Tutorial 7: Concept of Stress and Strain - II

1. An $80-\mathrm{m}$-long wire of $5-\mathrm{mm}$ diameter is made of a steel with $\mathrm{E}=200 \mathrm{GPa}$ and an ultimate tensile strength of 400 MPa . If a factor of safety of 3.2 is desired, determine (a) the largest allowable tension in the wire, (b) the corresponding elongation of the wire. [(a) 2.45 kN , (b) 50 mm]
2. Two gauge marks are placed exactly 250 mm apart on a 12 mm diameter aluminum rod. Knowing that, with an axial load of 6000 N acting on the rod, the distance between the gage marks is 250.18 mm ; determine the modulus of elasticity of the aluminum used in the rod. [73.68 GPa]
3. The 36 -mm-diameter steel rod $A B C$ and a brass rod $C D$ of the same diameter are joined at point C to form the $7.5-\mathrm{m}$ rod $A B C D$. For the loading shown, and neglecting the weight of the rod, determine the deflection of points C and D. [$2.9474 \mathrm{~mm}, 5.2865 \mathrm{~mm}$]

4. A square yellow-brass bar must not stretch more than 2.5 mm when it is subjected to a tensile load. Knowing that $\mathrm{E}=105 \mathrm{GPa}$ and that the allowable tensile strength is 180 MPa , determine (a) the maximum allowable length of the bar, (b) the required dimensions of the cross section if the tensile load is 40 kN . [(a) 1.458 m , (b) 14.9071 mm]

5. The 4-mm-diameter cable BC is made of a steel with $\mathrm{E}=200 \mathrm{GPa}$. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 6 mm , find the maximum load P that can be applied as shown. [$\mathrm{P}=1.989 \mathrm{kN}$]
6. All the joints of the wall bracket may be considered as pin connected. Steel rod $\mathrm{AB}(\mathrm{E}=$ 200 GPa) has a cross sectional area of $5 \mathrm{~mm}^{2}$ and the member BC is a rigid beam. If a 1000 mm diameter frictionless drum of weight 5000 N is placed in the position shown, what will be the elongation of rod AB? [9.375 mm]

7. The brass tube $\mathrm{AB}(\mathrm{E}=105 \mathrm{GPa})$ has a cross-sectional area of $140 \mathrm{~mm}^{2}$ and is fitted with a plug at A. The tube is attached at B to a rigid plate that is itself attached at C to the bottom of an aluminum cylinder ($\mathrm{E}=72 \mathrm{GPa}$) with a cross-sectional area of $250 \mathrm{~mm}^{2}$. The cylinder is then hung from a support at D . In order to close the cylinder, the plug must move down through 1 mm . Determine the force P that must be applied to the tube. [$\mathrm{P}=21.578 \mathrm{kN}$]

8. Both portions of the rod $A B C$ are made of an aluminum for which $E=70 \mathrm{GPa}$. Knowing that the magnitude of P is 4 kN , determine (a) the value of Q so that the deflection at A is zero, (b) the corresponding deflection of B. [(a) 32.8 kN , (b) 0.0728 mm]
9. Each of the links $A B$ and $C D$ is made of aluminum of $E=75 \mathrm{GPa}$ and has a cross-sectional area of $125 \mathrm{~mm}^{2}$. Knowing that they support the rigid member $B C$; determine the deflection of point E. [0.1095 mm]

10. Link BD is made of brass $(\mathrm{E}=105 \mathrm{GPa})$ and has a cross-sectional area of $240 \mathrm{~mm}^{2}$. Link $C E$ is made of aluminum ($\mathrm{E}=72 \mathrm{GPa}$) and has a cross-sectional area of $300 \mathrm{~mm}^{2}$. Knowing that they support rigid member $A B C$, determine the maximum force P that can be applied vertically at point A if the deflection of A is not to exceed 0.35 mm . [$\mathrm{P}=14.737 \mathrm{kN}$]
11. A rigid machine part $A D$ is suspended by double hangers $A E$ of cross sectional area of $50 \mathrm{~mm}^{2}$ each and $B F$ of cross sectional area of $100 \mathrm{~mm}^{2}$ each respectively The elastic modulus of hanger material is 180 GPa and yield stress is 600 MPa . Determine the deflection that would occur at D by applying a downward force of 10 kN at C. Check hanger stress to assure that an elastic solution is applicable. [1.85 mm]

12. The jib crane shown in the figure has the cable $A B$ of cross-sectional area of $300 \mathrm{~mm}^{2}$ and the bar BC of cross-sectional area of $320 \mathrm{~mm}^{2}$. (a) Determine the deflection vector at B caused by the application of a force $\mathrm{P}=16 \mathrm{kN}$. (b) Hence, estimate the vertical stiffness of the crane at point B. Take E=200 GPa. [(a) (-0.87i-3.9638j) mm, (b) $4036.53 \mathrm{~N} / \mathrm{mm}$]

13. An aluminum plate $(E=74 G P a, v=0.33)$ is subjected to a centric axial load that causes a normal stress σ. Knowing that, before loading, a line of slope $2: 1$ is scribed on the plate, determine the slope of the line when $\sigma=125 \mathrm{MPa}$. [1.9955]
14. A circle of diameter 200 mm is scribed on an unstressed aluminum plate of thickness 18 mm . Forces acting in the plane of the plate later causes normal stresses $\sigma_{x}=85 \mathrm{MPa}$ and $\sigma_{z}=150 \mathrm{MPa}$. For $\mathrm{E}=70 \mathrm{GPa}$ and $v=0.33$, determine the changes in (a) the length of diameter $A B,(b)$ the length of diameter $C D,(c)$ the thickness of the plate and (d) the volume of the plate. [(a) 0.1014 mm , (b)
 0.3484 mm , (c) -0.01994 mm , (d) $=2516.6547 \mathrm{~mm}^{3}$]

15. The homogeneous plate $A B C D$ is subjected to a biaxial loading as shown. It is known that $\sigma_{z}=k$ and that the change in length of the plate in the x direction must be zero, that is, $\varepsilon_{x}=0$. If the modulus of elasticity is E and Poisson's ratio is v, determine (a) the required magnitude of σ_{x}, (b) the ratio $\mathrm{k} / \varepsilon_{\mathrm{z}}$. [(a) vk , (b) $\left.\mathrm{E} /\left(1-\mathrm{v}^{2}\right)\right]$
16. A rectangular steel block has the following dimensions: $a=50 \mathrm{~mm}$, $\mathrm{b}=75 \mathrm{~mm}$ and $\mathrm{c}=100 \mathrm{~mm}$. The faces of this block are subjected to uniformly distributed forces of 180 kN (tension) in the x -direction, 200 kN (tension) in the y -direction and 240 kN (compression) in the z-direction. Determine the magnitude of a single system of forces acting only in the y-direction that would cause the same deformation in the y -direction as the initial forces. Consider $\mathrm{v}=0.25$. [222.49 kN]

17. A vibration isolation unit consists of two blocks of rubber bonded to a rigid metal plate $A B$ and to rigid supports as shown. Knowing that a force of magnitude $P=25 \mathrm{kN}$ causes a deflection $\mathrm{d}=1.5 \mathrm{~mm}$ of plate $A B$ in the downward direction, determine the modulus of rigidity of the rubber used. [16.67 MPa]
