$$
\begin{aligned}
& {[\nabla \vec{v}]=\left[\begin{array}{lll}
\frac{\partial v_{x}}{\partial x} & \frac{\partial v_{x}}{\partial y} & \frac{\partial v_{x}}{\partial z} \\
\frac{\partial v_{y}}{\partial x} & \frac{\partial v_{y}}{\partial y} & \frac{\partial v_{y}}{\partial z} \\
\frac{\partial v_{z}}{\partial x} & \frac{\partial v_{z}}{\partial y} & \frac{\partial v_{z}}{\partial z}
\end{array}\right]} \\
& \vec{a} \cdot \vec{b}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]^{\top}\left[\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=a_{x} b_{x}+a_{y} b_{y} \\
& +a_{z} b_{z}
\end{aligned}
$$

$\vec{a} \cdot \nabla \vec{V} \rightarrow$ vector entity

$$
\begin{aligned}
& \left([\vec{a}]^{\top}[\nabla \vec{v}]\right)^{\top} \rightarrow 1 \times 3 \text { (row matrix) } X \\
& {[\vec{V} \vec{v}][\vec{a}] \rightarrow 3 \times 1} \\
& {[\nabla \vec{v}]^{\top}[\vec{a}] \rightarrow 3 \times 1}
\end{aligned}
$$

$$
\overrightarrow{d x} \cdot \nabla \vec{u}=[\nabla \vec{u}][d \vec{x}]
$$

Displacement

$$
\vec{u}:=\vec{x}-\vec{x}
$$

Quantification of deformation

$$
\begin{aligned}
\vec{u}(\vec{x}+d \vec{x}) & =(\vec{x}+d \vec{x})-(\vec{x}+d \vec{x}) \\
& =\vec{x}-\vec{x}+d \vec{x}-d \vec{x} \\
& =\vec{u}(\vec{x})+d \vec{x}-d \vec{x}
\end{aligned}
$$

$$
x-n+x+2
$$

$$
\therefore d \vec{x}=d \vec{x}+\vec{u}(\vec{x}+d \vec{x})-\vec{u}(\vec{x})
$$

Taylor expansion

$$
\begin{aligned}
& f(x+h)=f(x)+\frac{h}{L} f^{\prime}(x)+\frac{L^{2}}{L^{2}} f^{\prime \prime}(x)+\cdots \\
& f(x+h, y+k)=f(x, y)+\frac{h}{L} \frac{\partial f}{\partial x}+\frac{k}{L} \frac{\partial f}{\partial y}
\end{aligned}
$$

$$
\begin{aligned}
& +\cdots \\
& f(x+h, y+x, z+m)=f(x, y, z)+\frac{h}{L} \frac{\partial f}{\partial x}+\frac{k}{L} \frac{\partial t}{\partial y}+\frac{m \partial t}{L \frac{\partial z}{\partial z}} \\
& f(\vec{x}+d \vec{x})
\end{aligned}
$$

$$
\begin{aligned}
\vec{u}(\vec{x}+d \vec{x}) & =\vec{u}(x+d x, y+d y, z+d z) \\
& \left.=\vec{u}(x, y, z)+\frac{d x}{L} \frac{\partial \vec{u}}{\partial x}+\frac{d y}{L} \frac{\partial \vec{u}}{\partial y}+\frac{d z}{L} \frac{\partial \vec{u}}{\partial z}+\cdots \right\rvert\, \vec{x}=x_{\hat{\imath}}+y \hat{\jmath}+L \widehat{u} \\
& =\vec{u}(\vec{x})+d x \frac{\partial \vec{u}}{\partial x}+d y \frac{\partial \vec{u}}{\partial y}+d z \frac{\partial \vec{u}}{\partial z} \\
& =\vec{u}(\vec{x})+\left\{(d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k}) \cdot\left(\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial \hat{u}}{\partial z}\right)\right\} \vec{u} \\
& =\vec{u}(\vec{x})+d \vec{x} \cdot \nabla \vec{u} \\
\therefore d \vec{x}=d \vec{x}+\vec{u}(\vec{x}+d \vec{x})-\vec{u}(\vec{x}) & =d \vec{x}+\vec{y}(\vec{x})+d \vec{x} \cdot \nabla \vec{u}-\vec{u}\left(\frac{x}{x}\right) \\
& =d \vec{x}+d \vec{x} \cdot \nabla \vec{u}
\end{aligned}
$$

