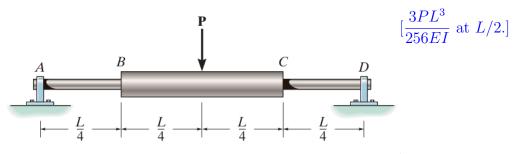
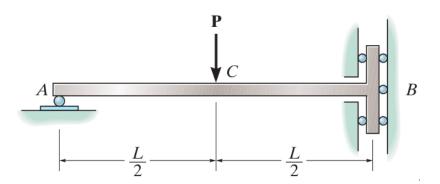
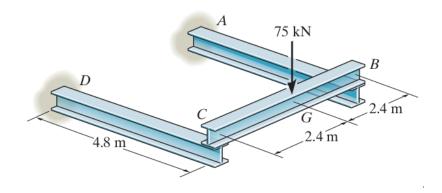
TUTORIAL SHEET 8: DEFLECTION OF BEAMS

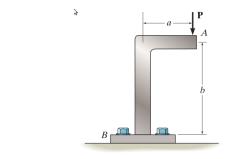

1. Determine the expressions as tabulated in the second, third, and fourth columns in the following:

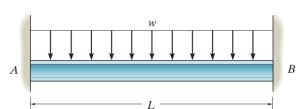
Simply Supported Beam Slopes and Deflections					
Beam	Slope	Deflection	Elastic Curve		
$ \begin{array}{c cccc} v & \mathbf{P} & \underline{L} \\ \hline 2 & \mathbf{P} & \underline{L} \\ \hline \theta_{\text{max}} & v_{\text{max}} \end{array} $	$\theta_{\text{max}} = \frac{-PL^2}{16EI}$	$v_{\text{max}} = \frac{-PL^3}{48EI}$	$v = \frac{-Px}{48EI} (3L^2 - 4x^2)$ $0 \le x \le L/2$		
θ_1 θ_2 A	$\theta_1 = \frac{-Pab(L+b)}{6EIL}$ $\theta_2 = \frac{Pab(L+a)}{6EIL}$	$v\Big _{x=a} = \frac{-Pba}{6EIL}(L^2 - b^2 - a^2)$	$v = \frac{-Pbx}{6EIL} (L^2 - b^2 - x^2)$ $0 \le x \le a$		
v L θ_1 M_0 x	$\theta_1 = \frac{-M_0 L}{6EI}$ $\theta_2 = \frac{M_0 L}{3EI}$	$v_{\text{max}} = \frac{-M_0 L^2}{9\sqrt{3} EI}$ at $x = 0.5774L$	$v = \frac{-M_0 x}{6EIL} (L^2 - x^2)$		
v L w v w x	$\theta_{\text{max}} = \frac{-wL^3}{24EI}$	$v_{\text{max}} = \frac{-5wL^4}{384EI}$	$v = \frac{-wx}{24EI} (x^3 - 2Lx^2 + L^3)$		
$ \begin{array}{c c} v \\ \hline & \theta_2 \\ \hline & L \\ & L \\ \hline & L \\ & L$	$\theta_1 = \frac{-3wL^3}{128EI}$ $\theta_2 = \frac{7wL^3}{384EI}$	$v \bigg _{x=L/2} = \frac{-5wL^4}{768EI}$ $v_{\text{max}} = -0.006563 \frac{wL^4}{EI}$ at $x = 0.4598L$	$v = \frac{-wx}{384EI} (16x^3 - 24Lx^2 + 9L^3)$ $0 \le x \le L/2$ $v = \frac{-wL}{384EI} (8x^3 - 24Lx^2 + 17L^2x - L^3)$ $L/2 \le x < L$		
v w_0 w_0 x	$\theta_1 = \frac{-7w_0 L^3}{360EI}$ $\theta_2 = \frac{w_0 L^3}{45EI}$	$v_{\text{max}} = -0.00652 \frac{w_0 L^4}{EI}$ $\text{at } x = 0.5193 L$	$v = \frac{-w_0 x}{360EIL} (3x^4 - 10L^2 x^2 + 7L^4)$		

