Tutorial Sheet 10: Energy Methods

1. Determine the vertical displacement of joint C. The value of EA is constant. [2PL/(EA)]

2. The coiled spring has n coils and is made from a material having a shear modulus G. Determine the stretch of the spring when it is subject to the load P. Assume that the coils are close to each other so that $\theta \approx 0^{\circ}$ and the deflection is caused entirely by the torsional stress in the coil.

3. Determine the horizontal displacement of joint B of the truss. Each steel member has $E=200 \mathrm{GPa}$ and $A=400 \mathrm{~mm}^{2}$.
[0.367 mm]

4. Determine the horizontal displacement of joint B of the truss. Each steel member has $E=200 \mathrm{GPa}$ and $A=1935 \mathrm{~mm}^{2}$.
[0.753 mm]

5. The simply supported beam having a square cross section is subjected to a uniform load w. Determine the maximum deflection of the beam caused only by bending and caused by bending and shear. Take $E=3 G$. Compare the two values as a function of L / a.

6. Beam AB has a square cross section of 100 mm by 100 mm . Bar CD has a diameter of 10 mm . If both members are made of steel $(E=200 \mathrm{GPa})$, determine the vertical displacement of point B and the slope at A. [43.5 mm, 0.00530 rad]

7. Determine the displacement at point C and the slopes at C and $\mathrm{A} .\left[\frac{2 P a^{3}}{3 E I}, \frac{5 P a^{2}}{6 E I}, \frac{P a^{2}}{6 E I}\right]$

8. For the uniform rod and loading shown, determine the deflection of point B. [$\left.\frac{\pi P R^{3}}{2 E I}\right]$

9. Determine the reaction at the roller support.

10. A shaft BC (length: 1.2 m) of circular cross-section (diameter 60 mm) is welded to a beam AB (length 1.5 m) of rectangular cross-section ($70 \mathrm{~mm} \times 50 \mathrm{~mm}$). A torque $T_{0}=2.50 \mathrm{kN} \cdot \mathrm{mis}$ applied at C as shown. Determine the rotation of the end C. Both the shaft and the beam are made of steel ($E=200 \mathrm{GPa} ; G=77.5 \mathrm{GPa})$. [0.0523 rad]

11. Three members of the same material and same cross-sectional area are used to support the load P. Determine the force in the member BC.

$$
\left[\frac{P}{1+2 \cos ^{3} \phi}\right]
$$

12. A thin circular ring of radius r is subjected to two diametrically opposite loads P in its own plane as shown in the figure. After obtaining an expression for the bending moment at any section, determine the change in the vertical diameter. $\left[\frac{P r^{3}}{E I}\left(\frac{\pi}{4}-\frac{2}{\pi}\right)\right]$