$$
\begin{aligned}
& {[d \vec{x}] }=[d \vec{x}]+[d \vec{x} \cdot \nabla \vec{u}] \\
&=[d \vec{x}]+[\nabla \vec{u}][d \vec{x}]=[d \vec{x}]([I]+[\nabla \vec{u}]) \left\lvert\, \begin{array}{l}
|d \vec{x}|=\sqrt{d x^{2}+d y^{2}+d z^{2}} \\
|d \vec{x}|=\sqrt{d x^{2}+d y^{2}+d z^{2}} \\
|d \vec{x}| \leftrightarrow|d \vec{x}| \\
|d \vec{x}|^{2} \text { with }|d \vec{x}|^{2} \quad|d \vec{x}|^{2}=d \vec{x} \cdot d \vec{x} ;|d \vec{x}|^{2}=d \vec{x} \cdot d \vec{x} \quad \sigma_{n n} \text { or } T_{n n} \\
\varepsilon
\end{array}\right. \\
& \sigma_{n s} \text { or }=\frac{|d \vec{x}|-|d \vec{x}|}{|d \vec{x}|}
\end{aligned}
$$

$$
\begin{aligned}
& |d \vec{x}|^{2}=d \vec{x} \cdot d \vec{x} \\
& =(d \vec{x}+d \vec{x} \cdot \nabla \vec{u}) \cdot(d \vec{x}+d \vec{x} \cdot \nabla \vec{u}) \\
& =[d \vec{x}+d \vec{x} \cdot \nabla \vec{u}]^{\top}[d \vec{x}+d \vec{x} \cdot \nabla \vec{u}] \\
& =([d \vec{x}]+[\nabla \vec{v}][d \vec{x}])^{\top}([d \vec{x}]+[\nabla \vec{u}][d \vec{x}]) \\
& =\left([d \vec{x}]^{\top}+[d \vec{x}]^{\top}[\nabla \vec{u}]^{\top}\right)([\vec{a}]+[\nabla \vec{x}][d \vec{x}]) \\
& =[d \vec{x}]^{\top}[d \vec{x}]+[d \vec{x}]^{\top}[\nabla \vec{u}][d \vec{x}]+[d \vec{x}]^{\top}[\nabla \vec{u}]^{\top}[d \vec{x}] \\
& +\underbrace{\left[d d^{-}\right]^{\top}[\nabla \vec{u}]^{\top}[\nabla \vec{u}][d \vec{x}]}_{\text {nedlect }} \\
& \approx|d \vec{x}|^{2}+[d \vec{x}]^{\top}\left([\nabla \vec{u}]+[\nabla \vec{u}]^{\top}\right)[d \vec{x}] \\
& \vec{a} \cdot \vec{b} \\
& {[d \vec{x} \cdot \nabla \vec{u}]} \\
& =[\nabla \vec{u}][d \vec{x}] \\
& ([A][B])^{\top} \\
& =[B]^{\top}[A]^{\top} \\
& \left\lvert\, \begin{array}{l}
\left(\frac{\partial u}{\partial x}\right)^{2}, \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial y} \frac{\partial w}{\partial z}
\end{array}\right.
\end{aligned}
$$

$$
|d \vec{x}|^{2}=|d \vec{x}|^{2}+[d \vec{x}]^{\top}\left([\vec{\nabla} \vec{u}]+[\nabla \vec{u}]^{\top}\right)[d \vec{x}]
$$

