

Ni−1

i−2∑
j=1

2j−i+2

2j−i+1 + 1
βi−1,jMj

+
∑

i

Ni

i−1∑
j=1

βi,jMj
1

2j−i + 1
+

∑
i

Ni

i−i∑
j=1

2j−1

2j−i + 1
βi,jMj

+
∑

i

βi−1,i−1Ni−1Mi−1 −
∑

i

Mi

i−1∑
j=1

2j−i+1

2j−i + 1
βi,jNj −

∑
i

Mi

∑
j=i

βi,jNj. (B.47)

Splitting the second term on the right hand side we get∑
i

dMi

dt
=

∑
i

Mi−1

i−2∑
j=1

2j−i+2

2j−i+1 + 1
βi−1,jNj +

∑
i

Ni−1

i−2∑
j=1

2j−i+1

2j−i+1 + 1
βi−1,jMj

+
∑

i

Ni−1

i−2∑
j=1

2j−i+1

2j−i+1 + 1
βi−1,jMj +

∑
i

Ni

i−1∑
j=1

βi,jMj
1

2j−i + 1

−
∑

i

Ni

i−i∑
j=1

2j−1

2j−i + 1
βi,jMj +

∑
i

βi−1,i−1Ni−1Mi−1

−
∑

i

Mi

i−1∑
j=1

2j−i+1

2j−i + 1
βi,jNj −

∑
i

Mi

∑
j=i

βi,jNj . (B.48)

Rearranging the terms, the following equation is obtained∑
i

dMi

dt
=

∑
i

Mi−1

i−2∑
j=1

2j−i+2

2j−i+1 + 1
βi−1,jNj −

∑
i

Mi

i−1∑
j=1

2j−i+1

2j−i + 1
βi,jNj

+
∑

i

Ni−1

i−2∑
j=1

2j−i+1

2j−i+1 + 1
βi−1,jMj −

∑
i

Ni

i−i∑
j=1

2j−1

2j−i + 1
βi,jMj

+
∑

i

Ni−1

i−2∑
j=1

2j−i+1

2j−i+1 + 1
βi−1,jMj +

∑
i

Ni

i−1∑
j=1

βi,jMj
1

2j−i + 1

+
∑

i

βi−1,i−1Ni−1Mi−1 −
∑

i

Mi

∑
j=i

βi,jNj . (B.49)
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The first term cancels with the second term and the third term cancels with the fourth. The
fifth and sixth terms may be merged to one term to give

∑
i

dMi

dt
=

∑
i

Ni

i−1∑
j=1

βi,jMj +
∑

i

βi−1,i−1Ni−1Mi−1 −
∑

i

Mi

∑
j=i

βi,jNj

=
∑

i

Ni

i∑
j=1

βi,jMj −
∑

i

Mi

∑
j=i

βi,jNj = 0. (B.50)

B.9 Discrete birth and death terms of TPBE

Birth rate

The birth rate in the ith interval is given as

Bi,T =
∫ vi+1

vi

∫ v

0
β(t, v − ε, ε)M(t, v − ε)n(t, ε) dε dv.

The parameter t is not important here, we omit it in our derivation. Assuming v1 = 0, this term
can be rewritten as follows

Bi,T =
∫ vi+1

vi

i−1∑
j=1

∫ vj+1

vj

β(v − ε, ε)M(v − ε)n(ε) dε dv

+
∫ vi+1

vi

∫ v

vi

β(v − ε, ε)M(v − ε)n(ε) dε dv. (B.51)

Substituting n(v) =
∑I

k=1 Nkδ(v − xk) and M(v) =
∑I

k=1 Mkδ(v − xk) in equation (B.51), we
obtain

Bi,T =
∫ vi+1

vi

i−1∑
j=1

∫ vj+1

vj

β(v − ε, ε)
I∑

k=1

[Mkδ(v − ε − xk)]
I∑

k=1

[Nkδ(ε − xk)] dε dv

+
∫ vi+1

vi

∫ v

vi

β(v − ε, ε)
I∑

k=1

[Mkδ(v − ε − xk)]
I∑

k=1

[Nkδ(ε − xk)] dε dv. (B.52)

Using the definition of Dirac-delta distribution in the first term and changing the order of
integration in the second term, we get

Bi,T =
∫ vi+1

vi

i−1∑
j=1

β(v − xj, xj)
I∑

k=1

[Mkδ(v − xj − xk)]Nj dv

+
∫ vi+1

vi

∫ vi+1

ε
β(v − ε, ε)

I∑
k=1

[Mkδ(v − ε − xk)]
I∑

k=1

[Nkδ(ε − xk)] dv dε. (B.53)
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The foregoing equation can be simplified further to

