2D Elasticity*

1 Plane stress

The salient features of a plane stress situation are:

- Domain bounded by two parallel planes
- Distance between two planes is small compared to other dimensions
- When referred to a rectangular Cartesian coordinate system, it is usual to take the two planes to be represented by $z= \pm h$ such that the very small distance between the two planes is $2 h$, and the $x-y$ plane (denoting the mid-surface) is used to describe the problem.
- The two planes $z=h$ and $z=-h$ are stress-free so that $\sigma_{z z}=\sigma_{x z}=$ $\sigma_{y z}=0$ on each face.
- It is expected that there will be very little variation in $\sigma_{z z}, \sigma_{x z}$, and $\sigma_{y z}$ through the thickness; hence, they are approximately taken as zero throughout the entire domain.
- Again because of the very small thickness, the non-zero stress components will have little variation with z; they are approximately taken to be independent of z. Thus,

$$
\sigma_{x x} \equiv \sigma_{x x}(x, y), \sigma_{y y} \equiv \sigma_{y y}(x, y), \sigma_{x y} \equiv \sigma_{x y}(x, y)
$$

- There can be no body forces in the z-direction; this follows immediately from the z-component of the mechanical equilibrium equation.

From constitutive equation of a linear, elastic, isotropic solid, we have

[^0]for the plane stress situation:
\[

$$
\begin{align*}
\varepsilon_{x x} & =\frac{1}{E}\left(\sigma_{x x}-v \sigma_{y y}\right), \tag{1a}\\
\varepsilon_{y y} & =\frac{1}{E}\left(\sigma_{y y}-v \sigma_{x x}\right), \tag{1b}\\
\varepsilon_{z z} & =-\frac{v}{E}\left(\sigma_{x x}+\sigma_{y y}\right), \tag{1c}\\
\varepsilon_{x y} & =\frac{1+v}{E} \sigma_{x y}, \tag{1d}\\
\varepsilon_{y z} & =0 \tag{1e}\\
\varepsilon_{z x} & =0 . \tag{1f}
\end{align*}
$$
\]

Adding (1a) and (1b) and substituting in (1c), we have

$$
\begin{equation*}
\varepsilon_{z z}=-\frac{v}{1-v}\left(\varepsilon_{x x}+\varepsilon_{y y}\right) . \tag{2}
\end{equation*}
$$

NOTE:

- Even though $\sigma_{z z}=\sigma_{x z}=\sigma_{y z}=0$, we still have $\varepsilon_{z z} \neq 0$.
- All strains are independent of z.

Now, consider the compatibility equations ${ }^{\dagger}$:

$$
\begin{align*}
\frac{\partial^{2} \varepsilon_{x x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y y}}{\partial x^{2}} & =2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y}, \tag{3a}\\
\frac{\partial^{2} \varepsilon_{y y}}{\partial z^{2}}+\frac{\partial^{2} \varepsilon_{z z}}{\partial y^{2}} & =2 \frac{\partial^{2} \varepsilon_{y z}}{\partial y \partial z}, \tag{3b}\\
\frac{\partial^{2} \varepsilon_{z z}}{\partial x^{2}}+\frac{\partial^{2} \varepsilon_{z x x}}{\partial z^{2}} & =2 \frac{\partial^{2} \varepsilon_{z x}}{\partial z \partial x}, \tag{3c}\\
\frac{\partial^{2} \varepsilon_{y x x}}{\partial y \partial z} & =\frac{\partial}{\partial x}\left(-\frac{\partial \varepsilon_{y z}}{\partial x}+\frac{\partial \varepsilon_{z x x}}{\partial y}+\frac{\partial \varepsilon_{y y y}}{\partial z}\right), \tag{3d}\\
\frac{\partial^{2} \varepsilon_{y y y}}{\partial z \partial x} & =\frac{\partial}{\partial y}\left(-\frac{\partial \varepsilon_{z z x}}{\partial y}+\frac{\partial \varepsilon_{y y} y}{\partial z}+\frac{\partial \varepsilon_{y z}}{\partial x}\right), \tag{3e}\\
\frac{\partial^{2} \varepsilon_{z z}}{\partial x \partial y} & =\frac{\partial}{\partial z}\left(-\frac{\partial \varepsilon_{y y y}}{\partial z}+\frac{\partial \varepsilon_{y z}}{\partial x}+\frac{\partial \varepsilon_{z x x}}{\partial y}\right) . \tag{3f}
\end{align*}
$$

[^1]The only compatibility equation that is considered is (3a). The other three compatibility equations involving $\varepsilon_{z z}$ are neglected.