Define the infinitesimal or small strain tensor

$$
\begin{aligned}
& \quad \underset{\sim}{\varepsilon}:=\frac{1}{2}\left\{\nabla \vec{u}+(\nabla \vec{u})^{\top}\right\} \\
& {\left[\begin{array}{c}
\varepsilon \\
\approx
\end{array}\right]:=\frac{1}{2}\left\{[\nabla \vec{u}]+[\nabla \vec{u}]^{\top}\right\}}
\end{aligned}
$$

\rightarrow Symmetric part of $[\nabla \vec{u}]$

$$
\left[\begin{array}{c}
\varepsilon \\
z
\end{array}\right]=\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right]
$$

$=$ In terms of denvatives of u, v, w

$$
\varepsilon_{x x}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial x}\right)=\frac{\partial u}{\partial x}
$$

$$
\varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right), \ldots
$$

$$
\begin{aligned}
& \frac{1}{2}\left([\nabla \vec{v}]+[\nabla \vec{V}]^{\top}\right) \\
& =\vec{E}\left(\begin{array}{c}
\text { strain rate }) \\
\text { tensor }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& {[A]} \\
& =\frac{1}{2}\left([A]+[A]^{\top}\right) \\
& +\frac{1}{2}\left([A]-[A]^{\top}\right)
\end{aligned}
$$

$$
\begin{aligned}
& |d \vec{x}|^{2}=|d \vec{x}|^{2}+[d \vec{x}]^{\top}\left([\nabla \vec{u}]+[\nabla \vec{u}]^{\top}\right)[d \vec{x}] \\
\Rightarrow & |d \vec{x}|^{2}=|d \vec{x}|^{2}+2[d \vec{x}]^{\top}\left[\begin{array}{l}
\varepsilon \\
=
\end{array}\right][d \vec{x}] \\
\Rightarrow & |d \vec{x}|^{2}=|d \vec{x}|^{2}+2|d \vec{x}|^{2}[\hat{N}]^{\top}\left[\begin{array}{l}
\varepsilon \\
\underset{\sim}{2}
\end{array}\right][\hat{N}] \\
\Rightarrow & |d \vec{x}|^{2} \\
|d \vec{x}|^{2} & =1+2[\hat{N}]^{\top}[\varepsilon][\hat{N}] \\
\Rightarrow & (1+\varepsilon)^{2}=1+2[\hat{N}]^{\top}[\varepsilon][\hat{N}] \\
\Rightarrow & X+2 \varepsilon+\varepsilon^{2}=X+2[\hat{N}]^{\top}[\varepsilon][\hat{N}] \\
& \text { Nedect } \varepsilon^{2} \text { compared } \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& d \vec{x}=|d \vec{x}| \hat{N} \\
& {[d \vec{x}]=|d \vec{x}|[\hat{M}]} \\
& {[d \vec{x}]^{\top}=|d \vec{x}|[\hat{N}]} \\
& \varepsilon:=\frac{|d \vec{x}|-|d \vec{x}|}{|d \vec{x}|}
\end{aligned}
$$

Neglect ε^{2} compared ε
(Normal strain along a particular d din $n \rightarrow \hat{N}$)
\# Change in dir of an elemental line segment

$$
\begin{aligned}
& d \vec{x}=d \vec{x}+d \vec{x} \cdot \nabla \vec{u} \\
\Rightarrow & |d \vec{x}| \hat{n}=|d \vec{x}| \hat{N}+|d \vec{x}| \hat{N} \cdot \nabla \vec{u} \\
\Rightarrow & \frac{|d \vec{x}|}{|d \vec{x}|} \hat{n}=\hat{N}+\hat{N} \cdot \nabla \vec{u} \\
\Rightarrow & \left(1+\varepsilon_{N}\right) \hat{n}=\hat{N}+\hat{N} \cdot \nabla \vec{u} \\
\Rightarrow & \quad \hat{n}=\frac{1}{1+\varepsilon_{N}}(\hat{N}+\hat{N} \cdot \nabla \vec{u})
\end{aligned}
$$