Bi,T =
i−1∑
j=1

Nj

∫ vi+1

vi

β(v − xj, xj)
I∑

k=1

[Mkδ(v − xj − xk)] dv

+
∫ vi+1

xi

β(v − xi, xi)
I∑

k=1

[Mkδ(v − xi − xk)]Ni dv. (B.54)

Again, applying the definition of the Dirac-delta distribution in both the terms, we get

Bi,T =
i−1∑
j=1

Nj

∑
vi≤(xj+xk)<vi+1

β(xk, xj)Mk +
∑

(xi+xk)<vi+1

β(xk, xi)MkNi. (B.55)

Since each term MjNk in equation (B.55) have a corresponding term MkNj except for j = k,
the equation (B.55) can be rewritten in the following way

Bi,T =
j≥k∑

vi≤(xj+xk)<vi+1

(
1 − 1

2
δj,k

)
β(xj , xk)(MjNk + MkNj). (B.56)

Death rate

Tracer death in a cell is given by

Di,T =
∫ vi+1

vi

M(v)
∫ ∞

0
β(v, ε)N(ε) dε dv. (B.57)

Equation (B.57), truncated up to vI+1, can be rewritten as follows

Di,T =
∫ vi+1

vi

M(v)
I∑

j=1

∫ vj+1

vj

β(v, ε)N(ε) dε dv. (B.58)

Again using the Dirac-delta distribution, we obtain

Di,T =
∫ vi+1

vi

I∑
k=0

[Mkδ(v − xk)]
I∑

j=1

∫ vj+1

vj

β(v, ε)
I∑

k=0

[Nkδ(ε − xk)] dε dv

=
∫ vi+1

vi

I∑
k=0

[Mkδ(v − xk)]
I∑

j=1

β(v, xj)Nj dv

=
I∑

j=1

Nj

∫ vi+1

vi

I∑
k=0

[Mkδ(v − xk)] β(v, xj) dv

=
I∑

j=1

β(xi, xj)NjMi. (B.59)

229



APPENDIX B. MATHEMATICAL DERIVATIONS

B.10 Two-dimensional discrete PBE

Birth rate

The birth rate in a cell is given as

Bij =
1
2

∫ xi+

xi−

∫ yj+

yj−

∫ x

0

∫ y

0
β(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx. (B.60)

Assuming x1 = 0 and y1 = 0, it can be rewritten as

Bij =
1
2

∫ xi+

xi−

∫ yj+

yj−

i−1∑
k=1

∫ xk+

xk−

j−1∑
m=1

∫ ym+

ym−
β(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx

+
1
2

∫ xi+

xi−

∫ yj+

yj−

i−1∑
k=1

∫ xk+

xk−

∫ y

yj−
β(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx

+
1
2

∫ xi+

xi−

∫ yj+

yj−

∫ x

xi−

j−1∑
m=1

∫ ym+

ym−
β(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx

+
1
2

∫ xi+

xi−

∫ yj+

yj−

∫ x

xi−

∫ y

yj−
β(x − ε, ε, y − γ, γ)f(x − ε, y − γ)f(ε, γ) dγ dε dy dx. (B.61)

Substituting f(t, x, y) =
∑Ix

i=1

∑Iy

j=1 Nijδ(x − xi)δ(y − yj) in preceding equation and making
some simple transformations, we get

Bij =
1
2

i−1∑
k=1

∑
xi−≤(xk+xl)<xi+

j−1∑
m=1

∑
yj−≤(ym+yn)<yj+

βklmnNkmNln

+
1
2

i−1∑
k=1

∑
xi−≤(xk+xl)<xi+

∑
(yj+yn)<yj+

βkljnNkjNln

+
1
2

∑
(xi+xl)<xi+

j−1∑
m=1

∑
yj−≤(ym+yn)<yj+

βilmnNimNln

+
1
2

∑
(xi+xl)<xi+

∑
(yj+yn)<yj+

βiljnNijNln. (B.62)

It can be further simplified to the form

Bij =
k≥l∑
k,l

xi−≤(xk+xl)<xi+

m≥n∑
m,n

yj−≤(ym+yn)<yj+

(
1 − 1

2
δk,lδm,n

)
βklmnNkmNln. (B.63)

Death rate

Similar steps can be followed for discrete death rate as

Dij =
∫ xi+

xi−

∫ yj+

yj−

∫ ∞

0

∫ ∞

0
β(x, ε, y, γ)f(x, y)f(ε, γ) dγ dε dy dx. (B.64)
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For a finite domain, truncated up to xIx+ and yIy+, the above birth term can be rewritten as

Dij =
∫ xi+

xi−

∫ yj+

yj−
f(x, y)

