Bending of Beams

Simply-supported

Cantilever
Statically Determinate

Statically Indeterminate

\#

SFD
$L_{2}<x<L$

$$
\begin{aligned}
& V+P-P / 2=0 \\
& \Rightarrow V=-P / 2 \\
& M-P / 2^{2} x+P(x-L / 2) \\
& \Rightarrow M=\frac{P}{2}(L-x)
\end{aligned}
$$

$$
\begin{aligned}
& \square_{V}^{<x \rightarrow 1} \prod_{V}^{M} \quad 0<x<L / 2 \\
& \text { P/2 } \\
& V-p / 2=0 \Rightarrow V=P / 2 \\
& -\sum M=0 \oplus \\
& \rightarrow M-P / 2 x=0 \Rightarrow M=P / 2 x
\end{aligned}
$$

風

$$
\begin{aligned}
& +\int_{0}^{x}\left(x-x^{\prime}\right) w \cdot d x^{\prime}+M=0 \\
& \Rightarrow-\left[\frac{w\left(x-x^{\prime}\right)}{2}\right]_{0}^{x}+M=0 \\
& \Rightarrow+\frac{w x^{2}}{2}+M \Rightarrow M=-\frac{w x^{2}}{2}
\end{aligned}
$$

$\#_{3}$

For $0<x<a$

$$
V=-w_{x}
$$

$$
L_{k x \rightarrow 1} \quad M=-w x^{2} / 2
$$

For $b<x<L$

$V+P+w a=0 \Rightarrow V=-w a-P$
$M-c P+P(x-b)+w a\left(x-\frac{a}{2}\right)=0$

$$
\Rightarrow M=c P-P(x-b)-w a\left(x-\frac{a}{2}\right)
$$

at any posn $x: \frac{W}{L} x$

$$
\begin{aligned}
& \sum F_{y}=0(\uparrow+) \\
& -V-A_{V}=0 \Rightarrow V=-A_{V}
\end{aligned}
$$

2. The industrial robot is held in the stationary position shown. Draw the shear force and bending moment diagrams of the arm ABC if it is pin connected at A and connected to a hydraulic cylinder (two-force member) BD. Assume the arm and grip have a uniform weight of $0.3 \mathrm{~N} / \mathrm{mm}$ and support the load of 200 N at C .

$$
\sum F_{x}=0 \Rightarrow A_{f)}=B D_{x}
$$

$$
\sum M_{A}=0 \Rightarrow B D \not \subset
$$

$$
\sum F_{y}=0 \Rightarrow \Delta_{v} \nsim
$$

4. The beam is bolted or pinned at A and rests on a bearing pad at B that exerts a uniform distributed loading on the beam over its length of 0.6 m . If the beam supports a uniform loading of $30 \mathrm{kN} / \mathrm{m}$, draw the shear and moment diagrams.

"Shear release"

$$
V=0
$$

6. The shaft is supported by a smooth thrust bearing at A and a smooth journal bearing at B. Draw the shear and moment diagrams for the shaft.

For $1.6 m<x<2.4 m$
$\sum f_{y}=0 \Rightarrow V=A_{V}+B_{V}=900 \mathrm{~N}$

For $0<x<0.8 m$
(4) $\sum M=0 \Rightarrow M=A_{V} x \quad\left(\varrho_{x}=0.8 m, M=-660 \mathrm{Nm}\right)$

For $0.8 m<x<1.6 m$
(t)

$$
\begin{aligned}
\sum M=0 & \Rightarrow-A_{v} x-600+M=0 \\
& \Rightarrow M=600+A_{V} x \\
& (@ x=0.8 \mathrm{~m}, M=-60 \mathrm{Nm}) \\
& (@ x=1.6 \mathrm{~m}, M=-720 \mathrm{Nm})
\end{aligned}
$$

For $1.6 m<x<2.4 m$
$\stackrel{\downarrow}{+}$

$$
\begin{array}{r}
\sum M=0 \Rightarrow M-\Lambda_{v} x-B_{v}(x-1.6 m) \\
-600 M_{m}=0
\end{array}
$$

(a) $x=1.6 \mathrm{~m}, M=-720 \mathrm{Mm}$ (a) $x=2.4 \mathrm{~m}, M=0$

11. A curved cantilever beam has the form of a quarter circular arc. Determine the expressions of the shear force V and the bending moment M as functions of θ. The depth of the beam is much smaller than the arc radius.

Relations between load, shear, and bending moment