Given: \widehat{N}
Find: \hat{n}

$\theta-\theta^{\prime}$
\# Change in the angle $b d^{n} 2$ demental line segments

Given: θ between $\hat{N}^{(i)} \& \hat{N}^{(2)}$
Find: θ^{\prime} between $\hat{n}^{(i)}$ \& $\hat{n}^{(n)}$

$$
\begin{aligned}
& \Rightarrow\left(1+\varepsilon_{N}^{(0)}\right)\left(1+\varepsilon_{N}^{(2)}\right) \cos ^{\prime}=\left[\hat{N}^{(1)}+\hat{N}^{(1)}, \nabla \vec{u}\right]^{\top}\left[\hat{N}^{(2)}+\hat{N}^{(2)}, \nabla \vec{u}\right] \\
& =\left\{\left[\hat{N}^{(1)}\right]^{\top}+\left([\nabla \vec{v}]\left[\hat{N}^{(1)}\right]\right)^{\top}\right\}\left\{\left[\hat{N}^{(2)}\right]+[\nabla \vec{\nabla})\left[\hat{N^{2}}\right\}\right. \\
& \begin{array}{l}
=\left[\hat{N}^{(1)}\right]^{\top}\left[\hat{N}^{(2)}\right]+[\hat{N}(1)]^{\top}[\nabla \vec{u}]\left[\hat{N}^{(2)}\right]+\left[\hat{N}^{(1)}\right]^{\top}[\nabla \vec{u}]^{\top}\left[\hat{N}^{(2)}\right]+\text { h.0.t }
\end{array} \\
& \cos \theta^{\prime} \approx \cos \theta+[\hat{N}(i)]^{\top}\left([\Delta \vec{u}]+[\nabla \vec{u}]^{\top}\right)\left[\hat{N}^{(2)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta^{\prime} \approx \cos \theta+\left[\hat{N}^{(\lambda)}\right]^{\top}\left([\nabla \vec{u}]+[\nabla \vec{u}]^{\top}\right)\left[\hat{N}^{(2)}\right] \\
& \Rightarrow \cos \theta^{\prime}=\cos \theta+2\left[\hat{N}^{(1)}\right]^{\top}[\underset{\sim}{\varepsilon}]\left[\hat{N}^{(2)}\right] \\
& \text { when } \theta=\pi / 2 \\
& \cos \left(\frac{\pi}{2}-\gamma\right)=0+2\left[\hat{N}^{(1)}\right]^{\top}\left[\begin{array}{l}
\varepsilon \\
\approx
\end{array}\right]\left[\hat{N}^{(2)}\right] \\
& \Rightarrow \sin \gamma \approx \gamma=2\left[\hat{N}^{(2)}\right]^{\top}\left[\begin{array}{l}
\varepsilon \\
\sim
\end{array}\right]\left[\hat{N}^{(2)}\right] \\
& \varepsilon_{N}=[\hat{N}]^{\top}\left[\varepsilon_{\lambda}^{\varepsilon}\right][\hat{N}] \\
& \theta^{\prime}=\frac{\pi}{2}-\gamma
\end{aligned}
$$