Ix∑
k=1

∫ xk+

xk−

Iy∑
m=1

∫ ym+

ym−
β(x, ε, y, γ)f(ε, γ) dγ dε dy dx. (B.65)

Using the definition of Dirac-delta distribution, we obtain

Dij =
∫ xi+

xi−

∫ yj+

yj−
f(x, y)

Ix∑
k=1

Iy∑
m=1

β(x, xk, y, ym)Nkm dy dx. (B.66)

Again we make use of Dirac-delta distribution to give

Dij = Nij

Ix∑
k=1

Iy∑
m=1

βikjmNkm. (B.67)

B.11 Consistency with the first cross moment

We want to prove the following equality

a1xi−1yj−1 + a2xiyj−1 + a3xiyj + a4xi−1yj = Bij x̄iȳj. (B.68)

We take the left hand side (L.H.S.) and substitute the values a1, a2, a3 and a4 from equations
(4.80-4.83) to get

L.H.S. =
yj−1(yj − ȳj)Bij

(xi − xi−1)(yj − yj−1)
(xixi−1 − x̄ixi−1 + x̄ixi − xi−1xi)

+
yj(ȳj − yj−1)Bij

(xi − xi−1)(yj − yj−1)
(x̄ixi − xi−1xi + xixi−1 − x̄ixi−1)

=
yj−1(yj − ȳj)Bij

(xi − xi−1)(yj − yj−1)
(xi − xi−1) x̄i +

yj(ȳj − yj−1)Bij

(xi − xi−1)(yj − yj−1)
(xi − xi−1) x̄i

=
x̄iBij

(yj − yj−1)
(yj−1yj − yj−1ȳj + yj ȳj − yjyj−1)

=Bij x̄iȳj. (B.69)
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kolloider Lösungen. Zeitschrift für Physikalische Chemie, 92:129–168, 1917.

[119] S. Watano, T. Fukushima, and K. Miyanami. Heat transfer and rate of granule growth in
fluidized bed granulation. Chemical and Pharmaceutical Bulletin, 44:572–576, 1996.

[120] E. Wynn. Improved accuracy and convergence of discretized population balance of Lister
et al. AIChE Journal, 42:2084–2086, 1996.

[121] E. Wynn. Simulating aggregation and reaction: New Hounslow DPB and four-parameter
summary. AIChE Journal, 50:578–588, 2004.

[122] Y. Xiong and S.E. Pratsinis. Formation of irregular particles by coagulation and sinteringa
two-dimensional solution of the population balance equation. Journal Aerosol Science,
22:S199–S202, 1991.

[123] Y. Xiong and S.E. Pratsinis. Formation of agglomerate particles by coagulation and
sintering-Part I. A two-dimensional solution of the population balance equation. Journal
Aerosol Science, 24:283–300, 1993.

[124] R.M. Ziff. New solution to the fragmentation equation. Journal of Physics A: Mathematical
and General, 24:2821–2828, 1991.

[125] R.M. Ziff and E.D. McGrady. The kinetics of cluster fragmentation and depolymerization.
Journal of Physics A: Mathematical and General, 18:3027–3037, 1985.

240



CURRICULUM VITAE

Curriculum Vitae

Personal Information

Name Jitendra Kumar

Date of birth 01.04.1978
Place of birth Bijnor, India

Education and Employment

1983 - 1995 Schooling, Bijnor, India

1995 - 1998 Bachelor of Science (B.Sc.) in Mathematics, Vardhman College Bijnor,
M.J.P. Rohilkhand University, Bareilly, India

1999 - 2001 Master of Science (M.Sc.) in Industrial Mathematics and Informatics,
Indian Institute of Technology (IIT) Roorkee, India

2001 - 2003 Master of Science (M.Sc.) in Industrial Mathematics: Modelling and
Scientific Computing, Technical University of Kaiserslautern, Germany

2001 - 2003 Scientific Assistant, Department of Flow in Complex Structure, Fraunhofer
Institute of Techno- und Wirtschaftsmathematik, Kaiserslautern, Germany

2003 - 2006 PhD Graduation (DFG Scholarship) within the Graduiertenkolleg 828,
Faculty of Mathematics, OvG University, Magdeburg, Germany

2006 - Research Associate, Institute for Analysis and Numerics,
Faculty of Mathematics, OvG University, Magdeburg, Germany

Academic Honors

• Full Freeship (Merit Based) in M.Sc.-IIT Roorkee (1999-2001)

• University Medal for standing first in M.Sc.-IIT Roorkee (2001)

• Qualified CSIR-UGC National Eligibility Test (NET-2001)

• Scholarship awarded by University of Kaiserslautern, Germany (2001-2003)

• German Research Foundation (DFG) Graduiertenkolleg Scholarship (2003-2006)

241


