MECHANICS (ME10001)

Tutorial 2: Equilibrium - I

1. Draw the Free Body Diagram (FBD) of all members (including the pulley) assuming all contacts to be frictionless.
2. An aircraft of weight W is climbing at a constant speed at an angle θ under a constant thrust T against a net air $\operatorname{drag} R$ (collinear with T). Given that T is only a function of R and W, complete the FBD keeping in view the concept of equilibrium.

3. The 100 kg wheel rests on a rough surface and bears against the frictionless roller A when the couple M is applied. If $M=60 \mathrm{Nm}$ and the wheel does not slip, compute the reaction on the roller A.

$$
\text { Ans. } F_{A}=231 \mathrm{~N}
$$

4. Determine the force P required to begin rolling the uniform cylinder of mass m over the obstruction of height h.

$$
\text { Ans. } P=\frac{m g \sqrt{2 r h-h^{2}}}{r-h}
$$

5. The spring of modulus $\mathrm{k}=3.5 \mathrm{kN} / \mathrm{m}$ is stretched 10 mm when the disk center O is in the leftmost position $x=0$. Determine the tension T required to position the disk center at $x=150 \mathrm{~mm}$. At that position, what is the normal force N exerted on the horizontal frictionless guide? The mass of the disk is 3 kg .

$$
\text { Ans. } T=328 \mathrm{~N}, N=203 \mathrm{~N} \text { up }
$$

6. Three loads are applied to a light beam supported by cables attached at B and D knowing that the maximum allowable tension in each cable is 12 kN and neglecting the weight of the beam, determine the range of values of Q for which the loading is safe when $\mathrm{P}=5 \mathrm{kN}$.

Ans: $1.5 \mathrm{kN} \leq \mathrm{Q} \leq 9 \mathrm{kN}$

7. Consider the truss. If the roller at B can sustain a maximum load of 3 kN , determine the largest magnitude of each of the three forces F that can be supported by the truss.

Ans: $\mathrm{F}=354 \mathrm{~N}$

8. Two identical smooth tubes A and B, each of weight W, are suspended at their ends by cords of equal length. A third tube C of weight $\mathrm{W}_{\mathrm{C}}=0.8 \mathrm{~W}$ is placed between A and B. Determine the greatest weight of C that can be supported without upsetting equilibrium.

$$
\text { Ans: } \mathrm{W}_{\mathrm{c}}=0.8 \mathrm{~W}
$$

9. A vertical load P is applied at the end B of rod $B C$. The spring constant of the spring is K and the spring is unextended when $\theta=0$.
(a) Neglecting the weight of the rod, express the angle θ corresponding to the equilibrium position in terms of P, K and I .
(b) Determine the value of θ corresponding to the equilibrium if $\mathrm{P}=2 \mathrm{KI}$.

$$
\text { Ans: } \theta=\tan ^{-1}(P / K I), \theta=63.44^{\circ}
$$

10. The lightweight cart of the exercise machine shown is supported by a cable whose other end is pulled by the athlete to raise the cart. In the configuration shown with $\beta=18^{\circ}$, determine the pulling force P applied by the athlete on the cable to maintain equilibrium on the frictionless ramp. Also determine the reaction force R on the cart from the ramp. Take mass of the athlete as 70 kg and $\theta=15^{\circ}$.

Ans: $P=91 \mathrm{~N}, R=691 \mathrm{~N}$
11. The hook wrench is used to turn shafts and collars. If a moment of 80 Nm is required to turn the 200 mm diameter collar about its center O , determine the contact force R on the smooth surface at A. . The engagement of the pin at B may be considered to occur at the periphery of the collar.

Ans. $R=1047 \mathrm{~N}$

12. A special jig consists of an 80 Mg sector mounted on a line of rollers at A and a line of rollers at B. One of the rollers at B is a gear which meshes with a ring of gear teeth on the sector so as to turn the sector about its geometric center 0 . When $\alpha=0$, a counterclockwise torque of 2460 Nm must be applied to the gear at B to keep the assembly from rotating. When $\alpha=30^{\circ}$, a clockwise torque of 4680 Nm is required to prevent rotation. Locate the mass center G of the jig by calculating $\overline{\mathrm{r}}$ and θ. Note that the mass center of the pipe section is at O .

$$
\text { Ans. } \bar{r}=367 \mathrm{~mm}, \theta=79.8^{\circ}
$$