Simplifications under the consideration of PLANE STRAIN

PLANE STRAY: $\varepsilon_{z z}=0, \varepsilon_{z x}=0, \varepsilon_{y z}=0$

$$
\left[\begin{array}{c}
\varepsilon \\
\approx
\end{array}\right]=\left[\begin{array}{cc:c}
i \varepsilon_{x x} & \varepsilon_{x y} & 0 \\
\varepsilon_{x y} & \varepsilon_{y y} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \varepsilon_{H}=[\hat{N}]^{-\top}[\varepsilon][\hat{N}] \\
& {[\hat{N}]=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]} \\
& \overbrace{\rightarrow x}^{\text {- }} \\
& \sigma_{N}=\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y} \\
\varepsilon_{x y} & \varepsilon_{y y}
\end{array}\right]\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right] \\
& \frac{d \varepsilon_{x^{\prime} x^{\prime}}}{d \theta} \\
& \theta^{\pi+0^{0}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2}+\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \cos 2 \theta+\varepsilon_{x y} \sin 2 \theta \\
& \varepsilon_{y^{\prime} y^{\prime}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2}-\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \cos 2 \theta-\varepsilon_{x y} \sin 2 \theta
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=2\left[\hat{N}^{(}\right)\left[\begin{array}{c}
\varepsilon \\
\sim
\end{array}\right]\left[\hat{N}^{(2)}\right] \\
& {\left[\hat{N}^{(1)}\right] }=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \\
& {\left[\hat{N}^{(2)}\right] }=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right] \\
& \gamma_{x^{\prime} y^{\prime}}\left.=2[\cos \theta \sin \theta]\left[\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y} \\
\varepsilon_{x y} & \varepsilon_{y y}
\end{array}\right][-\sin \theta] \cos \theta\right] \\
&=-\left(\frac{\varepsilon_{x x}-\varepsilon_{y_{y}}}{2}\right) \sin (2 \theta)+\varepsilon_{x y} \cos (2 \theta)
\end{aligned}
$$

Principal strains

$$
\begin{aligned}
& \text { incipal strains } \\
& \varepsilon_{p_{1}, p_{2}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2}\right)^{2}+\varepsilon_{x y}^{2}} \quad\left(\begin{array}{c}
\text { sham dessly lifted -tais } \\
\text { from princpal stress } \\
\text { formulae }
\end{array}\right)
\end{aligned}
$$

In 3D

Strain Rosette

$$
\left\{\begin{array}{l}
\varepsilon_{a}=\varepsilon_{x x} \cos ^{2} \theta_{a}+\varepsilon_{y y} \sin ^{2} \theta_{a}+2 \varepsilon_{x y} \sin \theta_{a} \cos \theta_{a} \\
\varepsilon_{b}=\varepsilon_{x x} \cos ^{2} \theta_{b}+\varepsilon_{y y} \sin ^{2} \theta_{b}+2 \varepsilon_{x y} \sin \theta_{b} \cos \theta_{b} \\
\varepsilon_{c}=\varepsilon_{x x} \cos ^{2} \theta_{c}+\varepsilon_{y y} \sin ^{2} \theta_{c}+2 \varepsilon_{x y} \sin \theta_{c} \cos \theta_{c}
\end{array}\right.
$$

Linear simultaneous ems with unknowns $\varepsilon_{x x}, \varepsilon_{y y} \& \varepsilon_{x y}$
4. The strain rosette is attached to point A on the surface of the support. The readings from the strain gauges are: $\varepsilon_{a}=300 \mu, \varepsilon_{b}=-150 \mu$, and $\varepsilon_{c}=-450 \mu$. Determine (a) the in-plane principal strains, and (b) the maximum in-plane shear strain and (c) the
(a) $336 \mu, 11.7^{\circ}$ $-536 \mu, 101.7^{\circ}$ (b) $872 \mu,-33.3^{\circ}$ (c) -100μ] average normal strain associated with the maximum in-plane shear strain. Specify the

$$
\begin{aligned}
& \theta_{a}=0^{\circ}, \theta_{b}=60^{\circ}, \theta_{c}=120^{\circ} \\
& \rightarrow \varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{x y} \text { orientation of each element that has these states of strain with respect to the } x \text {-axis.* } \\
& \text { (c) } \quad \frac{\varepsilon_{x x}+\varepsilon_{y y}}{2} \text { or } \frac{\varepsilon_{p_{1}}+\varepsilon_{p_{2}}}{2} \\
& \tan 2 \theta_{p}=\frac{2 \varepsilon_{x y}}{\varepsilon_{x x}-\varepsilon_{y y}} \\
& \theta_{p_{1}}=11.705^{\circ}, \theta_{p_{2}}=\theta_{p_{1}}+90^{\circ}
\end{aligned}
$$