Now, using (1a) and (1b) in (3a), we have, after rearranging

$$
\begin{equation*}
\left(-v \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \sigma_{x x}+\left(\frac{\partial^{2}}{\partial x^{2}}-v \frac{\partial^{2}}{\partial y^{2}}\right) \sigma_{y y}=2(1+v) \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y} . \tag{4}
\end{equation*}
$$

Adding and subtracting $\frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}$ and $\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}$, we have

$$
\begin{equation*}
-(1+v)\left(\frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}\right)+\nabla^{2}\left(\sigma_{x x}+\sigma_{y y}\right)=2(1+v) \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y} . \tag{5}
\end{equation*}
$$

Consider the equilibrium equations

$$
\begin{align*}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+F_{x}=0 \tag{6a}\\
& \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+F_{y}=0 \tag{6b}
\end{align*}
$$

Differentiating the first of the preceding equations with respect to x and the second with respect to y, we have

$$
\begin{align*}
& \frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{x y}}{\partial x \partial y}=-\frac{\partial F_{x}}{\partial x}, \tag{7a}\\
& \frac{\partial^{2} \sigma_{x y}}{\partial y \partial x}+\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}=-\frac{\partial F_{y}}{\partial y} . \tag{7b}
\end{align*}
$$

Adding these two equations, we obtain

$$
\begin{equation*}
\frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}+2 \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y}=-\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}\right) \tag{8}
\end{equation*}
$$

Substituting (8) in (5), we have

$$
\begin{equation*}
\nabla^{2}\left(\sigma_{x x}+\sigma_{y y}\right)=-(1+v)\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}\right) \tag{9}
\end{equation*}
$$

We consider the equilibrium equations agains but assume the body forces to be conservative in nature so that they are expressed as the gradient of a scalar potential, i.e. $F_{x}=-\frac{\partial V}{\partial x}$ and $F_{y}=-\frac{\partial V}{\partial y}$, so that

$$
\begin{align*}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}-\frac{\partial V}{\partial x}=0 \tag{10a}\\
& \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}-\frac{\partial V}{\partial y}=0 \tag{10b}
\end{align*}
$$

We define the following:

$$
\begin{align*}
\sigma_{x x}-V & =\frac{\partial^{2} \varphi}{\partial y^{2}} \tag{11a}\\
\sigma_{y y}-V & =\frac{\partial^{2} \varphi}{\partial x^{2}} \tag{11b}\\
\sigma_{x y} & =-\frac{\partial^{2} \varphi}{\partial x \partial y} \tag{11c}
\end{align*}
$$

so that (10a) and (10b) are satisfied identically.
Using the expressions of $\sigma_{x x}$ and $\sigma_{y y}$ in Eq. (9), we have

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(V+\frac{\partial^{2} \varphi}{\partial y^{2}}\right)+\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(V+\frac{\partial^{2} \varphi}{\partial x^{2}}\right)=(1+v)\left(\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}\right)
$$

or, $\quad 2 \nabla^{2} V+\nabla^{2}\left(\nabla^{2} \varphi\right)=(1+v) \nabla^{2} V$,
or, $\quad \nabla^{4} \varphi=-(1-v) \nabla^{2} V$

Note that ∇^{4} is referred to as the biharmonic operator.
If the body forces vanish or if $\nabla^{2} V=0$ then we have

$$
\begin{equation*}
\nabla^{4} \varphi=0 \tag{13}
\end{equation*}
$$

This equation is referred to as the biharmonic equation, and its solutions are referred to as the biharmonic solutions.

2 Plane Strain

Consider an infinitely long cylindrical (prismatic) body

- If body forces and tractions on the lateral boundaries are independent of the longitudinal axis variable, z, and have no z-component then the deformation field can be taken as

$$
u \equiv u(x, y), \quad v \equiv v(x, y)
$$

This deformation is referred to as a state of plane strain in the $x-y$ plane.

- All cross sections will have identical displacements and thus the 3D problem is reduced to a 2D problem.

Considering the preceding points, we have

$$
\begin{gathered}
\varepsilon_{x x}=\frac{\partial u}{\partial x}, \quad \varepsilon_{y y}=\frac{\partial v}{\partial y}, \quad \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right), \\
\varepsilon_{z z}=\varepsilon_{z x}=\varepsilon_{y z}=0 .
\end{gathered}
$$

The only compatibility equation that does not reduce to a $0=0$ form is

$$
\begin{equation*}
\frac{\partial^{2} \varepsilon_{x x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y y}}{\partial x^{2}}=2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y} . \tag{14}
\end{equation*}
$$

Considering the constitutive equation for a linear, elastic, isotropic material we have

$$
\begin{align*}
\varepsilon_{x x} & =\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right], \tag{15a}\\
\varepsilon_{y y} & =\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{z z}+\sigma_{x x}\right)\right], \tag{15b}\\
\varepsilon_{z z} & =\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{x x}+\sigma_{y y}\right)\right] \Longrightarrow \sigma_{z z}=v\left(\sigma_{x x}+\sigma_{y y}\right), \tag{15c}\\
\varepsilon_{x y} & =\frac{1+v}{E} \sigma_{x y}, \tag{15d}\\
\sigma_{y z} & =\sigma_{z x}=0 \quad\left(\text { Since } \varepsilon_{y z}=\varepsilon_{z x}=0\right) \tag{15e}
\end{align*}
$$

Note that unlike the plane stress case, in the plane strain case we have $\sigma_{z z} \neq 0$.