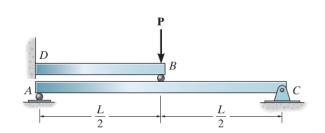

2. Determine the expressions as tabulated in the second, third, and fourth columns in the following:

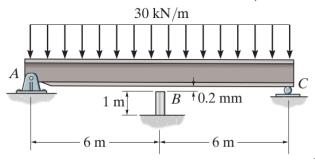
Cantilevered Beam Slopes and Deflections				
Beam	Slope	Deflection	Elastic Curve	
v v v v v v v v v v	$\theta_{\text{max}} = \frac{-PL^2}{2EI}$	$v_{\text{max}} = \frac{-PL^3}{3EI}$	$v = \frac{-Px^2}{6EI} \left(3L - x \right)$	
v v v v d	$\theta_{\text{max}} = \frac{-PL^2}{8EI}$	$v_{\text{max}} = \frac{-5PL^3}{48EI}$	$v = \frac{-Px^2}{12EI} (3L - 2x) 0 \le x \le L/2$ $v = \frac{-PL^2}{48EI} (6x - L) L/2 \le x \le L$	
v v v v v v v v v v	$\theta_{\text{max}} = \frac{-wL^3}{6EI}$	$v_{\text{max}} = \frac{-wL^4}{8EI}$	$v = \frac{-wx^2}{24EI} (x^2 - 4Lx + 6L^2)$	
v θ_{max} $M_0 v_{\text{max}}$	$ heta_{ m max} = rac{M_0 L}{EI}$	$v_{\rm max} = \frac{M_0 L^2}{2EI}$	$v = \frac{M_0 x^2}{2EI}$	
v v_{max} L L T θ_{max}	$\theta_{\text{max}} = \frac{-wL^3}{48EI}$	$v_{\text{max}} = \frac{-7wL^4}{384EI}$	$v = \frac{-wx^2}{24EI} \left(x^2 - 2Lx + \frac{3}{2}L^2 \right)$ $0 \le x \le L/2$ $v = \frac{-wL^3}{384EI} \left(8x - L \right)$ $L/2 \le x \le L$	
v v_{\max} x θ_{\max}	$\theta_{\text{max}} = \frac{-w_0 L^3}{24EI}$	$v_{\text{max}} = \frac{-w_0 L^4}{30EI}$	$v = \frac{-w_0 x^2}{120EIL} \left(10L^3 - 10L^2 x + 5Lx^2 - x^3 \right)$	


3. The simply supported shaft has a moment of inertia (or, second moment of area) of 2I for the region BC and a moment of inertia of I for the regions AB and CD. Determine the magnitude of the maximum deflection of the shaft and the location of this maximum deflection.

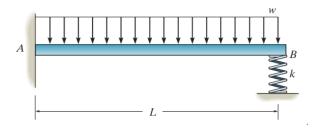

4. The bar is supported by a roller constraint at B which allows vertical displacement but resists axial load and moment. If the bar is subjected to the loading shown, determine the slope at A, and the deflections at B and C. $\left[-\frac{3PL^2}{8EI}, -\frac{11PL^3}{48EI}, -\frac{PL^3}{6EI}\right]$


5. The framework consists of two steel cantilevered beams CD and BA and a simply supported beam CB. If each beam has a Young's modulus of 200 GPa and a moment of inertia about its neutral axis of 46×10^6 mm⁴, determine the deflection at the centre G of beam CB.


6. Determine the vertical deflection at the end A of the bracket. Assume that the bracket is fixed supported at its base B and neglect axial deflection. $\left[-\frac{Pa^2(3b+a)}{3EI}\right]$


7. Determine the moment reactions at the supports A and B of the fixed-fixed beam. $\left[\frac{wL^2}{12}\right]$

8. Determine the vertical reaction at support C in the beam arrangement shown. [P/3]



9. Before the uniformly distributed load is applied on the beam, there is a small gap of 0.2 mm between the beam and the post at B. Determine the support reactions at A, B, and C. The post at B has a diameter of 40 mm, and the moment of inertia of the beam is 875×10^6 mm⁴. Both the post and the beam are made of steel having modulus of elasticity 200 GPa. [70.11 kN, 219.78 kN, 70.11 kN]

10. Determine the force in the spring.

 $\left[\frac{3kwL^4}{24EI + 8kL^3}\right]$