9. The strain the x-direction at point A on the structural steel beam $(E=203 \mathrm{GPa}$ and $G=76 \mathrm{GPa})$ is measured and found to be $\varepsilon_{x x}=100 \mu$. Determine the applied load P. What is the shear strain $\gamma_{x y}$ at point A?

$$
\left[P=57 \mathrm{kN} ; \gamma_{x y}=-13.91 \mu\right]
$$

$P \rightarrow$ Bending Moment \rightarrow Flexural stress (or Bending Stress)

$$
\sigma_{x x}=E \varepsilon_{x x}
$$

$$
\sigma=\frac{M y}{I} \quad M \leftarrow P \quad \varepsilon_{x x}=\frac{1}{E}\left[\sigma_{x-x}-\nu\left(\sigma_{y y}+\sigma_{x x}\right)\right]
$$

$$
\rho l] \leftrightarrows \frac{M y^{2}}{I}=E \varepsilon_{v x}
$$

$$
z_{x y}=\frac{X Q^{P}}{I t}
$$

$$
\gamma_{x y}=2 \varepsilon_{x y}=\nsim 2 \frac{\tau_{x y}}{\not 2 G}
$$

8. Deduce that in the case of plane strain ($x y$-plane) for a body made of a material that follows the generalized Hooke's law, the stress component $\sigma_{z z}$ itself is a principal stress.

$$
\left.\begin{array}{c}
\varepsilon_{z z}=0, \varepsilon_{y z}=0, \varepsilon_{z x}=0 \\
z_{y z}=2 G \varepsilon_{y z}=0 \\
r_{z x}=2 G \varepsilon_{z x}=0 \\
\sigma_{z z} ? \quad \underset{z z z}{ }=\frac{1}{E}\left[\sigma_{z z}-\nu\left(\sigma_{x x}+\sigma_{y y}\right)\right] \\
\downarrow \\
\neq 0 \\
\neq 0
\end{array}\right]
$$

6. For a material that behaves according to the generalized Hooke's law:
(a) Considering the case of plane stress ($x y$-plane), derive the strain transformation equations from the stress transformation equations.
(b) How does the strain component $\varepsilon_{z z}$ transform in part (a)?
(c) Considering the case of plane strain ($x y$-plane), derive the stress transformation equations from the strain transformation equations.
(d) How does the stress component $\sigma_{z z}$ transform in part (c)?
(d) $\sigma_{z z} \neq 0$

Observe that $\sigma_{z^{\prime} z^{\prime}}$ will coincide with $\sigma_{2 z}$
(a) Plane stress: $\sigma_{z z}=0, \tau_{z x}=0, \tau_{y z}=0$

$$
\begin{aligned}
& \sigma_{z z}=0, \tau_{z x}=0, \tau_{y z}=0 \\
& \sigma_{x^{\prime} x^{\prime}}=\sigma_{x x} \cos ^{2} \theta+\sigma_{y y} \sin ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta \\
& \varepsilon_{x x}=\frac{1}{E}\left[\sigma_{x x}-\nu\left(\sigma_{y y}+\sigma_{z z}\right)\right] \\
& \left.\varepsilon_{y y}=\frac{1}{E}\left[\sigma_{y y}-s\left(\sigma_{x x}+\sigma_{z z}\right)\right]\right\} \sigma_{x x}=f_{1}\left(\varepsilon_{x x}, \varepsilon_{y y}\right) \\
& \sigma_{y y}=f_{z}\left(\varepsilon_{x x}, \varepsilon_{y y}\right)
\end{aligned}
$$

We'll detain: $\varepsilon_{x^{\prime} a^{\prime}}=\varepsilon_{x x} \cos ^{2} \theta+\varepsilon_{y y} \sin ^{2} \theta+2 \varepsilon_{x y} \sin \theta \cos \theta$
(b)

Obsere that $\varepsilon_{z \prime} z^{\prime}$ is the same as $\varepsilon_{z z}$.