Substituting the expression of $\sigma_{z z}$ in the expressions for $\varepsilon_{x x}$ and $\varepsilon_{y y}$, we have

$$
\begin{align*}
& \varepsilon_{x x}=\frac{1+v}{E}\left[(1-v) \sigma_{x x}-v \sigma_{y y}\right], \tag{16a}\\
& \varepsilon_{y y}=\frac{1+v}{E}\left[(1-v) \sigma_{y y}-v \sigma_{x x}\right] . \tag{16b}
\end{align*}
$$

We next use these expressions for $\varepsilon_{x x}$ and $\varepsilon_{y y}$ (from Eq. (16)(a) and (b)) as well as for $\varepsilon_{x y}$ (from Eq. (15)(c)) in the compatibility equation, Eq. (14), to obtain

$$
\begin{equation*}
\frac{1+v}{E} \frac{\partial^{2}}{\partial y^{2}}\left[(1-v) \sigma_{x x}-v \sigma_{y y}\right]+\frac{1+v}{E} \frac{\partial^{2}}{\partial x^{2}}\left[(1-v) \sigma_{y y}-v \sigma_{x x}\right]=2 \frac{1+v}{E} \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y} \tag{17}
\end{equation*}
$$

or, $(1-v) \nabla^{2}\left(\sigma_{x x}+\sigma_{y y}\right)-\frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}-\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}=2 \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y}$.
Considering the equilibrium equations, we have

$$
\begin{align*}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+F_{x}=0 \Longrightarrow \frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{x y}}{\partial x \partial y}+\frac{\partial f_{x}}{\partial x}=0, \tag{19a}\\
& \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+F_{y}=0 \Longrightarrow \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y}+\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}+\frac{\partial f_{y}}{\partial y}=0 . \tag{19b}
\end{align*}
$$

Partially differentiating the first of the preceding equations with respect to x and the second with respect to y, and adding them, we obtain

$$
\begin{equation*}
\frac{\partial^{2} \sigma_{x x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y y}}{\partial y^{2}}+2 \frac{\partial^{2} \sigma_{x y}}{\partial x \partial y}=-\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right) . \tag{20}
\end{equation*}
$$

Using Eq. (20) in Eq. (18), we obtain

$$
\begin{equation*}
(1-v) \nabla^{2}\left(\sigma_{x x}+\sigma_{y y}\right)=-\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right) \tag{21}
\end{equation*}
$$

Proceeding similarly as in the plane stress case we consider a conservative body force per unit volume, we set

$$
\begin{align*}
\sigma_{x x} & =\frac{\partial^{2} \varphi}{\partial y^{2}}+V \tag{22a}\\
\sigma_{y y} & =\frac{\partial^{2} \varphi}{\partial x^{2}}+V \tag{22b}\\
\sigma_{x y} & =-\frac{\partial^{2} \varphi}{\partial x \partial y} \tag{22c}
\end{align*}
$$

where V is a scalar potential such that $f_{x}=-\frac{\partial V}{\partial x}$ and $f_{y}=-\frac{\partial V}{\partial y}$. Using these expressions in Eq. (21), we have

$$
\begin{align*}
& \quad(1-v) \nabla^{2}\left(\frac{\partial^{2} \varphi}{\partial y^{2}}+V+\frac{\partial^{2} \varphi}{\partial x^{2}}+V\right)=\nabla^{2} V, \\
& \text { or, } \quad \nabla^{4} \varphi=-\frac{1-2 v}{1-v} \nabla^{2} V . \tag{23}
\end{align*}
$$

Again, as in the plane stress case, if the body forces vanish or if $\nabla^{2} V=0$ then we have

$$
\begin{equation*}
\nabla^{4} \varphi=0 . \tag{24}
\end{equation*}
$$

Summary for plane stress and plane strain cases:

$$
\begin{array}{ll}
\text { Plane stress: } & \nabla^{4} \varphi=-(1-v) \nabla^{2} V, \\
\text { Plane strain: } & \nabla^{4} \varphi=-\frac{1-2 v}{1-v} \nabla^{2} V . \tag{26}
\end{array}
$$

[^0]: *Notes prepared by Jeevanjyoti Chakraborty. Contact: jeevan@mech.iitkgp.ac.in

[^1]: \dagger Refer to Problem Sheet 1 on "Kinematics".

